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Abstract

The continuation of the remarkable exponential in-
creases in processing power over the recent past faces immi-
nent challenges due in part to the physics of deep-submicron
CMOS devices and the costs of both chip masks and future
fabrication plants. A promising solution to these problems
is offered by an alternative to CMOS-based computing,
chemically assembled electronic nanotechnology (CAEN).

In this paper we outline how CAEN-based computing
can become a reality. We briefly describe recent work
in CAEN and how CAEN will affect computer architec-
ture. We show how the inherently reconfigurable nature
of CAEN devices can be exploited to provide high-density
chips with defect tolerance at significantly reduced manu-
facturing costs. We develop a layered abstract architecture
for CAEN-based computing devices and we present prelim-
inary results which indicate that such devices will be com-
petitive with CMOS circuits.

1 Introduction

We are approaching the end of a remarkably success-
ful era in computing: the era where Moore’s Law reigns,
where processing power per dollar doubles every year. This
success is based in large part on advances in complemen-
tary metal-oxide semiconductor (CMOS)-based integrated
circuits. Although we have come to expect, and plan for,
the exponential increase in processing power in our every-
day lives, today Moore’s Law faces imminent challenges
both from the physics of deep-submicron CMOS devices
and from the costs of both chip masks and next-generation
fabrication plants.

A promising alternative to CMOS-based computing un-
der intense investigation is chemically assembled electronic
nanotechnology (CAEN), a form of electronic nanotechnol-
ogy (EN) which uses self-alignment to construct electronic
circuits out of nanometer-scale devices that take advantage
of quantum-mechanical effects [10, 30]. In this paper we
show how CAEN can be harnessed to create useful compu-
tational devices with more than 10

10 gate-equivalents per
cm2. The fundamental strategy we will use is to substitute

compile time (which is inexpensive) for manufacturing pre-
cision (which is expensive). We achieve this through a com-
bination of reconfigurable computing, defect tolerance, ar-
chitectural abstractions and compiler technology. The result
will be a high-density low-power substrate which will have
inherently lower fabrication costs than CMOS counterparts.

Using EN to build computer systems requires new ways
of thinking about computer architecture and compilation.
CAEN differs from CMOS: CAEN is extremely unlikely
to be used to construct complex aperiodic structures. We
introduce an architecture based on fabricating dense regu-
lar structures, which we call nanoBlocks, that can be pro-
grammed after fabrication to implement complex functions.
We call an array of connected nanoBlocks a nanoFabric.

Compared to CMOS, CAEN-based devices have a
higher defect density. Such circuits will thus require built-in
defect tolerance. A natural method of handling defects is to
first configure the nanoFabric for self-diagnosis and then to
implement the desired functionality by configuring around
the defects. Reconfigurabilty is thus integral to the oper-
ation of the nanoFabric. Their nature makes nanoFabrics
particularly well suited for reconfigurable computing.

Reconfigurable computing changes as needed the func-
tion of programmable logic elements and their connections
to storage, building efficient, highly parallel processing ker-
nels, tailored for the application under execution. The net-
work of processing elements is called a reconfigurable fab-
ric. The data used to program the interconnect and process-
ing elements is called a configuration. Examples of current
reconfigurable fabrics are commercial Field Programmable
Gate Arrays (FPGAs) such as [39, 2], and research proto-
types, e.g. Chimaera [40] and PipeRench [18]. As we show
later, one advantage of nanoFabrics over CMOS-based re-
configurable fabrics is that the area overhead for supporting
reconfiguration is virtually eliminated. This will magnify
the benefits of reconfigurable computing, yielding comput-
ing devices that may outperform traditional ones by orders
of magnitude in many metrics, such as computing elements
per cm2 and operations per watt.

In the next section we present some recent research re-
sults, which indicate CAEN will be a successful technol-



ogy for implementing computing devices. We next analyze
how the unique features of CAEN devices can be exploited,
and how their limitations can be circumvented. In Sec-
tion 3 we present an architecture that utilizes the capabil-
ities of CAEN devices without requiring Herculean fabri-
cation technology. In Section 4 we describe our top-level
architectural abstraction, the Split-Phase Abstract Machine
(SAM), which enables fast compilation of large programs.
The simulation results in Section 5 indicate that the SAM
abstraction does not hide the efficiency of the nanoFabric.

2 Electronic Nanotechnology

While CMOS fabrication will soon hit a wall due
to a combination of economic and technical factors, 1

we are nowhere near the theoretical limits of physical
computation[17]. In order to achieve these limits at room
temperature we must work in the nanoscale regime, which
currently involves various technologies that exploit the
quantum-mechanical effects of small devices. Among these
are single-electron transistors [9], nanowire transistors [11],
quantum dots [37], quantum cellular automata [23], res-
onant tunneling devices [6], negative differential resistors
(NDR) [7], and reconfigurable switches [8, 10]. In all cases,
the fabricated devices are on the order of a few nanome-
ters. Given the small sizes involved, these devices must
be created and connected through self-assembly and self-
alignment instead of lithography.

In this paper we limit ourselves to molecular devices
which have I-V characteristics similar to those of their
bulk counterparts. For example, the basis of rectifica-
tion is different between a silicon-based p-n junction diode
and a molecular diode, yet they both have similar I-V
curves [4]. We choose to look at systems that can be built
from nanoscale devices with bulk-semiconductor analogs so
that (1) we can apply our experience with standard circuits
to the system and (2) we can model the system with stan-
dard tools such as SPICE.

While there are still many challenges left in creating
fully functional EN computing devices, recent advances in-
dicate that EN could be a very successful post-CMOS tech-
nology. Several groups have recently demonstrated CAEN
devices that are self-assembled or self-aligned (or both) [10,
28, 16, 32]. Advances have also been made in creating
wires out of single-wall carbon nanotubes and aligning
them on a silicon substrate [36, 29]. Even more practical
is the fabrication of metal nanowires, which scale down
to 5nm and can include embedded devices [25, 27]. Com-
bined,these advances compel us to investigate further how
to harness CAEN for computing in the post-CMOS age.

CAEN devices are very small: A single RAM cell will
require 100nm2 as opposed to 100; 000nm2 for a single laid

1Among the technical issues are ultrathin gate oxides, short channel
effects, and doping fluctuations [21].

out CMOS transistor2. A simple logic gate or an static
memory cell requires several transistors, separate p- and n-
wells, etc., resulting in a factor of 105 difference in density
between CAEN and CMOS. CAEN devices use much less
power, since very few electrons are required for switching.

CAEN devices are particularly suited for reconfigurable
computing since the configuration information for a switch
does not need to be stored in a device separately from the
switch itself [10]. On the other hand, A CMOS-based re-
configurable device requires a static RAM cell to controls
each pass transistor. Also, two sets of wires are needed in
CMOS: one for addressing the configuration bit and one for
the actual signals. Perhaps a more realistic comparison of
CAEN is to floating-gate technology which also stores the
configuration information at the transistor itself. Like tradi-
tional transistors, floating-gate transistors also require two
sets of wires. Furthermore, A CAEN switch behaves like
a diode, but a floating gate transistor is bi-directional, and
thus less useful for building programmable logic.

Electronic nanotechnology is quickly progressing and
promises incredibly small, dense, and low-power devices.
Harnessing this power will require new ways of thinking
about the manufacturing process. We will no longer be
able to manufacture devices deterministically; instead, post-
fabrication reconfiguration will be used to determine the
properties of the device and to avoid defects.

2.1 Fabrication and Architectural Implications

Here we briefly outline a plausible fabrication process.
The process is hierarchical, proceeding from basic compo-
nents (e.g. wires and switches), through self-assembled ar-
rays of components, to complete systems. In the first step,
wires of different types are constructed through chemical
self-assembly.3 The next step aligns groups of wires. Also
through self-assembly, two planes of aligned wires will be
combined to form a two-dimensional grid with configurable
molecular switches at the crosspoints. The resulting grids
will be on the order of a few microns. A separate process
will create a silicon-based die using standard lithography.
The circuits on this die will provide power, clock lines, an
I/O interface, and support logic for the grids of switches.
The die will contain “holes” in which the grids are placed,
aligned, and connected with the wires on the die.

Using only self-assembly and self-alignment restricts
us to manufacturing simple, regular structures, e.g., rafts
of parallel wires or grids composed of orthogonal rafts.

2For the CAEN device we assume that the nanowires are on 10nm cen-
ters. A CMOS transistor with a 4:1 ratio in a 70nm process, (even using
Silicon on Insulator, which does not need wells) with no wires attached
measures 210nm x 280nm. Attaching minimally-sized wires to the termi-
nals increases the size to 350nm x 350nm.

3By chemical self-assembly we mean a process by which the com-
ponents (e.g., wires or devices) are synthesized and connected together
through chemical processes. See [24] for an overview.
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Single nanoBlock showing I/O
lines

Half of a switchblock Switchblock with four surround-
ing nanoBlocks

Figure 1. NanoBlock Connectivity.

A post-fabrication configuration is used to create use-
ful circuits (See Section 3.3). The small size and non-
deterministic nature of the self-assembly will also give rise
to high defect densities, which can be bypassed through re-
configuration (See Section 3.2).

While researchers have constructed three-terminal EN
devices, the precise alignment required to colocate three
wires at the device makes them unsuitable for producing
real circuits with inexpensive chemical assembly. We thus
assume that CAEN devices will be limited to performing
logic using two terminal devices; i.e. diode-resistor logic
(see Section 3.1). As the active components will be diodes
and configurable switches, there will be no inverters. Be-
cause we cannot build inverters, all logic functions will gen-
erally compute both the desired output and its complement.

Even more important, the lack of a transistor means that
special mechanisms will be required for signal restoration
and for building registers. Using CMOS to buffer the sig-
nals is unattractive for two reasons: first, CMOS transis-
tors are significantly larger and would decrease the density
of the fabric. Second, the large size of CMOS transistors
would slow down the nanoFabric. We have succesfully de-
signed and simulated a molecular latch motivated by work
in tunnel diodes [1, 26]. The latch is composed of a wire
with two inline NDR molecules at either end. The latch
combined with a clocking methodology, provides signal
restoration, latching, and I/O isolation [31]. The require-
ment to condition signals will result in circuits which will
be either slow (if transistors are used) or deeply pipelined
(if latches are used).

The fabrication process also disallows the precise align-
ment required to make end-to-end connections between
nanoscale wires. Our architecture ensures that all connec-
tions between nanoscale wires occur by crossing the wires.

3 NanoFabric

The architecture of the nanoFabric is designed to over-
come the constraints associated with directed assembly of
nanometer-scale components and exploit the advantages
of molecular electronics. Because the fabrication process
is fundamentally non-deterministic and prone to introduc-
ing defects, the nanoFabric must be reconfigurable and
amenable to self-testing. This allows us to discover the
characteristics of each nanoFabric and then create circuits
that avoid the defects and use the available resources. For
the foreseeable future, the fabrication processes will only
produce simple, regular geometries. Therefore, the pro-
posed nanoFabric is built out of simple, two-dimensional,
homogeneous structures. Rather than fabricating complex
circuits, we use the reconfigurability of the fabric to imple-
ment arbitrary functions post-fabrication. The construction
process is also parallel; heterogeneity is introduced only
at a lithographic scale. The nanoFabric can be configured
(and reconfigured) to implement any circuit, like today’s
FPGAs; the nanoFabric though has several orders of mag-
nitude more resources.

The nanoFabric is a 2-D mesh of interconnected
nanoBlocks. The nanoBlocks are logic blocks that can be
programmed to implement a three-bit input to three-bit out-
put Boolean function and its complement (see Figure 1a).
NanoBlocks can also be used as switches to route signals.
The nanoBlocks are organized into clusters (See Figure 2).
Within a cluster the nanoBlocks are connected to their near-
est four neighbors. Long wires, which may span many clus-
ters (long-lines), are used to route signals between clus-
ters. The nanoBlocks on the perimeter of the cluster are
connected to the long-lines. This arrangement is similar to
commercial FPGAs (allowing us to leverage current FPGA
tools) and has been shown to be flexible enough to imple-
ment any circuit on the underlying fabric.
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Figure 2. The layout of the nanoFabric with a partial
blowup of a single cluster and some of the adjacent
long-lines.
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Figure 3. A schematic of a nanoBlock.

The nanoBlock design is dictated by fabrication con-
straints. Each side of the block can have inputs or outputs,
but not both. Thus, the I/O arrangement in Figure 1a is
required. We have arranged it so that all nanoscale wire-to-
wire connections are made between two orthogonal wires;
we do not need precise end-to-end alignment. Figures 1 (b)
and (c) show how the outputs of one nanoBlock connect to
the inputs of another. We call the area where the input and
output wires overlap a switch block. Notice that the outputs
of the blocks are either facing south and east (SE) or north
and west (NW). By arranging the blocks such that all the SE
blocks run in one diagonal and the NW run in the adjacent
diagonal we can map any circuit netlist onto the nanoFabric.
Since the nanoBlocks themselves are larger than the mini-
mum lithographic dimension (e.g, greater than one micron),

they can be positioned precisely at manufacturing time in
the desired patterns.

In addition to the intra-cluster routing there are long-
lines that run between the clusters to provide low-latency
communication over longer distances. The nanowires in
these tracks will be of varying lengths (e.g., 1,2,4, and 8
clusters long), allowing a signal to traverse one or more
clusters without going through any switches. This layout
is essentially that of an island style FPGA [33]. This gen-
eral layout has been shown to be efficient and amenable to
place-and-route tools [5]. Notice that all communication
between nanoBlocks occurs at the nanoscale. The fact that
we never need to go between nanoscale and CMOS compo-
nents and back again increases the density of the nanoFabric
and lowers its power requirements.

The arrangement of the clusters and the long-lines pro-
mote scalability in several ways. First, as the number of
components increases we can increase the number of long-
lines that run between the clusters. This supports routability
of netlists. Second, each cluster is designed to be configured
in parallel, allowing configuration times to remain reason-
able even for very large fabrics. The power requirements
remain low because we use molecular devices for all as-
pects of circuit operation. Finally, because we assemble the
nanoFabric hierarchically we can exploit the parallel nature
of chemical assembly.

3.1 NanoBlock

The nanoBlock is the fundamental unit of the nanoFab-
ric. It is composed of three sections (see Figure 3): (1) the
molecular logic array, where the functionality of the block is
located, (2) the latches, used for signal restoration and sig-
nal latching for sequential circuit implementation, and (3)
the I/O area, used to connect the nanoBlock to its neighbors
through the switch block.

The molecular logic array (MLA) portion of a
nanoBlock is composed of two orthogonal sets of wires. At
each intersection of two wires lies a configurable molecular
switch. The switches, when configured to be “on”, act as
diodes. Designing circuits for the MLA is significantly dif-
ferent than for a programmable logic array, which requires
an OR and an AND plane. We have preliminary designs for
a “standard cell” library using nanoBlocks, e.g. AND, OR,
XOR, and ADDER.

Figure 4 shows the implementation of an AND gate,
while Figure 5 shows the implementation for a half-adder.
On the top part of Figure 5 is a schematic of the portion of
the circuit used to generate the sum output. This circuit,
which is the XOR of A and B is typical of diode-resistor
logic. For example, if A is high and B is low, then their
complements (A-bar and B-bar) are low and high respec-
tively. Thus, diodes 1, 2, 5 and 6 will be reverse biased and
not conducting. Diode 8 will be forward biased, and will
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Figure 4. An AND gate implemented in the MLA of
a nanoBlock.

Figure 5. A half-adder implemented in the MLA of a
nanoBlock and the equivalent circuit diagram for the
computation of A XOR B = S.

pull the line labeled “red” in the figure down close to a logic
low. This makes diode 4 forward biased. By manufacturing
the resistors appropriately (i.e., resistors attached to Vdd
have smaller impedances than those attached to Gnd) most
of the voltage drop occurs across R1, resulting in S being
high. If A and B are both low, then diodes 2, 4, 5 and 7 are
back-biased. This isolates S from Vdd and makes it low.

The MLA computes logic functions and routes signals
using diode-resistor logic. The benefit of this scheme is that
we can construct it by directed assembly, but the drawback
is that the signal is degraded every time it goes through a
configurable switch. In order to restore signals to proper
logic values without using CMOS gates, we will use the
molecular latch described in Section 2.1.

Notice that all the connections between the CMOS layer
and the nanoBlock occur either between groups of wires or
with a wire that is removed from all the other components.
This improves the device density of the fabric. To achieve
a specific functionality the cross-points are configured to be
either open-connections or to be diodes.

The layout of the MLA and of the switch block makes
rerouting easy in the presence of faults. By examining Fig-
ure 5, one can see that a bad switch is easily avoided by
swapping wires that only carry internal values. In fact, the

rows can be moved anywhere within the block without af-
fecting the circuit, which makes defect tolerance signifi-
cantly easier than with CMOS4. The number of possible
ways to arrange the columns/rows in the MLA combined
with the configurable crossbar implemented by the switch
block makes the entire design robust to defects in either the
switch block or the MLA.

3.2 Defect Tolerance

The nanoFabric is defect tolerant because it is regular,
highly configurable, fine-grained, and has a rich intercon-
nect.5 The regularity allows us to choose where a particular
function is implemented. The configurability allows us to
pick which nanowires, nanoBlocks, or parts of a nanoBlock
will implement a particular circuit. The fine-grained nature
of the device combined with the local nature of the intercon-
nect reduces the impact of a defect to only a small portion of
the fabric (or even a small portion of a single nanoBlock).
Finally, the rich interconnect allows us to choose among
many paths in implementing a circuit. Thus, with a defect
map we can create working circuits on a defective fabric.
Defect discovery relies on the fact that we can configure the
nanoFabric to implement any circuit, which implies that we
can configure the nanoFabric to test its own resources.

The key difficulty in testing the nanoFabric (or any
FPGA) is that it is not possible to test the individual compo-
nents in isolation. Researchers on the Teramac project [3]
faced similar issues. They devised an algorithm that al-
lowed the Teramac, in conjunction with an outside host,
to test itself [12, 13]. Despite the fact that over 75% of
the chips in the Teramac have defects, the Teramac is still
used today. The basis of the defect mapping algorithm is to
configure a set of devices to act as tester circuits. These cir-
cuits, e.g. linear-feedback shift-registers, will report a result
which if correct indicates with high probability that devices
they are made from are fault free.

The defect mapping process is complicated by the fact
there are no known fault-free regions in the nanoFabric at
the start of testing and as the defect density increases the
chances of finding a good circuit decreases. To address
this problem, we will implement in CMOS the components
of a basic tester, which will provide the initial fault-free
region. A host computer configures testers out of the
CMOS testor and portions of the nanoFabric. As the
host gains knowledge of the fault free regions of the
nanoFabric it replaces more and more of the CMOS tester
with configured sections of the nanoFabric.

4This is because nanowires have several orders of magnitude less re-
sistance than switches. Thus, the timing of a block is unaffected by small
permutations in the design.

5Defect tolerance through configuration also depends on shorts being
significantly less likely to occur than stuck-open faults. We arrange for this
by biasing the synthesis techniques to increase the likelihood of a stuck-
open fault at the expense of potentially introducing more total faults.
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After a sufficient number of functioning resources have
been discovered by the host, phase two of the testing begins.
For this phase, the host downloads a configuration, which
performs the testing from within the fabric. In other words,
the already tested area of the fabric acts as a host for testing
the remainder of the fabric. Because the number of tests re-
quired to isolate any specific defect does not grow as the to-
tal size of the device grows, the computational work needed
to test a device is at worst linear in the size of the device.
For very large devices, such defect discovery can be accom-
plished using many parallel independent test machines.

Once a defect map has been generated the fabric can be
used to implement arbitrary circuits. The architecture of
the nanoBlock supports full utilization of the device even in
the presence of a significant number of defects. Due to the
way we map logic to wires and switches, only about 20% of
the switches will be in use at any one time. Since the inter-
nal lines in a nanoBlock are completely interchangeable, we
generally should be able to arrange the switches that need
to be configured in the ON state to be on wires which avoid
the defects.

While the molecules are expected to be robust over time,
inevitably new defects will occur over time. Finding these
defects, however, will be significantly easier than doing the
original defect mapping because the unknown defect den-
sity will be very low.

3.3 Configuration

The nanoFabric uses runtime reconfiguration for defect
testing and to perform its intended function. Thus, it is es-
sential that the time to configure the fabric scale with the
size of the device. There are two factors that contribute to
the configuration time. The first factor is the time that it
takes to download a configuration to the nanoFabric. The
second factor is the time that it takes to distribute the config-
uration bits to the different regions of the nanoFabric. Con-
figuration decoders are required to serialize the configura-
tion process in each nanoBlock. To reduce the CMOS over-
head, initially we intend to only configure one nanoBlock
per cluster at a time. However, the fabric has been designed
so that the clusters can be programmed in parallel. A very
conservative estimate is that we can simultaneously config-
ure one nanoBlock in each of 1000 clusters in parallel.

A molecular switch is configured when the voltage
across the device is increased outside the normal operat-
ing range. Devices in the switch blocks can be configured
directly by applying a voltage difference between the long
intercluster lines. In order to achieve the densities pre-
sented above, it will also be necessary to develop a con-
figuration approach for the switches in the MLA that is
implemented with nanoscale components. In particular, a
nanoscale decoder is required to address each intersection
of the MLA independently. Instead of addressing accessing

each nanoscale wire separately in space we address them
separately in the time dimension. This slows down the con-
figuration time, but increases the device density.

Our preliminary calculations indicate that we can load
the full nanoFabric, which is comprised of 109 configura-
tion bits at a density of 10

10 configuration bits/cm2, in
less than one second. This calculation is based on realis-
tic assumptions that, on average, fewer than 10% of the bits
are set ON and that the configurations are highly compress-
ible [19]. It also significant to note that it is not necessary to
configure the full fabric for defect testing. Instead, we will
configure only the portions under test.

As the configuration is loaded onto the fabric it will be
used to configure the nanoBlocks. Using the configuration
decoder this will require � 300 cycles per nanoBlock, or
less than 38K cycles per cluster. Thus, the worst-case time
to configure all the clusters at a very conservative 10 MHz
requires three seconds.

3.4 Putting It All Together

The nanoFabric is a reconfigurable architecture built out
of CMOS and CAEN technology. The support system, i.e.,
power, ground, clock, and configuration wires, I/O, and ba-
sic control, is implemented in CMOS. On top of the CMOS
we construct the nanoBlocks and long-lines constructed out
of chemically self-assembled nanoscale components.

Assuming a 100nm CMOS process and 40nm cen-
ters with 128 blocks to a cluster and 30 long-lines per
channel, our design should yield 750K clusters/cm2 (or
1M blocks/cm2), requiring 3

10 configuration bits. If the
nanoscale wires are on 10nm centers this design yields 1M
clusters/cm2. (If, instead of molecular latches, transistors
were used for signal restoration then with 40nm centers for
the nanoscale wires we obtain 180K cluster/cm2.)

SPICE simulations show that a nanoBlock configured to
act as a half-adder can operate at between 100MHz and
1GHz. Preliminary calculations show that the fabric as a
whole will have a static power dissipation of � 1:2watts
and dynamic power consumption of � :4watts at 100Mhz.

4 The NanoFabric Model

There are two scenarios in which nanoFabrics can be
used: as factory-programmable devices configured by the
manufacturer to emulate a processor or other computing de-
vice, and as reconfigurable computing devices.

In a manufacturer-configured device, user applications
treat the device as a fixed processor (or potentially as a small
number of different processors). Processor designers will
use traditional CAD tools to create designs using standard
cell libraries. These designs will then be mapped to a partic-
ular chip, taking into account the chip’s defects. A finished
product is thus a nanoFabric chip and a ROM containing the
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configuration for that chip. In this mode, the configurability
of the nanoFabric is used only to accommodate a defect-
prone manufacturing process. While this provides the sig-
nificant benefits of reduced cost and increased densities, it
ignores much of the potential in a nanoFabric. Since de-
fect tolerance requires that a nanoFabric be reconfigurable
why not exploit the reconfigurability to build application-
specific processors?

Reconfigurable fabrics offer high performance and effi-
ciency because they can implement hardware matched to
each application. Further, the configurations are created at
compile time, eliminating the need for complex control cir-
cuitry. Research has already shown that the ability of the
compiler to examine the entire application gives a reconfig-
urable device efficiency advantages because it can:
� exploit all of an application’s parallelism: MIMD,
SIMD, instruction-level, pipeline, and bit-level.
� create customized function units.
� eliminate a significant amount of control circuitry.
� reduce memory bandwidth requirements.
� size function units to the application’s natural word size.
� use partial evaluation and constant propagation to reduce
the complexity of operations.

However, this extra performance comes at the cost of sig-
nificant work by the compiler. A conservative estimate for
the number of configurable switches in a 1cm2 nanoFabric,
including all the overhead for buffers, clock, power, etc. is
on the order of 1011. Even assuming that a compiler manip-
ulates only standard cells, the complexity of mapping a cir-
cuit design to a nanoFabric will be huge, and this creates a
compilation scalability problem. Traditional approaches to
place-and-route in particular will not scale to devices with
billions of wires and devices.

In order to exploit the advantages listed above, we
propose a hierarchy of abstract machines that will hide
complexity and provide an intellectual lever for compiler
designers while preserving the advantages of reconfigurable
fabrics. At the highest level is a split-phase abstract ma-
chines (SAM), which allows a program to be broken up into
autonomous units. Each unit can be individually placed and
routed and then the resulting netlist of pre-placed and routed
units, can be placed. This hierarchical approach will allow
the CAD tools to scale. In this paper we present simulations
of programs that have been decomposed into SAM threads.

4.1 The Split-Phase Abstract Machine (SAM)

The compilation process starts by partitioning the appli-
cation into a collection of threads. Each thread is a sequence
of instructions ending in a split-phase operation. An opera-
tion is deemed to be a split-phase operation if it has an un-
predictable latency. For example, memory references and
procedure calls are all split-phase operations. Thus, each
thread, similar in spirit to a Threaded Abstract Machine

(TAM) thread [15], communicates with other threads asyn-
chronously using split-phase operations. This partitioning
allows the CAD tools to concentrate on mapping small iso-
lated netlists and it has all the mechanisms required to sup-
port thread-based parallelism.

Unlike a traditional thread model, where a thread is asso-
ciated with a processor when executing, each SAM thread
will be a custom “processor.” While it is possible for a
thread to be complex and load “instructions” from its local
store, the intention is that it remains fairly simple, imple-
menting only a small piece of a procedure. This allows the
threads to act either in parallel or as a series of sequential
processes. It also reduces the number of timing constraints
on the system, which is vital for increasing defect tolerance
and decreasing compiler complexity.

The SAM model is a simplification of TAM. A SAM
thread/processor is similar to a single-threaded codeblock in
TAM, and memory operations in SAM are similar to mem-
ory operations in Split-C [14]. In a sense, SAM will im-
plement (in reconfigurable hardware) Active Messages [38]
for all interprocessor communications. While this model is
powerful enough to support multi-threading, in this paper
we use it only as a way of partitioning large sequential pro-
grams in space on a reconfigurable nanoFabric.

While SAM can support parallel computation, a paral-
lelizing compiler is not necessary. The performance of this
model rests on the ability to create custom processors. A
compiler could (and in its first incarnations will) construct
machines in which only one processor is active at a time.
Later, as the compiler technology becomes more mature,
the inherently parallel nature of the model can be exploited.

The SAM model explicitly hides many important details.
For example, it neither addresses dynamic routing of mes-
sages nor allocation of stacks to the threads. Once an ap-
plication has been turned into a set of cooperating SAM
threads it is mapped to a more concrete architectural model
which takes these issues into account. The mapping pro-
cess will, when required, assign local stacks to threads, in-
sert circuits to handle stack overflow, and create a network
for routing messages with runtime computed addresses. For
messages with addresses known at compile time it will route
signals directly.

5 SAM Simulations

In this section we describe a limit study designed to
determine the performance of applications mapped to the
SAM model. Our goal was to determine how aggressive
compiler technology needs to be for the nanoFabric to com-
pete with a CMOS processor. We estimate the area and
simulate the execution time of applications using the sim-
plest SAM model, i.e. each thread executes sequentially,
and we do not perform any reconfigurable computing opti-
mizations, e.g., loops are not turned into pipelines.
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In this study we analyze the behavior of programs from
the SpecInt95 [35] and Mediabench [22] 6 benchmark suites.
We assume no parallel execution or pipelining between in-
dependent SAM threads.

5.1 Area requirements

We define the unit of area as the area of the implemen-
tation of one memory word (4 bytes). We assume that each
integer operation can be also implemented in 1 unit of area.
Integer multiplication and division and floating-point oper-
ations have a substantially larger area. These assumptions
are overly pessimistic for memory, which can probably be
packed more densely. We make the very conservative as-
sumption that 1 unit of area is a single cluster. In fact, a
cluster will probably be able to map between 1 and 64 units.

For our benchmarks the total area was between 2,000
and 250,000 units (see Figure 7), which fits liberally in the
available hardware budget. This area includes only the ex-
ecuted instructions and touched memory words. Dead code
and unused memory is excluded from this count, but their
total size is small.

5.2 Simulation Methodology

We compare the execution time of the program running
native on the CPU (Alpha), and running on a nanoFabric.
We include application and library running time. We ignore
time spent in the operating system. The simulation consists
of two phases: trace collection and analysis, and trace-based
simulation.

5.3 Trace Collection and Analysis

Each application to be simulated is compiled using gcc
and optimized with -O4 on the Alpha. The ATOM tool [34]
is used to instrument the program for trace collection and
summarization. We instrument each basic block, procedure
call and memory access.

From the trace data we create a weighted undirected
graph (with weights both on nodes and edges). Each node
represents either a SAM thread or a memory location and
its weight is the estimation of the area it requires on the
nanoFabric. The weight of an edge represents the total data
traffic carried along that edge. Each basic block and each
memory address becomes a node. We eliminate some of
aliasing of the memory locations by assuming that the stack
frame of each function is a different memory region.

An edge between two basic blocks is weighted with the
number of data values transferred across that edge (i.e. the
number of register values defined in the first block and used

6The other programs from these suites did not work properly with our
simulation infrastructure; we present all the applications we could success-
fully instrument and analyze.

in the second one)7. Transfers of control resulting from pro-
cedure calls are weighted with the total size of the proce-
dure arguments. An edge between a basic block node and
a memory node is weighted with the number of accesses
made from the block to that address.

This graph is next placed on a two-dimensional grid. We
strive to place nodes connected by heavy edges together.
Assuming that the signal propagation time between two
nodes is proportional to their distance, such a placement
will minimize signal latency. We do the placement in two
stages: clustering and placement.

� In the first stage nodes are clustered together into super-
nodes of approximately the same weight (the weight of a
super-node being the sum the weights of all the component
nodes). Each supernode is 100 units of area. The cluster-
ing is done so to minimize the total edge weight between
the super-nodes. For this purpose we use the METIS [20]
graph partitioning tool.
� In the second stage we place the super-nodes on a two-
dimensional grid. We assume that each super-node is
a 10x10 square. We next repeatedly “glue” pairs of
super-nodes (obtaining progressively larger rectangles and
squares: 10x10, 10x20, 20x20, 20x40, 40x40, etc). The
ends of the heavier edges are coalesced first. For each pair
of nodes we choose the relative orientation that minimizes
the total edge cost (i.e. the nodes can be flipped or rotated).

5.4 Trace-based simulation

The second phase of the simulation runs the ATOM-
instrumented binary, generating a trace of all important
events: control transfer between blocks and memory read
operations. We use the same input data that we used for the
first phase.

We use this trace to evaluate the running time of the pro-
gram when implemented as a circuit whose layout is the one
computed by our placement algorithm. The running time of
a node contains the following components:

� The time to pass control between the source to the des-
tination. This is proportional to the Manhattan distance
between the two super-nodes where these nodes belong.
� The time to transfer data from the source node to the des-
tination. The registers which are live at the start of the
node and used within are assumed to come from the pre-
vious node. We assume that the data is pipelined after the
message which transfers control from the source, and each
additional register value takes one clock cycle.
� The time to execute the node itself. We assume full hard-
ware ILP (i.e. all independent instructions are executed in
parallel). The time to execute the node is thus the time to
execute the critical path. The critical path may depend on

7For a faster calculation, we approximate this value with the number of
registers used in the second basic block.
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Figure 6. Simulated slowdown (simulated/base�1). Figure 7. Total area for instructions and memory.

Figure 8. Average clock cycles per control transfer. Figure 9. Average clock cycles per memory read.

Figure 10. Breakdown of execution time for 1
clock/square. Idle time is the time spent waiting for
memory read operations to complete.

Figure 11. Breakdown of execution time for 5
clocks/square.

dynamic information, like the memory addresses that are
accessed.

We use the following model for the execution of an in-
struction:
� Each elementary instruction takes one clock cycle.
� Each read operation takes time proportional to the Man-
hattan distance to the memory address which is accessed
(the signal needs to propagate both ways: one direction

with the read address, and the opposite direction with the
read data).
� Each write instruction takes one cycle and is completed
asynchronously. We assume ordered message delivery. All
reads to the same address should be executed after the write
completes, even if they occur in different nodes.
� For floating-point operations we use the double of the
latency of the same instruction as executed on Alpha.

9



Figure 12. The placed graph for g721 e.

5.5 Comments

In some respects our simulation methodology is overly
optimistic, in others it is pessimistic. Our goal here is to val-
idate the assumption that we can map an application com-
pletely to hardware. In practice, more aggressive compila-
tion and resource sharing would change the resulting con-
figuration substantially. Here, we point out some of the as-
sumptions which will need to be revisited in a more realistic
study.
Optimistic assumptions:
� The placed graph depends on the input data. In general
we cannot know what locations and nodes will be used.
� The “inputs” (registers live on entry) to a node do not
necessarily come from its immediate predecessor.
� We assume that control and data transfer can be done
directly between the two nodes involved.
� We assume that each procedure has a statically allocated
stack frame (This cannot be true for recursive procedures).
� We underestimate the area by not disambiguating the
aliasing caused by the re-allocation of de-allocated mem-
ory regions.
� We completely ignore routability issues between nodes.
We assume sufficient wire bandwidth is available.
� We ignore the propagation delay introduced by the
molecular latches.

Pessimistic assumptions:
� We “issue” a memory read operation only when the read
instruction is executed. Reads could be initiated as soon as
the address is known.
� No effort is made to customize the circuit for the applica-
tion. For example, many of these applications have kernels
which, when compiled properly, show speedup on the or-
der of 100x over a conventional processor [18].
� We do not do any speculative or parallel execution.
� Nodes are strict, having to wait for their inputs before
starting execution.
� By not disambiguating between the uses of a memory
word which is freed and re-allocated we unnecessarily con-
strain the placement of the graph.
� The code we execute had its registers allocated for the
Alpha, which has many fewer registers than would be

available on the nanoFabric. Spilled registers become un-
necessary costly memory operations.
� We allocate a lot of area for each memory cell.

5.6 Results

Figure 7 shows that the hardware area used for each pro-
gram, including memory. The unit of memory is the area
taken by a simple integer instruction. We notice that all the
programs will fit within the hardware resources of a 1cm2

nanoFabric.
Before discussing other aspects of the performance of

our proposed implementation, we should notice some char-
acteristics of the program graph: although it is sparse (the
average node degree is less than 10), the node degree distri-
bution is very skewed (each graph has a few large “stars”).
Figure 12 displays one of the smallest graphs, where each
square is a super-node, obtained after clustering (for read-
ability). The shading of the squares indicates how many of
the objects inside are instructions. A white square contains
only code. The edges show communication patterns. The
edge width is the logarithm of the number of messages sent
across the edge. The edge color indicates the mix of types
of messages: dark edge indicates memory reads only, while
lighter edges indicates control transfers, with intermediate
shadings for edges which carry mixed traffic. Despite the
graph being very small, it exhibits some typical features for
all our programs, like the big “stars”: code regions which
touch most of the memory of the program. “Stars” are bad,
because there is no way to place all adjacent nodes close to
the star’s center node; some have to be remote. “Hot” mem-
ory locations, which are touched by a lot of basic blocks, are
less common.

For example, the memcpy standard library function was
the bottleneck in several programs, because it would access
most of the memory used by the program. To reduce the
size of the large “stars” we have inlined such functions at all
their call sites, in effect duplicating the code. Each inlined
copy of memcpy might service a different set of memory
locations, to which it can be placed closer. This significantly
improves in performance (our figures show the performance
after inlining has been done). The area cost of inlining is
negligible (less than 1%).

Inlining was ineffective or inapplicable for functions
which were not leaves of the call graph, or which were
called from a single place.

Figures 6, 8, and 9 explore the impact of the signal prop-
agation speed on the application performance: the light bar
is drawn assuming the signals take one clock cycle between
two adjacent super-nodes, while the dark bar is for a five
clock cycles/super-node latency.

Figure 6 shows the slowdown of our applications. Nega-
tive values indicate speed-ups. The media applications fare
better than the SpecInt ones as they tend to have a smaller
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memory footprint. Figures 8 and 9 show the impact of the
propagation delay on the cost of the control flow transfer
and of a memory read respectively. Because memory ac-
cesses can be executed in parallel to each other or to execu-
tion of the code, some of the memory latency is hidden. The
cost of control-flow transfers scales better (slower) with in-
creased propagation delay because the locality at the level
of the code is much better. There are few “hot” nodes, and
they can be placed very close to each other, often within the
same super-node.

Figures 10 and 11 show how the running time of each ap-
plication was spent for the two signal-propagation speeds.
We notice that most often the dominant cost, especially for
large signal propagation latencies, is in reading memory.
The lack of caches makes remote memory operations costly.

6 Research directions

Some form of memory data caching is crucial for reduc-
ing the dominant runtime cost, memory access. Hardware
and software solutions will have to be devised for imple-
menting distributed caches.

Besides the simple inlining strategy which we used to
reduce the size of the “stars” in the graph, we can imag-
ine several other solutions, like making many copies of the
function code and randomly calling one of them each time,
or inlining non-leaf functions.

Further code restructuring may be necessary in order to
better localize memory accesses. We could improve data
placement by using separate memory pools for each type of
object.

The memcpy function can be optimized by a special im-
plementation, as a three-party transaction. Instead of copy-
ing the data from source to the code block and then to the
destination, it could directly ship the data from the sources
to the destination memory nodes.

Predicated execution, speculative execution and code du-
plication (for better placement locality) would reduce the
cost of control flow transfers.

Some of the techniques we propose to better handle
hot spots will introduce further complications: replicat-
ing memory and using speculative execution would invali-
date our assumption that consecutive operations to memory
reach the memory location in the order they were issued
(the triangle inequality can no longer be assumed). Special
distributed synchronization mechanisms will have to be de-
vised to preserve the program semantics.

7 Conclusions

In this paper we propose a new architecture, the
nanoFabric, based on chemically assembled electronic
nanotechnology. The nanoFabric is designed to harness the
smallness of electronic nanotechnology and to overcome

some of the most onerous limitations introduced by chem-
ical assembly. It eliminates the need for transistors, the
neccesity of precise alignment and placement of wires, and
provides for defect tolerance. In conjunction with CMOS
support circuitry it will create a reconfigurable fabric with
more than 10

10 gate equivalents/cm2.
The main computing element in the nanoFabric is a

molecular-based reconfigurable switch. We exploit the re-
configurable nature of the nanoFabric to provide defect tol-
erance and to support reconfigurable computing. Reconfig-
urable computing offers the promise of not only increased
performance, but ammortizes the cost of chip manufactur-
ing across many users by allowing circuits to be configured
post-fabrication. The molecular-based switch eliminates
much of the overhead needed to support reconfiguration—
the switch holds its own state and can be programmed
without extra wires, making nanoFabrics ideal for recon-
figurable computing. As the nanoFabric is a combination of
two technologies, CMOS with CAEN, it suggests a hybrid
architecture that may combine silicon-based custom circuits
with CAEN-based reconfigurable ones.

To support defect tolerance, ease of placement and rout-
ing constraints, and enable faster compilation, we propose
a new architectural model, the split-phase abstract machine
(SAM). SAM ensures that all operations of potentially un-
known latency use split-phase operations. The compilation
strategy engendered by SAM is to partition an application
into independent threads at all split-phase boundaries. This
partitioning will allow compilers and CAD tools to handle
the large designs than can fit on a nanoFabric. While the
model is powerful enough to express parallel execution, we
perform a study which limits the model to sequential exe-
cution, and uses only simple scalar compiler optimizations.
Our simple compilation strategy produces results whose av-
erage performance is within a factor of 2.5 of the perfor-
mance of an Alpha microprocessor, under the most pes-
simistic delay assumptions for our fabric. We uncover sev-
eral performance bottlenecks which hint at future research
avenues which will make the nanoFabric a viable substrate.

Acknowledgments

This work was sponsored in part by DARPA, under the
Moletronics Program, by NSF, under a CAREER award,
and Hewlett-Packard Corporation. The authors wish to
thank the many reviewers for their helpful comments.

References

[1] I. Aleksander and R. Scarr. Tunnel devices as switching ele-
ments. Journal British IRE, 23(43):177–192, March 1962.

[2] Altera Corporation. Apex device family. http://-
www.altera.com/html/products/apex.html.

[3] R. Amerson, R. Carter, B. Culbertson, P. Kuekes, and
G. Snider. Teramac–configurable custom computing. In

11



D. A. Buell and K. L. Pocek, editors, Proceedings of IEEE
Workshop on FPGAs for Custom Computing Machines,
pages 32–38, Napa, CA, Apr. 1995.

[4] A. Aviram and M. Ratner. Molecular rectifiers. Chemical
Physics Letters, 29(2):277–283, Nov. 1974.

[5] V. Betz and J. Rose. Vpr: A new packing, placement and
routing tool for fpga research. In Proceedings of the Interna-
tional Workshop on Field Programmable Logic and Applica-
tions, Aug. 1997.

[6] F. Buot. Mesoscopic phyics and nanoelectronics:
Nanoscience and nanotechnology. Physics Reports, pages
173–74, 1993.

[7] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour. Obser-
vation of a large on-off ratio and negative differential resis-
tance in an electronic molecular switch. Science, 286:1550–
2, 1999.

[8] J. Chen, W. Wang, M. A. Reed, M. Rawlett, D. W. Price,
and J. M. Tour. Room-temperature negative differential re-
sistance in nanoscale molecular junctions. Appl. Phys. Lett.,
77:1224, 2000.

[9] R. H. Chen, A. N. Korotov, and K. K. Likharev. Single-
electron transistor logic. Appl. Phys. Lett., 68:1954, 1996.

[10] C. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F.
Stoddart, P. J. Kuekes, R. S. Williams, and J. R. Heath. Elec-
tronically configurable molecular-based logic gates. Science,
285:391–3, July 1999.

[11] Y. Cui and C. Lieber. Functional nanoscale electronic de-
vices assembled using silicon nanowire building blocks. Sci-
ence, 291:851–853, 2001.

[12] W. Culbertson, R. Amerson, R. Carter, P. Kuekes, and
G. Snider. The teramac custom computer: Extending the
limits with defect. In Proc. IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, 1996.

[13] W. Culbertson, R. Amerson, R. Carter, P. Kuekes, and
G. Snider. Defect tolerance on the teramac custom computer.
In Proceedings of the 1997 IEEE Symposium on FPGAs for
Custom Computing Machines, pages 116–124, April 1997.

[14] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel program-
ming in split-c. In Proceedings of the Supercomputing ’93
Conference, Nov. 1993.

[15] D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. von
Eicken. TAM — a compiler controlled threaded abstract
machine. Journal of Parallel and Distributed Computing,
18:347–370, July 1993.

[16] A. N. et al. Room temperature operation of si single-electron
memory with self-aligned floating dot gate. Appl. Phys. Lett,
70:1742, 1997.

[17] R. Feynman. Lectures in Computation. Addison-Wesley,
1996.

[18] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi,
R. Taylor, and R. Laufer. Piperench: A coprocessor for
streaming multimedia acceleration. In Proceedings of the
26th Annual International Symposium on Computer Archi-
tecture, pages 28–39, May 1999.

[19] S. Hauck, Z. Li, and E. Schwabe. Configuration compression
for the Xilinx XC6200 FPGA. In IEEE Trans. on CAD of IC
and Systems, volume 18,8, pages 1107–13, August 1999.

[20] G. Karypis and V. Kumar. Multilevel graph partitioning and
sparse matrix ordering. In Proceedings of the 1995 Intl. Con-
ference on Parallel Processing, 1995.

[21] R. W. Keyes. Miniaturization of electronics and its limits.
IBM Journal of Research and Development, 32(1):24–48,
Jan 1988.

[22] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Me-
diabench: a tool for evaluating and synthesizing multime-
dia and communications systems. In Micro-30, 30th annual
ACM/IEEE international symposium on Microarchitecture,
pages 330–335, 1997.

[23] C. Lent. A device architecture for computing with quantum
dots. Proceedings of the IEEE, 85, April 1997.

[24] T. Mallouk. Nanomaterials: Synthesis and assembly.
http://research.chem.psu.edu/mallouk/-
nano.pdf, Nov. 2000. Foresight Conference Tutorial.

[25] B. Martin, D. Dermody, B. Reiss, M. Fang, L. Lyon,
M. Natan, and T. Mallouk. Orthogonal self assembly on
colloidal gold-platinum nanorods. Advanced Materials,
11:1021–25, 1999.

[26] R. Mathews, J. Sage, T. Sollner, S. Calawa, C. Chen, L. Ma-
honey, P. Maki, and K. Molvar. A new rtd-fet logic family.
Proceedings of the IEEE, 87(4):596, 1999.

[27] J. Mbindyo, B. Reiss, B. Martin, B. Reiss, M. Keating,
M. Natan, and T. Mallouk. Dna-directed assembly of gold
nanowires on complementary surfaces. Advanced Materials,
2000.

[28] N. S. M.V. Martinez-Diaz and J. Stoddart. The self-assembly
of a switchable [2]rotaxane. Angewandte Chemie Interna-
tional Edition English, 36:1904, 1997.

[29] H. Park, A. Lim, J. Park, A. Alivisatos, and P. McEuen.
Fabrication of metallic electrodes with nanometer sep-
aration by electromigration. www.physics.berkeley.edu/-
research/mceuen/topics/nanocrystal/EMPaper.pdf, 1999.

[30] M. A. Reed. Molecular-scale electronics. Proceedings of the
IEEE, 87(4), April 1999.

[31] D. Rosewater and S. Goldstein. What makes a good molec-
ular computing device? Technical Report CMU-CS-01-114,
Carnegie Mellon University, April 2001.

[32] T. Rueckes, K. Kim., E. Joselevich., G. Tseng, C.-L. Cheung,
and C. Lieber. Carbon nanotube-based nonvolatile random
access memory for molecular computing. Science, 289:94–
97, 2000.

[33] J. R. S. Brown, R. Francis and Z. Vranesic. Field-
Programmable Gate Arrays. Kluwer, 1992.

[34] A. Srivastava and A. Eustace. Atom: A system for building
customized program analysis tools. Technical report, Digital
Equipment Corporation Western Research Laboratory, 1994.

[35] Standard Performance Evaluation Corp. SPEC CPU95
Benchmark Suite, 1995.

[36] S. Tans and et al. Individual single-wall carbon nanotubes as
quantum wires. Nature, 386(6624):474–7, April 1997.

[37] R. Turton. The Quantum Dot: A journey into the Future of
Microelectronics. Oxford University Press, U.K., 1995.

[38] T. von Eicken, D. E. Culler, S. Goldstein, and K. E. Schauser.
Active messages: a mechanism for integrated communica-
tion and computation. In Proceedings of the 19th Interna-
tional Symposium on Computer Architecture, May 1992.

[39] Xilinx Corporation. Virtex series fpgas.
http://www.xilinx.com/products/-
virtex.htm.

[40] A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. Chimaera:
A high-performance architecture with a tightly-coupled re-
configurable functional unit. In Proceedings of the 27th
Annual International Symposium on Computer Architecture,
June 2000.

12


