
RETROSPECTIVE: 

Very Long Instruction Word Architectures and the ELI- 512 

Joseph A. Fisher 

Hewlett-Packard Laboratories 
Cambridge, Massachusetts 

jfisher@hpl.hp.com 

VLIW Architectures and Region 
Scheduling 

In this paper I introduced the term VLIW. 
VLIW was motivated by a compiler technique, 
and, for many readers, this paper was their intro- 
duction to “region scheduling” as well. I had put 
forward the first region scheduling algorithm, 
called Trace Scheduling, a few years before. Since 
region scheduling is a compiler technique, it is of 
interest to fewer people, but it enables superscalars 
and VLIWs with lots of instruction-level parallel- 
ism (ILP). Because I could see the power of region 
scheduling, I first began to think about VLIWs. I 
was fortunate in that this allowed me to coin the 
term Instruction-level parallelism, and to work out 
a lot of the original details and terminology of ILP, 
before many others believed it was important. 

How VLIWs Came About 

VLIWs came from my work as a graduate stu- 
dent at Courant. Ralph Grishman (my advisor) 
and I built PUMA, a CDC-6600 emulator that 
Ralph had designed (it worked well and eventu- 
ally several were made and used to replace some 
big, old supercomputers of their day). One of my 
jobs was “chief tool builder” - I read the litera- 
ture, learned the state of the art in ECAD algo- 
rithms, and then wrote tools to do most of the wire 
routing, partitioning, chip layout, simulation, and 
so on. You couldn’t buy tools like that at a univer- 
sity then. The tools I wrote worked very well, but I 
was really frustrated with how hard it was to 
write, and especially maintain, the 64-bit horizon- 
tal microcode PUMA used (PUMA stood for “Pro- 
cessing Unit with Microprogrammed Arithmetic”). 
I originally thought of the problem that I solved 

‘4 

with region scheduling as a hardware design prob- 
lem. What I wanted to do was convert vertical 
(serial) microcode into horizontal microcode. The 
analogy to chip layout is clear: 

- Chip layout involves converting a l-dimen- 
sion representation (a chip list) into a 2-dimen- 
sional representation (a placement); I was 
converting serial operations into 2- dimensional 
horizontal microcode 

- Chip layout has nodes (chips) connected by 
edges (wire); I had operations connected by a data 
precedence relation. 

- Chip layout tries to minimize wire length 
given the constraints of wiring; I had to minimize 
schedule length given the constraints of data pre- 
cedence. 

Because of this analogy, I was surprised when I 
realized that this was really a part of compiling, 
relying more upon compiler tools than CAD tech- 
niques. Fortunately, I was at Courant, which was 
then compiler heaven. (The holy scrolls were cop- 
ies of Cocke & Schwartz, which included a catalog 
of optimizations; Ken Kennedy had just gotten his 
degree there.) The few people looking at this prob- 
lem elsewhere were scheduling basic blocks, and 
then trying to iteratively improve the schedule by 
moving operations from block-to-block afterwards. 
The key insight was to recognize that this locked 
you to too many bad decisions, and you should 
instead look at a lot of code at once - for example 
a long execution trace. Trace Scheduling lets you 
do that, and frees you up to generate far more ILl? 
Since then, new region selection algorithms have 
suggested other regions of choice, often a more 
limited subset of a trace, reducing the complexity 
Some of the region scheduling regimens that have 
gotten the most attention include Percolation, 
Superblock, Hyperblock and Trace-2. 



Now that more and more ILP is present in 
microprocessors, region scheduling has become 
the technology of choice in high-end compilers. 

Why Not VLIWs? 

Given Trace Scheduling, I wondered why you 
couldn’t build a RISC-style CPU with lots of ILP, 
and thus run really fast. Indeed, the farther my 
group and I went (I was at Yale by then), the more 
it seemed obvious that you could, and that it 
would be a good thing at least some of the time. I 
then learned a couple of things. First, you can get 
more people, a LOT more people, to come to your 
talk if you promise them bizarre sounding hard- 
ware instead of a compiler technique. Second, 
many people seemed to think that it would be very 
hard to build such a thing. 

The first effect was good and bad. It’s probably 
mostly my fault that a lot of people think of VLIWs 
as a weird kind of beast, rather than one of the nat- 
ural alternatives once you start thinking about lots 
of ILI? I think that if I had presented these ideas in 
the context of a 2-issue compiled LIW, or a super- 
scalar of any size, people would have thought 
more soberly about the idea. But because of region 
scheduling, I felt there was a real use for systems 
that could issue 7 (or many more) operations per 
cycle. This much ILP and weird long instructions 
to boot; it was too much for most people to accept. 
It was great for me professionally: I put forward a 
lunatic-seeming proposal, and then had it turn out 
to be practical, at least for some important uses, 
and not bad at worst in any case. 

The second effect absolutely amazed me, and it 
still does. Why would this be impossible to build? 
I’d ask them, and I guess the lack of answers meant 
that you couldn’t because no one ever had. (Really, 
in 1998 it seems amazing that people actually 
believed you couldn’t build such a CPU at all.) 
Whether you’d WANT to build one seemed legiti- 
mately controversial and it still does, whatever I 
personally believe. The real question was: having 
built it, what now? Does this region scheduling 
stuff really work well enough to justify it? Answer: 
sometimes. Anyhow, I can’t portray strongly 
enough the way in which this concept was greeted 
by the many minicomputer manufacturers John 
O’Donnell and I approached in trying to convince 
them to build one. I recently ran across a wonder- 
ful article in the San Francisco Chronicle (7/9/97, 

first Business Section page), quoting Ray Simar, 
Texas Instruments’ program manager for their new 
generation of DSP chips: 

The theoretical breakthrough came out of Yale Uni- 
versity in the early 1980’s. “I remember looking at the 
idea and saying these guys were n&s,” Simar recalled. 
“I thought there was no way it wotdd work in the real 
world.” But three years ago, when Simar was given the 
job of coming up with a great leap forward in DSP, he 
revisited the Yale work with new appreciation. “At the 
end of the day what we thought was ridiculous was the 
best solution,“ he said. 

It’s just amazing to read someone being as 
forthright as that. Indeed, that is how people felt. 

Some Naivete 

There were a lot of aspects of this paper that 
seem naive from the perspective of 1998. Some of 
these were genuine naivete, others were simply 
artifacts of their time. The most significant is the 
lack of any mention of object-code compatibility as 
an issue for VLIWs. This issue was not on my radar 
screen. Being compatible with another company’s 
binaries was an oddity, and most manufacturers 
changed architectures willingly. (If you copied 
someone else’s, you sort of weren’t even a legiti- 
mate computer vendor in some people’s eyes, you 
were a “clone manufacturer”.) People sometimes 
brought it up, but not often until Multiflow, when 
it was considered a big issue. (At Multiflow, we 
were “upward” compatible, but not as much as 
we’d have liked to be. You could run Trace 7 code 
on a Trace 14, but that was it. The 28, the one with 
1024 bit instructions, you really needed to recom- 
pile for to run correctly.) 

I never dreamed that there might someday be 
techniques that operated at run time that might 
solve the binary compatibility problem and change 
a lot of our other architectural considerations. (I’ve 
called these walk-time techniques, but nobody else 
seems to.) 

A truly naive thing is that I described VLIW as 
an architecture, without really being conscious of 
the distinction between architectures and imple- 
mentations. I didn’t know to say it then, but VLIW 
is really a design philosophy, much like RISC, 
CISC, superscalar, vector processor, etc. To me, the 
part of VLIW that mattered then and matters now 
is the philosophy that one should get a lot of ILP in 
a processor without asking the hardware to do 
much to locate and schedule it. As with anything 
of this sort, there’s a spectrum. I think of an imple- 

35 



mentation that expects operations to have been 
arranged so it can trivially put them in parallel at 
run-time as a good embodiment of this philosophy. 
I think of processors that significantly rearrange 
code, mapping architectural registers into physical 
registers, etc., and in general thinking instead of 
computing the answer, as embodiments of oppo- 
site. Does the object code actually have to have 
wide instructions in it for an implementation to be 
a VLIW? Not to me, and I’m not really interested in 
the question, any more than I want to know 
whether a particular processor is really RISC. I can 
tell the extent to which they follow this philosophy, 
and I think it’s a good design philosophy. 

At least two more truly naive things appear in 
this paper. First, I really ignored the whole ques- 
tion of exceptions. As anyone who builds real 
CPUs knows, you spend more time handling that 
problem than any other. Exceptions are a real pain 
for out-of-order processors. They’re probably 
worse for superscalars than VLIWs, but no fun 
either way. Second, the memory system I thought 
was desirable, was, instead, baroque and silly. John 
Cocke tried to straighten me out. He suggsted that 
it would be enough to try to avoid references to the 
same bank, and that it would be a good idea to 
ignore this back-door nonsense. But I didn’t listen. 

Some Terminology 

Finally, it’s worth clarifying some terminology 
to put this paper in a more modem context. When 
John Ruttenberg and I laid out the basics of the 
high-level ELI architecture, we decided that regis- 
ter banks had to be split. We termed the combina- 
tion of register banks and the functional units that 
took their operands from them a “cluster”. That 
term has mostly stuck, but lately there have also 
been references to “split register bank architec- 
tures”. 

This paper addressed the problem of telling 
whether indirect references are to the same address 
or not, and called that problem “anti-aliasing”. 
Because that term already had such strong mean- 
ing in the graphics world, 1 later renamed it “mem- 
ory disambiguation”, and that ugly term stuck. 
(Yale Patt always complains that his term, “the 
unknown memory address problem”, was better. 
This shows again that short and ugly beats long 
and careful every time.) VLIW itself is another 
short and ugly term that stuck. I tried SPIE (for 
Static Parallel Instruction Execution). That turned 
out to be a conference name, which I found out 
when I used the term in a grant proposal and got 
on all the wrong mailing lists. I eventually came up 
with VLIW. I figured if VLSI could stick, why not 
VLIW? VLIW unfortunately emphasizes the long 
instruction implementation detail over the explic- 
itly parallel instruction design philosophy that is 
really the key aspect. 

One last thing I’d like to mention is that Mary 
Claire vanLeunen (author of the still wonderful “A 
Handbook for Scholars”, revised ed., Oxford Uni- 
versity Press, New York, 1992) taught me to write 
in the course of editing this paper, for which I’m 
still very grateful. Several others had tried; some 
had helped a lot, but this was where it took. “It’s a 
lot like programming. Your goal is transparency,” 
she told me. I figured that if she knew that about 
programming - not so many people knew that 
about programming then - she was undoubtedly 
right about writing. Recently, because of her les- 
sons, I had reviews of a paper that said, “This is 
such a clearly written paper, it should be published 
on those grounds alone,” and, from another 
reviewer, “This paper was written in an annoy- 
ingly juvenile style.” Right! 

36 


