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Abstract 

As processor architectures have increased their reliance 
on speculative execution to improve performance, the 
importance of accurate prediction of what to execute 
speculatively has increased. Furthermore, the types of 
values predicted have expanded j?om the ubiquitous 
branch and calllreturn targets to the prediction of 
indirect jump targets, cache ways and data values. In 
general, the prediction process is one of identifying the 
current state of the system, and making a prediction for 
some as yet uncomputed value based on that state. 
Prediction accuracy is improved by learning what is a 
good prediction for that state using a feedback process at 
the time the predicted value is actually computed. While 
there have been a number of efforts to formally 
characterize this process, we have taken the approach of 
providing a simple algebraic-style notation that allows 
one to express this state identification and feedback 
process. This notation allows one to describe a wide 
variety of predictors in a uniform way. It also facilitates 
the use of an eficient search technique called genetic 
programming, which is loosely modeled on the natural 
evolutionary process, to explore the design space. In this 
paper we describe our notation and the results of the 
application of genetic programming to the &sign of 
branch and indirect jump predictors. 

1. Introduction 

In the quest for more CPU performance, there is ever 
greater use of strategies to increase instruction-level 
parallelism, including deep pipelines, super-scalar issue, 
and out-of-order issue. In order to achieve a performance 
benefit, these techniques have resulted in an increasing 
reliance on speculative execution, that is, executing 
operations before all the input values are known. 
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The standard technique for coping with unknown 
input values is guessing the value, using the guessed value 
in the speculative operation, and eventually resolving 
whether the guess was right or not. If the guess was right, 
then the computation can proceed. If the guess was wrong, 
however, the processor needs to reset its state back to the 
point before the guess, and resume with the correct input 
values. This process of generating a guess is more 
formally called prediction. 

Branch prediction is the most commonly seen form of 
prediction [14,17,18,11]. In this case, the value being 
predicted is the instruction to execute after a branch 
instruction, e.g., either the target of the branch or the next 
sequential instruction. This information is needed very 
early in the pipeline, so that instruction fetch can be 
directed to fetch the correct instruction. On the other 
hand, the branch result will not be determined until the 
branch executes far down the pipeline. Thus, accurate 
branch prediction can substantially improve performance 
by allowing for the speculative execution of instructions 
following the branch before the branch resolves. 

While branch prediction is probably the best known 
form of prediction, there are many other cases where one 
can predict either architectural or implementation values. 
Some examples are: indirect jump target prediction [6,8], 
return instruction target prediction [S], cache way 
prediction [2], cache miss prediction, and data value 
prediction [9]. In each of these cases, a value is prcdictcd 
and used speculatively pending actual computation of the 
value. 

Previous work on categorizing and characterizing 
predictors has been based on the high-level constructs 
from earlier research on branch prediction mechanisms, 
such as global-history components or tables of saturating 
counters [12,13,18,19]. This seems logical, particularly 
for an automated search, because a predictor composed 
from such constructs is quite likely to resemble a known 
good predictor, whereas a predictor built arbitrarily from 
lower-level primitives is less likely to be useful. 

Using higher-level constructs, however, means that the 
only predictors we are ever going to see are mado from 
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these familiar building blocks. We are therefore losing 
the chance to find interesting new components of 
predictors that we had not previously thought of. Another 
drawback is that while we know many good building 
blocks for branch predictors, this may not be the case for 
other prediction problems. So for those problems, we 
would likely be more successful starting from lower-level 
primitives. Therefore, rather than base a model of 
prediction on the various existing predictors, we define a 
simple primitive predictor. 

The model we have developed allows a large variety of 
predictors to be described using a language with a simple 
algebraic-style syntax. Our aim is to formalize the process 
of specification of predictors in part to facilitate the search 
of the design space. Previously, this has been essentially a 
manual process, i.e., dependent on the creativity of the 
researcher. We aim to provide automatic help. 

Thus, given this algebraic-style description for 
predictors, we can employ automated search techniques in 
order to find new predictors. In particular, the set of 
techniques known as genetic programming allows one to 
search a general expression design space [7]. It is a 
stochastic technique that is well suited to situations where 
we do not know much about what solutions might look 
like, since it finds increasingly better solutions Ii-om a 
starting point that can be completely randomly generated. 

In Section 2 we provide a framework that can be used 
to describe a wide variety of predictors, and a 
corresponding algebraic notation that can be used to 
simply describe these predictors. In Section 3 we provide 
an overview of genetic programming, and in Section 4 we 
describe how we apply it to the task of finding predictors. 
In section 5 we describe the results of our genetic 
programming experiments to find branch predictors and 
indirect jump predictors. Then finally in Section 6 we 
conclude with some observations. 

2. Predictor Notation 

The principal function of any predictor is to take an 
input, corresponding to the current state of the system, 
and generate an output that predicts some as yet 
uncomputed value. Note that this input can be as all- 
encompassing of system state as desired. Thus, while most 

branch predictor studies have been based on just the 
current program counter, PC, as the input for the 
predictor, there is no reason not to use other information, 
such as the opcode or sign of the branch offset (since 
backward branches are likely to be part of loops, and 
hence more likely taken). So in general one should 
consider using all the information available in earlier pipe 
stages of the current or later instructions as well as 
information available from earlier instructions in later 
pipe stages [2]. 

Predictors can be divided into two classes: static and 
dynamic. In the case of a static predictor the prediction is 
always the same logical function of the input to the 
predictor. On the other hand, dynamic predictors learn to 
make better predictions from information that is only 
available after the prediction is made. Dynamic predictors 
thus use feedback to learn from past behavior and hence 
make better predictions in the future. 

The natural, but not necessarily required, time to feed 
information back to the predictor is when it is determined 
whether the prediction was correct or not. This is referred 
to as the time the prediction resolves. Thus, frequently, 
the information fed back to the predictor is simply the 
accuracy of the prediction. So, in the case of a branch 
predictor, whether the branch was taken or not can be fed 
back to the predictor to help it improve its predictions. In 
addition, however, other information might also be 
provided. This overall dynamic prediction scheme can be 
viewed as a feedback control system as illustrated in 
Figure 1. 

In order for such a feedback control system to learn, it 
needs some sort of memory. To provide this memory we 
define, as a primitive, the structure in Figure 2. This 
primitive is basically a memory that is w bits wide and d 
entries deep. As with a typical memory, it has two 
operations. For our purposes, however, rather than read 
and write, the two operations are called predict and 
update, and furthermore these two operations are always 
used as a pair. Thus, in our example, the operation of the 
predictor consists of a predict step in which the memory 
is accessed at address index, I, and the value read is used 
as the prediction, P. Some time later, when the prediction 
resolves, an update value, II, is delivered to the predictor 
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Figure 2 - Primitive Predictor 

and written into the same location indexed by I. A trivial 
extension might involve writing back to a different 
location, but we will not consider that case. Similarly, we 
do not consider the case where there might be multiple 
predictions before there is an update. 

We will represent the primitive predictor in Figure 2 
as an algebraic expression: 

Pbt dl( I; W 

where, 
w=width 
d = depth 
I = index for prediction and update 
U = update value 

Note that we use a notation in which the static 
configuration parameters of the predictor are enclosed in 
square brackets (0). These parameters allow us to describe 
a class of predictors of various sizes with one definition. A 
specific instance of a predictor has constant values 
specified for these parameters. 

Following the configuration parameters are the 
dynamic arguments used to generate predictions. These 
are enclosed in parentheses (0). These arguments are in 
turn partitioned between the input arguments, listed first, 
and the update arguments, listed after the semicolon (;). 
Other predictors defined in terms of this primitive 
predictor will also follow this notation. 

Use of this predictor can be thought of as inputting a 
series of index, I, and update, U, values and generating a 
series of predictions, P. By using specific values or 
expressions as the inputs to the predictor, we can create a 
variety of predictors. Thus a simple l-bit branch predictor 
that predicts a branch will behave the same this time as it 
did last time can be represented as: 

Onebit[d](PC; T) = P[l, d](l?c T); 

where, 
PC = current program counter 
T = branch resolution 

( 0 -> not taken, 1 -> taken) 
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This expression defines the predictor “Onebit” with 
parameter d, input PC and update expression T as the 
expression on the right of the equal sign (=). The 
expression on the right describes the size and how to 
“wire up” the primitive predictor P to create “Onebit,” 
Note that this predictor is parameterized by its depth, d, 
Therefore, to specify a specific predictor, like that in the 
DEC Alpha 21064, we can use Onebit as follows: 

A21064[1(PC; T) = Onebit[2K]( PC; T); 

We can also build up more complex components out of 
the simple predictor that can be used to build even more 
sophisticated predictors. Thus we can define an array of n- 
bit saturating counters each of which counts up or down 
based on their update value, such as described in [ 141 as: 

Counter[n,d](I; T) = P[n, d](I; if T then P+l else P-l); 

Note that in this case we use the value generated by 
the predictor, P in this example, as part of the expression 
for the update expression. We also have assumed that our 
addition and subtraction operations arc saturating 
operations. Using this predictor and a function MSB that 
returns the most-significant bit of a value, we can easily 
create the ubiquitous 2-bit counter predictor as: 

Twobit[d](PC; T) = MSB(Counter[2,d](PC;T)); 

Another useful primitive is one that keeps a history of 
some value by concatenating the current history value 
with the update value. The following expression describes 
a predictor that maintains an array of histories of values: 

Hist[w, dJ(I;V) = P[w,d](I; P II V); 

Using this primitive one can create a variety of 
predictors such as these global and local history or two- 
level adaptive branch predictors from Yeh and Patt [ 181: 

GAg[n]( ;T) = Twobit[2%Hist[n, lJ(0; T); T); 

PAg[n, d](P’c; T) = Twobit[2*](Hist[n, d](P)c; T); T); 



A simple modification of the index expression leads to 
the PAp scheme from Pan, So and Rameh [ 111: 

P&h m, dlW; ‘0 = 
Twobit[2m](PC! II Hi&r, d](PC; T); T); 

Similarly, McFarling’s GShare predictor [lo] can be 
expressed as: 

GShare[m](PC; T) = 
Twobit[2m](PC 69 Hist[m, l](O; T); T); 

Finally, what may be the most complex commercially 
implemented predictor, the choosing predictor [lo] used 
in the DEC Alpha 21264. This predictor consists of a 
local history predictor and a global history predictor that 
are selected between by a global history based chooser: 

Lhistn(PC;T) = Threebit[lK](Hist[10,1K](PC;T); T); 
Ghistu(;T) = Twobit[4K](Hist[l2,l](~‘I); T); 

A2126Q(PC; T) = 
if (MSB(P[2,4K](Hist[l2,l](O;T); 

P + (Lhist=T) - (Ghist = T))) 
then Lhist[l(FC;T) 
eke GhistO(;T); 

Where Threebit is the obvious extension of Twobit to 
three bit counters. 

Through the composition of predictors and various 
logic expressions a large variety of predictors can be 
created. Note, furthermore, that the predictors need not be 
restricted to generating single bit predictions. For 
example, one can specify a predictor for indirect jumps. 
Following is an expression that builds a table for indirect 
jumps that predicts that each indirect jump instruction 
will jump to the same target it jumped to last time: 

Jump[d](PC; Target) = P[32, d](PC; Target); 

We have developed a parser for a version of this 
notation called the BP language. This BP language parser 
understands the predictor primitive and a variety of 
functions. It also understands another primitive, which we 
do not use here, that represents a set-associative tag store. 

The parser translates BP language expressions into a 
set of subroutines that simulate the predictor that the 
expression describes. From there it is easy to link the 
predictor subroutines to a trace reader to simulate the 
performance of the specified predictor. 

In the next section, we describe a search technique that 
can automatically generate predictors. 

3. Genetic Programming 

We base our automatic search for predictors on genetic 
programming 171. Genetic programming is derived Tom 
genetic algorithms [4], so we will describe those first. 
Genetic algorithms are a method for efficiently searching 
extremely large problem spaces. Their behavior has some 
similarities to the way in which natural selection enables 
evolution to produce species that are adapted to their 
environment. 

A genetic algorithm encodes potential solutions to a 
given problem as fixed-length bit strings. Initially, we 
generate a set of random bit strings, each of which is 
called an individual by analogy to the evolution 
paradigm. This set is our initial population or 
generation. We evaluate the fitness of each individual by 
computing a metric that reflects how well the solution 
encoded by its bit string solves the problem. This metric 
might be the cost of the solution, or a measure of how 
close au individual gets to achieving a particular task. 

To create the next generation in the evolutionary 
process, we create new individuals from old ones by 
applying genetic operations that recombine the 
components of the old individuals in different ways. 
Thus, structures that are part of a good solution that have 
developed in some individuals can be combined with 
structures developed in other individuals. The resulting 
offspring might be an individual combining several good 
components and potentially achieving a higher fitness 
value. 

This process of combining pieces of solutions to form 
new solutions is one of the key features of genetic 
algorithms. The other key feature is the way in which the 
fitness of an individual influences its propagation in 
future generations: The individuals that serve as input to 
the genetic operations are chosen with a probability based 
on their fitness value. Individuals with a higher fitness 
value have a higher probability of being chosen, so that 
they may appear many more times than individuals of 
lower fitness value. This means that the next generation 
will contain many individuals that contain one or more 
components from successful individuals of the previous 
generations, which makes it likely that the average fitness 
of the new generation will be better than that of the 
previous generation. By repeating this process many 
times, we produce a sequence of successive generations. 

The first generation, being a set of random points in 
the search space, will usually not contain any reasonable 
solutions. The fitness-based selection method will, 
however, try out many modifications and combinations of 
the slightly better individuals, which generally leads to 
much improved solutions within a few generations. 



Genetic algorithms often work very well for problems 
where solutions can be encoded in fixed-length strings. 
They are too constraining for problems, such as 
prediction, where the solutions are general algebraic 
expressions or programs. Genetic programming, which is 
closely related to genetic algorithms, is better suited to 
these problems. The only change is that the individuals 
are not encoded as fixed-length strings, but as tree 
structures, and the genetic operations are adapted to 
perform analogous operations on tree structures. This 
allows us to easily represent algebraic expressions or 
parse-tree representations of programs, and it allows the 
individuals to grow as needed. In our application of this 
method, the individuals are BP language expressions that 
describe predictors. 

4. Genetic Programming Search 

To apply genetic programming to automatically 
synthesize predictors, we created a set of programs and 
scripts to perform the genetic programming search as 
follows: 

1. Create initial population of randomly generated 
individuals 

2. Rank fitness of individuals in the population by 
simulation 

3. Apply genetic operations to create new generation 

4. Repeat steps 2 and 3 

More specifically, however, to apply genetic 
programming to predictors one needs to map the predictor 
problem into the appropriate structure. First, we will 
describe how we represent expressions in the BP language 
as tree data structures. Next, we present the genetic 
operations that are used to produce new individuals from 
old ones. Then, we describe how these operations are 
applied to a generation of individuals to create the next 
generation. We also need to place some constraints on the 
expressions that are produced by genetic operations to 
ensure that the results are valid BP expressions, that they 
do not grow unreasonably large, and that they satisfy 
certain other constraints that simplify the implementation 
of some aspects of the operations. Finally, we present the 
method we use to determine the fitness of the individuals 
in the population. 

4.1 Representation of expressions 

Individuals are represented by a tree structure which is 
easily translated into a corresponding expression in the 
BP language. The tree nodes are divided into the 
following categories: 

Predictors 

A predictor node represents a primitive predictor of 
the BP language. It contains the width and height of the 
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predictor, and has two descendants: The first one 
corresponds to the expression used to compute the index 
of the predictor, and the second one corresponds to the 
expression used to update the state of the predictor. 

Functions 

We currently use the following functions: XOR, CAT 
(concatenation), MASKIIUMASKLO (which return a 
given number of the high or low bits), MSB (returns the 
highest bit), SATUR (performs a saturating add of a given 
width), IF (selects one of two inputs depending on the 
value of a third input). If desired, it is very easy to extend 
this set, since the BP language contains many additional 
functions. 

Terminals 

Input values: For each class of prediction problem, 
there is a list of the arguments to a predictor. Arguments 
are separated into two classes: the input values that arc 
available immediately, and the update values that arc 
available after the value being predicted has been 
computed. For branch prediction, the inputs usually 
include the PC of the branch instruction, but other 
processor state can also be useful, such as the branch 
direction (the sign bit of the branch offset). The update 
value for branch prediction is typically the branch 
outcome. 

Value of a predictor: An expression can be a reference 
to the value of another predictor node. To simplify the 
implementation of other parts of the system, it was 
expedient to allow only references to the nearest enclosing 
predictor. This restricts the class of predictors that can be 
generated, and we plan to remove this restriction in the 
future. 

Integer constants: We allow small integer constants to 
be available in expressions. 

4.2 Genetic Operations 

In this section, we describe the genetic operations that 
are used to populate a new generation. 

Replication 

To ensure that the very best individuals of a generation 
are not lost or destroyed by other operations, we copy a 
certain number of the best individuals to the next 
generation. 

Crossover 

The most important operation is one that combines the 
components of two predictors in a different way to form 
two new predictors. To perform a crossover operation on 
two individuals, we randomly choose a node in each of the 
two, and exchange the subtrees defined by the two nodes. 



Mutation 

There are two kinds of mutation operations; their 
purpose is to make small changes to individuals, which 
can sometimes be needed to prevent the entire generation 
from converging to identical individuals. We apply 
mutation operations to the offspring generated by 
crossover operations. 

For a node mutation, we randomly choose a node 
within the expression tree of the individual, and modify 
the node as follows: If it is a function node, we replace it 
with a different function; if that function needs more 
arguments than the original function, we create random 
expression trees as needed. If it is a terminal node, we 
replace it with another terminal. If it is a predictor node, 
we change the width and/or height of the predictor. 

For a subtree mutation, we randomly choose a node 
and replace the subtree defined by the node with a 
randomly generated subtree of identical height. 

Encapsulation 

Crossover operations are necessary to combine useful 
components of individuals, but they can also be 
destructive: They may break up a useful component of an 
individual into parts that are meaningless by themselves. 
An encapsulation operation makes a randomly chosen 
subtree of an individual into an indivisible unit that 
cannot be broken apart by a crossover operation or 
mutation, although it can still be moved in its entirety [l]. 
For a randomly chosen encapsulation point, there is no 
way to know that this encapsulated component is actually 
useful. However, if it is useful, then individuals that 
receive this component through crossover will tend to 
improve, and the fitness-based selection and replication 
will make those individuals more frequent in the next 
generation. On the other hand, if the component is 
useless, then individuals incorporating it will tend not to 
be successful, and the component will not propagate and 
eventually die out. 

There is an opposite operation, called expansion, that 
turns an encapsulated subtree back into a regular subtree. 
This way, encapsulated expressions still have a chance to 
improve by taking part in other operations. 

For each of these operations, the individuals serving as 
inputs are chosen using a method called tournament 
selection. To choose one individual by this method, we 
first choose a set of individuals randomly and uniformly 
from all the individuals of the current generation; the size 
of this set is a parameter called the tournament size. 
Then we find the individual in that set that has the best 
fitness value, and discard all the other individuals. The 
result is that individuals are chosen according to a 

probability distribution that gives higher probability to 
individuals with higher fitness values, while less fit 
individuals still have some chance to be chosen 
occasionally. How much this probability distribution is 
biased towards better individuals is determined by the 
tournament size parameter. For a generation size of 400 
individuals, we typically use a tournament size of 8. 

4.3 Consfrainfs 
In order to produce legal and usable individuals, we 

need to impose certain constraints on the results of genetic 
operations. In most cases, we achieve this by first 
allowing the operations to proceed oblivious to the 
constraints. We then check the result for compliance with 
these constraints, and modify the individuals where 
necessary. 

Our East constraint is to avoid generating predictors of 
excessive implementation size (i.e. the number of storage 
bits it takes to implement the predictor). To keep the 
predictors from growing indefinitely, we limit the 
implementation size of any predictor to 512K bits of 
storage. When a predictor exceeds this bound, we reduce 
its size until it falls below this limit: we randomly choose 
a predictor node within the expression tree, and reduce 
either its width or its height by one step. Experience has 
shown that many of the predictors that are created do not 
use their implementation size efficiently; for example, 
many predictors contain subexpressions that contain a 
large predictor table whose value does not affect the 
output of the entire expression. Therefore, the somewhat 
generous limit of 512K bits was deemed appropriate. 

Ow second constraint is making sure that the 
expression is a legal BP expression. For example, during 
crossover a terminal node that refers to the value of an 
enclosing predictor may be moved outside of the update 
subtree of that predictor. In this case, if there is another 
predictor enclosing the new location, the node will now 
automatically refer to the nearest enclosing predictor in its 
new context. If there is no such predictor, the node is 
changed to a constant value of 1. Another problem occurs 
when a terminal node that represents an update value is in 
a context where that value is not available, e.g., the 
branch outcome cannot be used in an indexing expression 
of a branch predictor. 

Because the widths of values in the BP system are 
important, when generating predictors the system must 
explicitly specify the widths of each expression. As a 
simplification, we currently only allow expressions whose 
width can be statically determined. In most cases, these 
can be determined from the widths of the subexpressions, 
except where there is a recursion. In those cases, we pick 
a width at random. 
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Figure 3- Perjonnance of Branch Predictors vs. Trace Length 

As Koza [7] notes, one often needs to coerce results 
into a particular form for the problem being studied. We 
found this to be true, so we developed a way of using 
templates for the individuals of the initial generation, to 
provide a reasonable starting point. For example, one 
could use a template that is a predictor with a random 
indexing expression and 2-bit saturating counter as the 
update expression. It is possible to have templates where 
the user-provided components are forever fixed, or the 
entire individual may be changed by genetic operations. 
Usually, generating the more complex forms of branch 
predictors depended on starting with more advanced 
structures in the template. 

4.4 Fitness 

For the predictors we study, we use the accuracy of the 
predictor, expressed as a misprediction rate, as the fitness 
metric. To calculate the misprediction rate, we use the BP 
language parser to create simulators of predictors from 
these BP language expressions. We run those simulators 
over instruction traces with a parameterizable training 
period to avoid startup effects. In our experiments, we 
used Atom [3] generated traces from some SPEC92 and 
SPEC95 [15] integer benchmarks (compress, eqntott, gee, 
go, m88ksim, xlisp) compiled for the DEC Alpha on 
Digital Unix with the switches set as submitted to SPEC. 
We also used some traces from the IBS benchmark suite 
[la. The simulation output consists of a prediction 
accuracy and fimess ranking for each predictor. 

Simulating the execution of an entire benchmark every 
time we need to evaluate the fitness of the hundreds of 
predictors in a generation would make it unbearably slow 
to produce the 20-30 generations that are usually needed 
to obtain good results. Thus, we use shortened runs to 
generate fitness values. 

Fortunately, the fitness measure is used only as an 
input for the tournament selection process, which needs 
only the relative ranking of the individuals and 
furthermore is a probabilistic process that is unlikely to be 
affected by slight inaccuracies in the rankings. Therefore, 
we do not need a perfectly accurate fitness value, but only 
a roughly accurate ranking of the individuals in a 
generation. To generate this ranking, we simulate until we 
find a ranking order that is reasonably stable. Typically, 
this requires simulating about one million branches. 

Note, however, that if we use a single trace for an 
entire benchmark, we would repeatedly use only the frost 
million events from the trace. Instead, we use several 
shorter samples from the entire trace. Each sample 
contains 5 million predicted events, and for our 
experiments we had 2 or 3 samples from each benchmark. 

In our experiments, we used two different methods for 
ranking predictors. In the first method, we ranked tho 
individuals in a generation based on just one randomly 
selected benchmark, i.e., one benchmark per generation. 
This method was relatively fast, and might correspond to 
looking for individuals that can survive though successive 
eras of drought, flood and temperate weather. 

In our second method, we determine the rankings for 
each benchmark in a set of benchmarks and then combine 
the rankings for each benchmark into a single avcragc 
ranking. This second approach is much more timc- 
consuming, but it avoids the problem of only ono 
benchmark influencing the outcome of the next 
generation. In either case, final evaluations of the 
predictors are based on longer runs of the SPEC 
benchmarks and IBS traces. 

It remains to be shown that the relative fitness 
determined using short traces is actually a good measure 
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Figure 4 - Pe?$ormance of Mired Jump Predictors vs. Trace Length 

of the relative fitness for longer traces of benchmark 
execution. We verified this by selecting some of the better 
predictors from our experiments, and evaluating their 
performance over traces of varying length 

The results of these experiments are presented in 
Figures 3 and 4. These figures show the absolute and 
relative performance for several branch and indirect jump 
predictors as a function of the number of predicted events 
in the trace. Each line represents a different predictor, 
where each point is calculated by averaging the results of 
4 benchmarks: compress, gee, go, xlisp. 

These curves show that over time the relative ranking 
of the predictors is quite stable (or indistinguishably 
close), even though the absolute performance varies due to 
the differing behavior of the benchmark programs over 
time. Thus, we believe that rankings generated from the 
short traces form an adequate input to the tournament 
selection process. 

5. Results 

5.1 Branch Predictors 

We chose branch prediction as the first test case for 
automated synthesis of predictors. Because we had 
previous knowledge of branch predictors, we lmew what 
kinds of structures are promising and what kind of 
prediction accuracy can be achieved by a good predictor. 
This gave us the opportunity to tune the system to get 
generation to generation improvements. On the other 
hand, given the many years of research on human 
designed branch predictors, the task of finding new ones 
is more difficult. 

Figure 5 shows the development of the best and 
average individuals over 16 generations of one 

experiment; fitness calculations were based on the average 
of 8 SPEC traces, and the resulting average m&prediction 
percentages are shown for each generation. Each 
generation contains 400 individuals. 

The graph shows a steady improvement in the 
performance of the best predictor. As in this example, 
somewhere between 15 and 30 generations the 
experiments usually converge to a few distinct predictors, 
and the subsequent generations do not achieve any 
significant improvement. Typically, this indicates that the 
predictors that can be created from the population using 
crossover and mutation do not show any improvement 
over the best predictors in the population. Note that the 
average performance of a population is more variable and 
can even get worse if crossover and mutation generate a 
number of useless predictors. 
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To see how well our automatically generated 
predictors fared, we have taken 6 of the better predictors 
produced in the course of our experiments, called GPl 
through GP6, and 6 well-Imown human-discovered 
predictors. The configurations for the human-made 
predictors are specified using the predictor definitions 
from Section 2. In all cases we tried to size the predictors 
to about 512K bits. Table 1 shows the average 
performance of each predictor for the SPEC benchmarks 
we studied (either full runs or 5OM branches whichever 
came first), and the average for the IBS traces. 

The results show that the automatically generated 
predictors compared favorably to the human-generated 
versions. In fact, three of the predictors were better than 
all but the GShare predictor. Note, however, that we were 
not yet able to create any choosing style predictors, due to 
the current limitations of our crossover operation. 
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Figure 5 - Fitness vs. Generation 

We have not shown the predictor expressions for GPl 
to GP6, because the predictors that are generated tended 
to grow to the point where they consist of very deep tree 
structures. Thus, even though in size these predictors are 
comparable to the human-designed predictors they are 
logically much more complex, and probably not directly 
implementable. 

The complexity of these automatically-created 
predictors is actually a natural consequence of the genetic 
programming process. Genetically created solutions are 
typically not very efficient, consisting of many apparently 
useless expressions. These expressions, called “introns” in 
the genetic programming literature, appear to be needed 
to protect the developing expression from crossovers. 
Thus, defining a fitness function biased against this sort of 
complexity may not work. In any case, we believe that 
there is value in just manually identifying the pieces of 
the solution that might be contributing to their 
effectiveness, and manually creating better predictors. 

In fact, we were able to find numerous interesting 
subcomponents of these synthesized predictors. Over a 
variety of runs of the experiment, we found the system 
“invented” many familiar components of branch 
predictors: saturating counters, global and local branch 
histories as well as indirect histories. 

There were also some apparently new structures that 
could form the basis for practical predictors. Invariably 
these were used as part of something like a GShare-style 
index (a global history xor’ed with the PC [lo]) for a set 
of two or three bit counters. Below are some examples of 
such predictor components. 
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First is a global history indexed by a global history, 
which keeps around a portion of the older global history 
when there is a series of taken or not taken branches. 

PO[14,16384](P1[14,1](0; Pl II T); PO II T) 

Next is a global history biased by the direction of tho 
branch. If one assumes that backwards branches arc 
normally taken, and forward branches normally not taken, 
then this keeps a history of “unexpected” branch actions: 

P[14,1](0; (P II (DIR @ T)) 

Next is a predictor that keeps separate global histories 
for forward and backward branches, maybe indicating that 
it is useful to separate the behaviors of loop branches from 
non-loop branches: 

P[5,2](DIR; P II T) 

Finally, we found a predictor that keeps a short 
history of PC values, which could be useful for tracking 
the history of the program: 

PO[11,32](P1[5,1024](PC<10:0>; PC&O>); 
PO II PC<4:0>) 

5.2 Jump Predictors 

In contrast to branch prediction, there has been little 
research on predicting the target addresses of jump 
instructions that use a register as the target address. We 
therefore have little knowledge of what a good jump 
predictor looks lie. For the same reason, this is a more 
interesting search space because we can expect to find 



Table I -Branch Predictor Pet$omance 

Predictor 

GPI 

GE2 

GP3 

GP4 

GP.5 

GP6 

Mispredict I Mispedict 
Rate (SPEC!) Rate (IBS) 

7.2 I 3.0 

predictors that are better than the ones that we already 
know. 

The inputs that are available to a jump predictor are: 
PC, SP (stack pointer), TREG (number of register 
containing the jump target), and the target itself (after the 
address has been resolved). The benchmarks we used for 
this study were: gee, go, xlisp and m88ksim. 

Table 2 below shows some of the jump prediction 
mechanisms that one might think of; note that we only 
need to predict the lower 12 bits of the word address 
because only targets that are in the instruction cache need 
to be predicted. 

The best predictors seen during our genetic 
programming experiments achieve average misprcdiction 
percentages as low as 15% on long runs of the same set of 
programs; this represents a significant improvement over 
the three predictors in Table 2. Since the genetic 
programming system had already been developed and 
relined using branch prediction as a test case, producing 
these jump predictors required very little effort 

One of the simplest predictors that gets significantly better 
performance than the simple predictors above is shown 
below. The average misprcdiction percentage of this 
predictor for full runs of the 4 SPEC traces of 1 to 21 
million jumps is 33.4%. 

PO[16,16384](PC<3:0> ~3 SP 
P1[12,16](TREG; TARGET); 
TARGET); 

This expression contains a predictor that stores a previous 
target, indexed by the target register; this is XORed with 
the PC and the SP to form an index into a table of 
previous targets. 

Another example is the following more complicated 
predictor; its misprediction rate is 30.0%. 

PO[16,16384]( 
SP0 PC@ 
P1[12,32](‘IREG; TARGET<11:2>) 63 
P2[15,32](P3[5,21(1; PC<4:0>); 

SP 63 TARGET 0 
P4[12,32](P3;TARGET)); 

TARGET); 

While maybe too complex to implement, this 
expression shows some interesting subcomponents that 
might be useful for creating more practical predictors. 

6. Conclusions 
In this paper, we have presented a new language for 

describing predictors. This language provides a concise 
and unambiguous way for describing a large variety of 
predictors. Furthermore, it allows for their automatic 
manipulation, including generating simulators and 
automated synthesis. In particular, we have used the 
search technique called genetic programming to search 
the design space for branch and jump predictors. 

The result of these experiments has been the creation 
of branch predictors comparable to the best non-choosing 

Table 2 -Indirect Jump Predictor Performance 

Description BP expression 
Miiredictim percentage: 
average of 4 traces, 35M jumps 

use the target of the previous jump p[12,1](1: target) 63% 

table of previous targets, indexed by PC p[12,4096]( PC : target) 47% 

table of previous targets, indexed by PC and SP p[12,409q( PC[9..01 II SP[4..0] : target) 54% 
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predictors that have been published. Although these 
predictors are logically cofnplex, analysis of their 
structure revealed a number of interesting subcomponents 
that might be used to develop implementable predictors. 
In addition, we created relatively simple indirect jump 
target predictors significantly better than those typically 
used today. 

Given the base system developed for branch 
prediction, generating the indirect jump predictors was a 
straightforward one week task. The positive results for 
these predictors, and the ease of adaptation of the system, 
make trying this technique for other types of predictors 
promising. 

While we have been encouraged by our results, the 
genetic programming search often generates rather 
verbose predictors with portions that contribute little. 
While this is a necessary characteristic of genetic 
programming, the opportunity still remains for the 
automatic reduction of expressions to reduce complexity. 
This can include eliminating unused memory as well 
extracting the useful subcomponents of the more accurate 
predictors and applying them in a more cost-effective 
manner. 
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