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Abstract

This paper examines simultaneous multithreading, a technique per-
mitting several independent threads to issue instructions to a su-
perscalar’s muitiple functional units in a single cycle. We present
several models of simultaneous multithreading and compare them
with alternative organizations: a wide superscalar, a fine-grain mui-
tithreaded processor, and singie-chip, muitipie-issue muitiprocess-
ing architectures. Our resuits show that both (single-threaded) su-
perscalar and fine-grain multithreaded architectures are limited in
their ability to utilize the resources of a wide-issue processor. Si-
muitaneous multithreading has the potential to achieve 4 times the
throughput of a superscalar, and double that of fine-grain multi-
threading. We evaluate several cache configurations made possible
by this type of organization and evaiuate tradeoffs between them.
We also show that simuitaneous muitithreading is an attractive alter-
native to single-chip multiprocessors; simultaneous multithreaded
processors with a variety of organizations outperform corresponding
conventional multiprocessors with simiiar execution resources.

While simultaneous multithreading has excellent potential to in-
crease processor utilization, it can add substantial compiexity to
the design. We examine many of these complexities and evaluate
alternative organizations in the design space.

1 Introduction

This paper examines simultaneous multithreading (SM), a technique
that permits several independent threads to issue to multiple func-
tional units each cycle. In the most general case, the binding between
thread and functional unit is compietely dynamic. The objective of
SM is to substantially increase processor utilization in the face of
both long memory latencies and limited available parallelism per
thread. Simultaneous muitithreading combines the muitipie-issue-
per-instruction features of modem superscalar processors with the
latency-hiding ability of multithreaded architectures. It also inherits
numerous design challenges from these architectures, ¢.g., achiev-
ing high register file bandwidth, supporting high memory access
demands, meeting large forwarding requirements, and scheduling
instructions onto functional units. In this paper, we (1) introduce
several SM models, most of which limit key aspects of the complex-
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ity of such a machine, (2) evaluate the performance of those models
relative to superscalar and fine-grain multithreading, (3) show how
to tune the cache hierarchy for SM processors, and (4) demonstrate
the potential for performance and real-estate advantages of SM ar-
chitectures over smail-scale, on-chip multiprocessors.

Current microprocessors empioy various techniques (o increase
parallelism and processor utilization: however, each technique has
its limits. For example, modem superscalars, such as the DEC
Alpha 21164 [11], PowerPC 604 {9], MIPS R10000 {24], Sun Ul-
traSparc [25), and HP PA-8000 [26] issue up to four instructions per
cycle from a single thread. Multiple instruction issue has the poten-
tial to increase performance, but is ultimately limited by instruction
dependencies (i.e., the available parallelism) and long-latency op-
erations within the single executing thread. The effects of these are
shown as horizontal waste and vertical waste in Figure 1. Multi-
threaded architectures, on the other hand, such as HEP [28], Tera [3],
MASA {15] and Alewife [2] employ multiple threads with fast con-
text switch between threads. Traditional muitithreading hides mem-
ory and functional unit latencies, attacking vertical waste. In any one
cycle, though, these architectures issue instructions from only one
thread. The technique is thus limited by the amount of parallelism
that can be found in a single thread in a single cycle. And as issue
width increases, the ability of traditional multithreading to utilize
processor resources will decrease. Simultaneous multithreading, in
contrast, attacks both horizontal and vertical waste.

This study evaluates the potential improvement, relative to wide
superscalar architectures and conventional muitithreaded architec-
tures, of various simultaneous multithreading models. To place our
evaluation in the context of modem superscalar processors. we simu-
late a base architecture derived from the 300 MHz Alpha 21164(11],
enhanced for wider superscalar execution; our SM architectures are
extensions of that basic design. Since code scheduling is crucial
on wide superscalars, we generate code using the state-of-the-art
Multiflow trace scheduling compiler [20).

Our results show the limits of superscalar execution and tradi-
tional muitithreading to increase instruction throughput in future
processors. For example, we show that (1) even an 8-issue super-
scalar architecture fails to sustain 1.5 instructions per cycle, and (2)
a fine-grain muitithreaded processor (capable of switching contexts
every cycle at no cost) utilizes only about 40% of a wide superscalar,
regardless of the number of threads. Simultaneous muitithreading,
on the other hand, provides significant performance improvements
in instruction throughput, and is only limited by the issue bandwidth
of the processor.

A more traditional means of achieving parallelism is the con-
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Figure 1: Empty issue slots can be defined as either vertical
waste or horizontal waste. Vertical waste is introduced when
the processor issues no instructions in a cycle, horizontal waste
when not all issue slots can be filled in a cycle. Superscalar
execution (as opposed to single-issue execution) both introduces
horizontal waste and increases the amount of vertical waste.

ventional multiprocessor. As chip densities increase, single-chip
multiprocessors will become a viable design option [7]. The simul-
taneous multithreaded processor and the single-chip multiprocessor
are two close organizational alternatives for increasing on-chip exe-
cution resources. We compare these two approaches and show that
simultaneous multithreading is potentially superior to multiprocess-
ing in its ability to utilize processorresources. For example, a single
simultaneous multithreaded processor with 10 functional units out-
performs by 24% a conventional 8-processor multiprocessor with a
total of 32 functional units, when they have equal issue bandwidth.

For this study we have specuiated on the pipeline structure for
a simuitaneous multithreaded processor. since an implementation
does not yet exist. Our architecture may therefore be optimistic in
two respects: first, in the number of pipeline siages required for
instruction issue; secand, in the data cache access time (or load de-
lay cycles) for a shared cache, which affects our comparisons with
single-chip multiprocessors. The likely magnitude of these effects
is discussed in Sections 2.1 and 6, respectively. Our resuits thus
serve, at the least, as an upper bound to simultaneous multithread-
ing performance, given the other constraints of our architecture.
Real implementations may see reduced performance due to various
design tradeoffs; we intend to explore these implementation issues
in future work.

Previous studies have examined architectures that exhibit simul-
taneous multithreading through various combinations of VLIW, su-
perscalar, and multithreading features, both analytically [34] and
through simulation {16, 17, 6, 23}; we discuss these in detail in
Section 7. Our work differs and extends from that work in multiple
respects: (1) the methodology, including the accuracy and detail of
our simulations, the base architecture we use for comparison, the
workload, and the wide-issue compiler optimization and scheduling
technology; (2) the variety of SM modeis we simulate; (3) our anal-

ysis of cache interactions with simultaneous multithreading; and |

finally, (4) in our comparison and evaluation of muitiprocessing and
simultaneous multithreading.

This paper is organized as follows. Section 2 defines in detail
our basic machine model, the workloads that we measure, and the
simulation environment that we constructed. Section 3 evaluates
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the performance of a single-threaded superscalar architecture; it
provides motivauion for the simultaneous multithreaded approach.
Section 4 presents the performance of a range of SM architectures
and compares them to the superscalar architecture, as well as a
fine-grain muitithreaded processor. Section 5 explores the effect of
cachedesign alteratives on the performance of simultaneous multi-
threading. Section 6 compares the SM approach with conventional
multiprocessor architectures. We discuss related work in Section 7,
and summanze our results in Section 8.

2 Methodology

Our goal is to evaluate several architectural alternatives as defined
in the previous section: wide superscalars, traditional multithreaded
processors, simultaneous multithreaded processors, and small-scale
multiple-issue multiprocessors. To do this, we have developed a
simulation environment that defines an implementation of a simul-
tancous multithreaded architecture; that architecture is a straight-
forward extension of next-generation wide superscalar processors,
running a real multiprogrammed workload that is highly optimized
for execution on our target machine.

2.1 Simulation Environment

Our simulator uses emulation-based instruction-level simulation,
similar to Tango {8] and g88 [4]. Like g88, it features caching of
partially decoded instructions for fast emulated execution.

Our simulator models the execution pipelines, the memory hier-
archy (both in terms of hit rates and bandwidths), the TLBs, and the
branch prediction logic of a wide superscalar processor. It is based
on the Alpha AXP 21164, augmented first for wider superscalarex-
ecution and then for multithreaded execution. The model deviates
from the Alpha in some respects to support increased single-stream
parallelism, such as more fiexible instruction issue,improved branch
prediction, and larger, higher-bandwidth caches.

The typical simulated configuration contains 10 functional units
of four types (four integer, two floating point, three load/store and
! branch) and a maximum issue rate of 8 instructions per cycle. We
assume that all functional units are completely pipelined. Table |
shows the instruction latencies used in the simulations, which are
derived from the Alpha 21164.

[Instruction Class ][ Latency |
—mgcr multiply 8,1 6j
conditional move 2
compare ]
all other integer 1
FP divide 17,30
alt other FP 4
load (L1 cache hit, no bank conflicts) 2
load (L2 cache hit) 8
load (L3 cache hit) 14
load (memory) 50
control hazard (br or jmp predicted) 1
control hazard (br or jmp mispredicted) 6

Table 1: Simulated instruction latencies



We assume first- and second-level on-chip caches considerably
larger than on the Alpha, for two reasons. First. muluthreading
puts a larger strain on the cache subsystem, and second, we expect
larger on-chip caches to be common in the same time-frame that
simultaneous multithreading becomes viable. We also ran simu-
lations with caches closer to current processors—we discuss these
experiments as appropriate, but do not show any results. The caches
(Table 2) are multi-ported by interieaving them into banks, similar
to the design of Sohi and Frankiin {30]. An instruction cache access
occurs whenever the program counter crosses a 32-byte boundary;
otherwise. the instruction is fetched from the prefetch buffer. We
model lockup-free caches and TLBs. TLB misses require two full
memory accesses and no execution resources.

|| ICache | DCache | L2 Cache | L3 Cache |

—

Size 64 KB 64 KB 256 KB 2MB
Assoc DM DM 4-way DM
Line Size 32 32 32 32
Banks 8 8 4 1
Transfer

time/bank | cycle 1 cycle 2 cycles 2 cycles

Table 2: Details of the cache hierarchy

We support limited dynamic execution. Dependence-freeinstruc-
tions are issued in-order to an eight-instruction-per-thread schedul-
ing window; from there, instructions can be scheduled onto func-
tional units out of order, depending on functional unit availability.
Instructions not scheduled due to functional unit availability have
priority in the next cycle. We complement this straightforward issue
model with the use of state-of-the-art static scheduling, using the
Multifiow trace scheduling compiler [20]. This reduces the benefits
that might be gained by full dynamic execution, thus eliminating
a great deal of complexity (e.g., we don’t need register renaming
unless we need precise exceptions, and we can use a simple 1-bit-
per-register scoreboarding scheme) in the replicated register sets
and fetch/decode pipes.

A 2048-entry, direct-mapped, 2-bit branch prediction history ta-
ble [29] supports branch prediction; the table improves coverage
of branch addresses relative to the Alpha (with an 8 KB I cache),
which only stores prediction information for branches that remain
in the I cache. Conflicts in the table are not resolved. To predict re-
tum destinations, we use a 12-entry return stack like the 21164 (one
return stack per hardware context). Our compiler does not support
Alpha-style hints for computed jumps; we simulate the effect with
a 32-entry jump table, which records the last jumped-to destination
from a particular address.

For our multithreaded experiments, we assume support is added
for up to eight hardware contexts. We support several models of
simultaneous multithreaded execution, as discussed in Section4. In
most of our experiments instructions are scheduled in a strict prior-
ity order, i.e., context O can schedule instructions onto any available
functional unit, context | can schedule onto any unit unutilized by
context 0, etc. Our experiments show that the overall instruction
throughput of this scheme and a completely fair scheme are virtually
identical for most of our execution models; only the relative speeds
of the different threads change. The results from the priority scheme
present us with some analytical advantages, as will be seen in Sec-
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tion 4, and the pertormance of the fair scheme can be extrapolated
from the priority scheme results.

We do not assume any changes to the basic pipeline to accommo-
date simultaneous multithreading. The Alpha devotes a full pipeline
stage to arrange instructions for issue and another to 1ssue. If simui-
taneous mulitithreading requires more than two pipeline stages for
instruction scheduling, the primary effect would be an increase in
the misprediction penalty. We have run expeniments that show that
a one-cycle increase in the misprediction penaity would have less
than a 1% impact on instruction throughput in single-threaded mode.
With 8 threads, where throughput is more tolerant of misprediction
delays, the impact was less than .5%.

2.2 Workload

Our workload is the SPEC92 benchmark suite (10]. To gauge the
raw instruction throughput achievable by multithreaded superscalar

nem~aconre a srhaca : cnrannl inne accioning a dictinet
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program to each thread. This models a paralle! workload achieved
by muitiprogramming rather than parallel processing. In this way,
throughput results are not affected by synchronization delays, ineffi-
cient parallelization, etc., effects that would make it more difficult to
see the performance impact of simultaneous muitithreading alone.

In the singie-thread experiments, all of the benchmarks are run
to completion using the default data set(s) specified by SPEC. The
muitithreaded experiments are more complex; to reduce the effect
of benchmark difference, a single data point is composed of B
runs, each T * 500 million instructions in length, where T is the
number of threads and B is the number of benchmarks. Each of
the B runs uses a different ordering of the benchmarks, such that
each benchmark is run once in each priority position. To limit the
number of permutations, we use a subset of the benchmarks equal
to the maximum number of threads (8).

We compile each program with the Multiflow trace scheduling
compiler, modified to produce Alpha code scheduled for our target
machine. The applications were each compiled with several differ-
ent compiler options; the executable with the lowest single-thread
execution time on our target hardware was used for all experiments.
By maximizing single-thread parallelism through our compilation
system, we avoid overstating the increases in parallelism achieved
with simultaneous muitithreading.

3 Superscalar Bottlenecks: Where Have All
the Cycles Gone?

This section provides motivation for simultaneous multithreading
by exposing the limits of wide superscalar execution, identifying
the sources of those limitations, and bounding the potential im-
provement possible from specific latency-hiding techniques.

Using the base single-hardware-context machine, we measured
the issue utilization, i.e., the percentage of issue slots that are filled
each cycle, for most of the SPEC benchmarks. We also recorded the
cause of each empty issue siot. For example, if the next instruction
cannot be scheduled in the same cycle as the current instruction,
then the remaining issue slots this cycle, as well as all issue siots
for idle cycles between the execution of the current instruction and
the next (delayed) instruction, are assigned to the cause of the delay.
When there are overlapping causes. all cycles are assigned to the
cause that delays the instruction the most: if the delays are additive,
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Figure 2: Sources of all unused issue cycles in an 8-issue superscalar processor. Processor busy represents the utilized issue slots; all

others represent wasted issue slots.

such as an [ tlb miss and an I cache miss, the wasted cycles are
divided up appropriately. Table 3 specifies all possible sources
of wasted cycles in our model, and some of the latency-hiding or
latency-reducing techniques that might apply to them. Previous
work {32, 5, 18], in contrast, quantified some of these same effects
by removing bamiers to parallelism and measuring the resulting
increases in performance.

Our results, shown in Figure 2, demonstrate that the functional
units of our wide superscalar processor are highly underutilized.
From the composite results bar on the far right, we see a utilization
of only 19% (the *'processorbusy” component of the compaosite bar
of Figure 2), which represents an average execution of less than 1.5
instructions per cycle on our 8-issue machine.

These results also indicate that there is no dominant source of
wasted issue bandwidth. Although there are dominant items in
individual applications (e.g., mdljsp2, swm, fpppp), the dominant
cause is different in each case. In the composite results we see that
the largest cause (short FP dependences) is responsible for 37% of
the issue bandwidth, but there are six other causes that account for
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at least 4.5% of wasted cycles. Even completely eliminating any
one factor will not necessarily improve performance to the degree
that this graph might imply, because many of the causes overlap.

Not only is there no dominant cause of wasted cycles — there
appears to be no dominantsolution. Itis thus unlikely thatany single
latency-tolerating technique will produce a dramatic increase in the
performance of these programs if it only attacks specific types of
latencies. Instruction scheduling targets several important segments
of the wasted issue bandwidth, but we expect that our compiler
has already achieved most of the available gains in that regard.
Current trends have been to devote increasingly larger amounts of
on-chip area to caches, yet even if memory latencies are completely
eliminated, we cannot achieve 40% utilization of this processor. If
specific latency-hiding techniques are iimited, then any dramatic
increase in parallelism needs to come from a general latency-hiding
solution, of which multithreading is an example. The different types
of multithreading have the potential to hide all sources of latency,
but to different degrees.

This becomes clearer if we classify wasted cycles as either vertical



Source of Wasted
Issue Slots

Possible Latency-Hiding or Latency-Reducing Technique

instrucuion tlb muss, data
tlb miss

decreasethe TLB miss rates (e.g., increase the TLB sizes); hardware instruction prefetching: hardware
or software data prefetching; faster servicing of TLB misses

[ cache miss

larger, more associative, or faster instruction cache hierarchy: hardware instruction pretetching

D cache miss

larger, more associative, or faster data cache hierarchy; hardware or software prefetching; improved
instruction scheduling; more sophisticated dynamic execution

branch misprediction

improved branch prediction scheme: lower branch misprediction penalty

control hazard

speculative execution; more aggressive if-conversion

load delays (first-level

cache hits)

shorter load latency; improved instruction scheduling; dynamic scheduling

short integer delay

improved instruction scheduling

long integer, shont fp, long
fp delays

(multiply is the only long integer operation, divide is the only long floating point operation) shorter
latencies; improved instruction scheduling

memory conflict

(accesses to the same memory location in a single cycle) improved instruction scheduling

Table 3. All possible causes of wasted issue slots, and latency-hiding or latency-reducing techniques that can reduce the number of

cycles wasted by each cause.

waste (completely idle cycles) or horizontal waste (unused issue
slots in a non-idle cycle), as shown previously in Figure 1. In our
measurements, 61% of the wasted cycles are vertical waste, the
remainder are horizontal waste. Traditional multithreading (coarse-
grain or fine-grain) can fill cycles that contribute to vertical waste.
Doing so, however, recovers only a fraction of the vertical waste;
because of the inability of a singie thread to completely fill the issue
slots each cycle, traditional muitithreading convents much of the
vertical waste to horizontal waste, rather than eliminating it.

Simultaneous multithreading has the potential to recover all issue
slots lost to both horizontal and vertical waste. The next section
provides details on how effectively it does so.

4 Simultaneous Multithreading

This section presents performance results for simultaneous multi-
threaded processors. We begin by defining several machine modelis
for simuitaneous multithreading, spanning a range of hardware com-
plexities. We then show that simultaneous multithreading provides
significant performance improvement over both single-thread su-
perscalar and fine-grain multithreaded processors, both in the limit,
and also under less ambitious hardware assumptions.

4.1 The Machine Models

The following models reflect several possible design choices for a
combined multithreaded, superscalar processor. The models differ
in how threads can use issue slots and functional units each cycle;
in all cases, however, the basic machine is a wide superscalar with
10 functional units capable of issuing 8 instructions per cycle (the
same core machine as Section 3). The models are:

o Fine-Grain Multithreading. Only one thread issues instruc-
tions each cycle, but it can use the entire issue width of the
processor. This hides all sources of vertical waste, but does not
hide horizontal waste. It is the only model that does not feature
simultaneous multithreading. Among existing or proposed ar-
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chitectures, this is most similar to the Tera processor{3], which
issues one 3-operation LIW instruction per cycle.

o SM:Full Simuitaneous Issue. This is a completely flexible
simultaneous multithreaded superscalar: all eight threads com-
pete for each of the issue slots each cycle. This is the least
realistic model in terms of hardware compiexity, but provides
insight into the potential for simultaneous multithreading. The
following models each represent restrictions to this scheme
that decrease hardware complexity.

¢ SM:Singie Issue, SM:Dual Issue,and SM:Four Issue. These
three models limit the number of instructions each thread can
issue, or have active in the scheduling window, each cycle. For
example, in a SM:Dual Issue processor, each thread can issue
a maximum of 2 instructions per cycle; therefore, 2 minimum
of 4 threads would be required to fill the 8 issue siots in one
cycle.

¢ SM:Limited Connection. Each hardware context is directly
connected to exactly one of each type of functional unit. For
example, if the hardware supports eight threads and there are
four integer units, each integer unit could receive instructions
from exactly two threads. The partitioning of functional units
among threads is thus less dynamic than in the other models.
but each functional unit is still shared (the critical factor in
achieving high utilization). Since the choice of functional
units available to a singie thread is different than in our original
target machine, we recompiled for a 4-issue (one of each type
of functional unit) processor for this model.

Some imponant differences in hardware implementation com-
plexity are summarized in Table 4. Notice that the fine-grain model
may not necessarily represent the cheapest implementation. Many
of these complexity issues are inherited from our wide superscalar
design rather than from multithreading, per se. Even in the SM:full
simultaneous issue model, the inter-instruction dependence check-
ing, the ports per register file, and the forwarding logic scale with
the issue bandwidth and the number of functional units. rather than



Inter-inst Instruction

Register | Dependence | Forwarding | Scheduling
Model Ports Checking Logic onto FUs | Notes
Fine-Grain H H H/L* L Scheduling independent of other threads.
SM:Single Issue L None H H
SM:Dual Issue M L H H
SM:Four Issue M M H H
SM:Limited M M M M No forwarding between FUs of same type;
Connection scheduling is independent of other FUs
SM:Full Simuitane- H H H H Most complex, highest performance
ous Issue

« We have modeled this scheme with all forwarding intact, but forwarding could be elimmnated, requinng more threads for maximum performance

Table 4: A comparison of key hardware complexity features of the various models (H=high complexity). We consider the number of
ports needed for each register file, the dependence checking for a single thread to issue multiple instructions, the amount of forwarding
logic, and the difficulty of scheduling issued instructions onto functional units.

the number of threads. Our choice of ten functional units seems rea-
sonable for an 8-issue processor. Current 4-issue processors have
between 4 and 9 functional units. The number of ports per register
file and the logic to select instructions for issue in the four-issue
and limited connection models are comparable to current four-issue
superscalars: the single-issue and dual-issue are less. The schedul-
ing of instructions onto functional units is more complex on all
types of simultaneous multithreaded processors. The Hirata, et al,
design [16] is closest to the single-issue model, although they sim-
ulate a small number of configurations where the per-thread issue
bandwidth is increased. Others {34, 17, 23, 6] implement models
that are more similar to full simultaneous issue, but the issue width
of the architectures, and thus the complexity of the schemes, vary
considerably.

4.2 The Performance of Simuitaneous Multithreading

Figure 3 shows the performance of the various models as a function
of the number of threads. The segments of each bar indicate the
throughput component contributed by each thread. The bar-graphs
show three interesting points in the multithreaded design space: fine-
grained multithreading (only one thread per cycle, but that thread
can use all issue slots), SM: Single Issue (many threads per cycie,
but each can use oniy one issue slot), and SM: Full Simuitaneous
Issue (many threads per cycle, any thread can potentially use any
issue slot).

The fine-grain multithreaded architecture (Figure 3(a)) provides
a maximum speedup (increase in instruction throughput) of only
2.1 over single-thread execution (from 1.5 IPC to 3.2). The graph
shows that there is little advantage to adding more than four threads
in this model. In fact, with four threads, the vertical waste has
been reduced to less than 3%, which bounds any further gains
beyond that point. This result is similar to previous studies [2, 1, 19,
14, 33, 31) for both coarse-grain and fine-grain multithreading on

single-issue processors, which have concluded that multithreading

is only beneficial for 2 to 5 threads. These limitations do not apply
to simultaneous multithreading, however, because of its ability to
exploit horizontal waste.

Figures 3(b,c,d) show the advantage of the simultaneous multi-
threading models, which achieve maximum speedups over single-
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thread superscalar execution ranging from 3.2 to 4.2, with an issue
rate as high as 6.3 IPC. The speedups are calculated using the fulf
simultaneous issue, 1-thread result to represent the single-thread
superscalar.

With SM, it is not necessary for any single thread to be abie to
utilize the entire resources of the processorin order to get maximum
or near-maximum performance. The four-issue model gets nearly
the performance of the full simuitaneous issue model, and even the
dual-issue model is quite competitive, reaching 94% of full simulta-
neous issue at 8 threads. The limited connection model approaches
full simuitaneous issue more siowly due to its less flexible schedul-
ing. Each of these models becomes increasingly competitive with
full simultaneous issue as the ratio of threads to issue slots increases.

With the results shown in Figure 3(d), we see the possibility of
trading the number of hardware contexts against hardware complex-
ity in other areas. For example, if we wish to execute around four
instructions per cycle, we can build a four-issue or full simultaneous
machine with 3 to 4 hardware contexts, a dual-issue machine with 4
contexts, a limited connection machine with 5 contexts, or a single-
issue machine with 6 contexts. Tera [3] is an extreme example of
trading pipeline complexity for more contexts; it has no forward-
ing in its pipelines and no data caches, but supports 128 hardware
contexts.

The increases in processor utilization are a direct result of threads
dynamically sharing processor resources that would otherwise re-
main idle much of the time; however, sharing also has negative
effects. We see (in Figure 3(c)) the effect of competition for is-
sue slots and functional units in the full simultaneous issue model,
where the lowest priority thread (at 8 threads) runs at 55% of the
speed of the highest priority thread. We can also observe the impact
of sharing other system resources (caches, TLBs, branch predic-
tion table); with full simuitaneous issue, the highest priority thread,
which is fairly immune 1o competition for issue slots and functional
units, degrades significantly as more threads are added (a 35% slow-
down at 8 threads). Competition for non-execution resources, then,
plays nearly as significant a role in this performance region as the
competition for execution resources.

Others have observed that caches are more strained by a multi-
threaded workload than a single-thread workioad. due to a decrease
in locality [21, 33, 1, 31). Our data (not shown) pinpoints the ex-
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Figure 3: Instruction throughput as a function of the number of threads. (a)-(c) show the throughput by thread priority for particular
models, and (d) shows the total throughput for all threads for each of the six machine models. The lowest segment of each bar is the
contribution of the highest priority thread to the total throughput.

act areas where sharing degrades performance. Sharing the caches
is the dominant effect, as the wasted issue cycles (from the per-
spective of the first thread) due to I cache misses grows from 1%
at one thread to 14% at eight threads, while wasted cycles due to
data cache misses grows from 12% to 18%. The data TLB waste
also increases, from less than 1% to 6%. In the next section, we
will investigate the cache problem. For the data TLB, we found
that, with our workload, increasing the shared data TLB from 64 to
96 entries brings the wasted cycles (with 8 threads) down to [ %,
while providing private TLBs of 24 entries reduces it to under 2%,
regardless of the number of threads.

It is not necessary to have extremely large caches to achieve
the speedups shown in this section. Our experiments with signif-
icantly smaller caches (not shown here) reveal that the size of the
caches affects |-thread and 8-thread resuits equally, making the to-
tal speedups relatively constant across a wide range of cache sizes.
That is, while 8-thread execution results in lower hit rates than 1-
thread execution, the relative effect of changing the cache size is the
same for each.

In summary, our results show that simuitaneous muttithreading
surpasses limits on the performance attainable through either single-
thread execution or fine-grain multithreading, when run on a wide

superscalar. We have also seen that simplified impiementations of
SM with limited per-thread capabilities can still attain high instruc-
tion throughput. These improvements come without any significant
tuning of the architecture for multithreaded execution: in fact, we
have found that the instruction throughput of the various SM models
is somewhat hampered by the sharing of the caches and TLBs. The
next section investigates designs that are more resistant to the cache
effects.

5 Cache Design for a Simuitaneous Muliti-
threaded Processor

Our measurements show a performance degradation due to cache
sharing in simultaneous multithreaded processors. In this section,
we explore the cache problem further. Our study focuses on the
organization of the first-level (L1) caches, comparing the use of
private per-thread caches to shared caches for both instructions and
data. (We assume that L2 and L3 caches are shared among all
threads.) All experiments use the 4-issue model with up to 8 threads.

The caches are specified as [total [ cache size in KB][private or
shared].[D cache size][private or shared] in Figure 4. For instance.
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64p.64s has eight private 8 KB | caches and a shared 64 KB data
cache. Not all of the private caches will be utilized when fewer than
eight threads are running.

Figure 4 exposes several interesting properties for multithreaded
caches. We sce that shared caches optimize for a small number of
threads (where the few threads can use all available cache), while
private caches perform better with a large number of threads. For
example, the 64s.64s cache ranks first among ail models at | thread
and last at 8 threads, while the 64p.64p cache gives nearly the
opposite result. However, the tradeoffs are not the same for both
instructions and data. A shared data cache outperforms a private
data cache over all numbers of threads (e.g., compare 64p.64s with
64p.64p), while instruction caches benefit from private cachesat 8
threads. One reason for this is the differing access patterns between
instructions and data. Private [ caches eliminate conflicts between
different threads in the I cache, while a shared D cache allows
a single thread to issue multiple memory instructions to different

banks.

64s.64s

64p.64s

Throughput (IPC) Relative to 64s.64p
=
1

e
©
1

T T T T T I I T
1 2 3 4 5 6 7 8
Number of Threads

Figure 4: Resuits for the simulated cache configurations, shown
relative to the throughput (instructions per cycle) of the 64s.64p
cache results.

There are two configurations that appear to be good choices.
Because there is little performance difference at 8 threads, the cost
of optimizing for a small number of threads is small, making 64s.64s
an attractive option. However, if we expect to typically operate with
all or most thread slots full, the 64p.64s gives the best performance
in that region and is never worse than the second best performer with
fewer threads. The shared data cache in this scheme allows it to
take advantage of more flexible cache partitioning, while the private,
instruction caches make each thread less sensitive to the presence of
other threads. Shared data caches also have a significant advantage
in a data-sharing environment by allowing sharing at the lowest level
of the data cache hierarchy without any special hardware for cache
coherence.

6 Simultaneous Multithreading versus Single-
Chip Multiprocessing

As chip densities continue to rise, single-chip multiprocessors will
provide an obvious means of achieving parallelism with the available

. real estate. This section compares the performance of simultaneous
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multithreading to smali-scale, single-chip multiprocessing (MP). On
the organizational level, the two approaches are extremely similar:
both have muitiple register sets, multiple functional units, and high
issue bandwidth on a single chip. The key difference is in the way
those resources are partitioned and scheduled: the muitiprocessor
statically partitions resources, devoting a fixed number of functional
units to each thread; the SM processor aliows the partitioning to
change every cycle. Clearly, scheduling is more complex for an
SM processor; however, we will show that in other areas the SM
model requires fewer resources, relative to multiprocessing, in order
to achieve a desired level of performance.

For these experiments, we tried to choose SM and MP configu-
rations that are reasonably equivalent, although in several cases we
biased in favor of the MP. For most of the comparisons we keep all
or most of the following equal: the number of register sets (i.e, the
number of threads for SM and the number of processors for MP), the
total issue bandwidth, and the specific functional unit configuration.
A consequence of the last item is that the functional unit configu-
ration is often optimized for the multiprocessor and represents an
inefficient configuration for simultaneous multithreading. All ex-
periments use 8 KB private instruction and data caches (per thread
for SM, per processor for MP), a 256 KB 4-way set-associative
shared second-level cache, and a 2 MB direct-mapped third-level
cache. We want to keep the caches constant in our comparisons,
and this (private I and D caches) is the most natural configuration
for the multiprocessor.

We evaluate MPs with 1, 2, and 4 issues per cycle on each pro-
cessor. We evaluate SM processors with 4 and 8 issues per cycle;
however we use the SM:Four Issue model (defined in Section 4.1)
for all of our SM measurements (i.e., each thread is limited to four
issues per cycle). Using this model minimizes some of the inherent
complexity differences between the SM and MP architectures. For
example, an SM:Four Issue processor is similar to a single-threaded
processor with 4 issues per cycle in terms of both the number of
ports on each register file and the amount of inter-instruction de-
pendence checking. In each experiment we run the same version
of the benchmarks for both configurations (compiled for a 4-issue,
4 functional unit processor, which most closely matches the MP
configuration) on both the MP and SM models; this typically favors
the MP.

We must note that, while in general we have tried to bias the
tests in favor of the MP, the SM results may be optimistic in two
respects—the amount of time required to schedule instructions onto
functional units, and the shared cache access time. The impact of the
former, discussed in Section 2.1, is smail. The distance between the
load/store units and the data cache can have a large impact on cache
access time. The multiprocessor, with private caches and private
load/store units, can minimize the distances between them. Our
SM processor cannot do 50, even with private caches, because the
load/store units are shared. However, two alternate configurations
couid eliminate this difference. Having eight load/store units (one
private unit per thread, associated with a private cache) would still
allow us to match MP performance with fewer than half the total
number of MP functional units (32 vs. 15). Or with 4 load/store
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Figure 5: Resulits for the various multiprocessor vs. simultaneous muitithreading comparisons. The multiprocessor always has one
functional unit of each type per processor. In most cases the SM processor has the same total number of each FU type as the MP.

units and 8 threads, we could statically share a single cache/load-
store combination among each set of 2 threads. Threads 0 and
! might share one load/store unit, and all accesses through that
load/store unit would go to the same cache, thus allowing us to
minimize the distance between cache and load/store unit, while still
allowing resource sharing.

Figure 5 shows the results of our SM/MP comparison for various
configurations. Tests A, B, and C compare the performance of the
two schemes with an essentially unlimited number of functional
units (FUs); i.e., there is a functional unit of each type available to
every issue siot. The number of register sets and total issue band-
width are constant for each experiment, e.g., in Test C, a 4 thread,
8-issue SM and a 4-processor, 2-issue-per-processor MP both have
4 register sets and issue up to 8 instructions per cycle. In these mod-
els, the ratio of functional units (and threads) to issue bandwidth is
high, so both configurations should be able to utilize most of their
issue bandwidth. Simuitaneous muitithreading, however, does so
more effectively.

Test D repeats test A but limits the SM processor to a more
reasonable configuration (the same 10 functional unit configura-
tion used throughout this paper). This configuration outperforms
the multiprocessor by nearly as much as test A, even though the
SM configuration has 22 fewer functional units and requires fewer
forwarding connections.

In tests E and F, the MP is allowed a much larger total issue
bandwidth. In test E, each MP processor can issue 4 instructions
per cycle for a total issue bandwidth of 32 across the 8 processors;
each SM thread can also issue 4 instructions per cycle, but the 8
threads share only 8 issue slots. The results are simifar despite
the disparity in issue slots. In test F, the 4-thread. 8-issue SM
slightly outperforms a 4-processor, 4-issue per processor MP, which
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has twice the total issue bandwidth. Simultaneous muitithreading
performs well in these tests, despite its handicap, because the MP is
constrained with respect to which 4 instructions a single processor
canissue in a single cycle.

Test G shows the greater ability of SM to utilize a fixed number
of functional units. Here both SM and MP have 8 functional units
and 8 issues per cycle. However, while the SM is allowed to have
8 contexts (8 register sets), the MP is limited to two processors (2
register sets), because each processor must have at least | of eachof
the 4 functional unit types. Simultaneous multithreading'’s ability to
drive up the utilization of a fixed number of functional units through
the addition of thread contexts achieves more than 2% times the
throughput.

These comparisons show that simuitaneous multithreading out-
performs single-chip muitiprocessing in a variety of configurations
because of the dynamic partitioning of functional units. More im-
portant. SM requires many fewer resources (functional units and
instruction issue slots) to achieve a given performance level. For
example, a single 8-thread, 8-issue SM processor with 10 functional
units is 24% faster than the 8-processor, single-issue MP (Test D),
which has identical issue bandwidth but requires 32 functional units;
10 equal the throughput of that 8-thread 8-issue SM, an MP system
requires eight 4-issue processors (Test E), which consume 32 func-
tional units and 32 issue slots per cycle.

Finally, there are further advantages of SM over MP that are not
shown by the experiments:

o Performance with few threads — These results show only the
performance at maximum utilization. The advantage of SM
(over MP) is greater as some of the contexts (processors) be-
come unutilized. An idle processor leaves 1/p of an MP idle,



while with SM, the other threads can expand to use the avail-
able resources. This is imponant when (1) we run parallei code
where the degree of parallelism varies over tme, (2) the pertor-
mance of a small number of threads is important in the largel
environment, or (3) the workload is sized for the exact size of
the machine (e.g., 8 threads). In the last case, a processor and
all of its resources is lost when a thread experiences a latency

orders of magnitude larger than what we have simulated (e.g..
10).

¢ Granulanty and flexibility of design — Our configuration op-
tions are much richer with SM, because the units of design
have finer granularity. That is, with a multiprocessor, we
would typically add computing in units of entire processors.
With simultaneous multithreading, we can benefit from the ad-
dition of a single resource, such as a functional unit, a register
context, or an instruction issue siot; furthermore, all threads
would be able to share in using that resource. Our comparisons
did not take advantage of this fiexibility. Processor designers,
taking full advantage of the configurability of simultaneous
multithreading, should be able to construct configurations that
even further out-distance muitiprocessing.

For these reasons, as well as the performance and complexity
results shown, we believe that when component densities permit
us to put multiple hardware contexts and wide issue bandwidth
on a single chip, simultaneous multithreading represents the most
efficient organization of those resources.

7 Related Work

We have built on work from a large number of sources in this
paper. In this section, we note previous work on instruction-level
parallelism, on several traditional (coarse-grain and fine-grain) mul-
tithreaded architectures, and on two architectures (the M-Machine
and the Multiscalar architecture) that have multiple contexts active
simultaneously, but do not have simultaneous multithreading. We
also discuss previous studies of architectures that exhibit simulta-
neous multithreading and contrast our work with these in particular.

The data presented in Section 3 provides a different perspective
from previous studies on ILP, which remove barriers to parallelism
(i.e. apply real or ideal latency-hiding techniques) and measure
the resulting performance. Smith, er al., [28] focus on the effects
of fetch, decoding, dependence-checking, and branch prediction
limitations on ILP; Butler, et al., [5} examine these limitations plus
scheduling window size, scheduling policy, and functional unit con-
figuration; Lam and Wilson { 18] focus on the interaction of branches
and ILP; and Wall [32] examines scheduling window size, branch
prediction, register renaming, and aliasing.

Previous work on coarse-grain {2, 27, 31} and fine-grain [28, 3,
15, 22, 19] multithreading provides the foundation for our work on
simultaneous multithreading, but none features simultaneous issu-
ing of instructions from different threads during the same cycle. In
fact, most of these architectures are single-issue, rather than super-
scalar, although Tera has LIW (3-wide) instructions. In Section 4,
we extended these results by showing how fine-grain multithreading
runs on a multiple-issue processor.

In the M-Machine {7] each processor cluster schedules LIW in-
structions onto execution units on a cycle-by-cycle basis similar to
the Tera scheme. There is no simultanecus issue of instructions

from muttiple threads to functional units in the same cycle on indi-
vidual clusters. Franklin’s Multiscalar architecture {13, 12] assigns
fine-grain threads to processors, so competition for execution re-
sources (processors in this case) is at the level of a task rather than

- an individual instruction.
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Hirata, et al., [16} present an architecture for a multithreaded

superscalar processor and simulate its performance on a parallel

ray-tracing application. They do not simulate caches or TLBs, and
their architecture has no branch prediction mechanism. They show
speedups as high as 5.8 over a single-threaded architecture when
using 8 threads. Yamamoto, et al., [34) present an analytical model
of multithreaded superscalar performance, backed up by simulation.
Their study models perfect branching, perfect caches and a homo-
geneous workload (all threads running the same trace). They report
increases in instruction throughput of 1.3 to 3 with four threads.

Keckier and Dally {17] and Prasadh and Wu {23] describe archi-
tectures that dynamically interieave operations from VLIW instruc-
tions onto individual functional units. Keckier and Dally report
speedups as high as 3.12 for some highly parallel applications.
Prasadh and Wu also examine the register file bandwidth require-
ments for 4 threads scheduled in this manner. They use infinite
caches and show a maximum speedup above 3 over single-thread
execution for parallel applications.

Daddis and Tomg [6] plot increases in instruction throughput
as a function of the fetch bandwidth and the size of the dispatch
stack. The dispatch stack is the global instruction window that issues
all fetched instructions. Their system has two threads, unlimited
functional units, and unlimited issue bandwidth (but limited fetch
bandwidth). They report a near doubling of throughput.

In contrast to these studies of multithreaded, superscalararchitec-
tures, we use a heterogeneous, multiprogrammed workload based
on the SPEC benchmarks; we model all sources of latency (cache,
memory, TLB, branching, real instruction latencies) in detail. We
also extend the previous work in evaluating a variety of models of
SM execution. We look more closely at the reasons for the result-
ing performance and address the shared cache issue specifically.
We go beyond comparisons with single-thread processors and com-
pare simultaneous multithreading with other relevant architectures:
fine-grain, superscalar multithreaded architectures and single-chip
multiprocessors.

8 Summary

This paper examined simuitaneous multithreading, a technique that
allows independent threads to issue instructions to multiple func-
tional units in a single cycle. Simultaneous multithreading combines
facilities available in both superscalar and multithreaded architec-
tures. We have presented several models of simultaneous mul-
tithreading and compared them with wide superscalar, fine-grain
multithreaded, and single-chip, multiple-issue multiprocessing ar-
chitectures. Our evaluation used execution-driven simulation based
on a model extended from the DEC Alpha 21164, running a multi-
programmed workload composed of SPEC benchmarks, compiled
for our architecture with the Multifiow trace scheduling compiler.

Our results show the benefits of simultaneous multithreading
when compared to the other architectures, namely:

1. Given our model, a simultancous multithreaded architec-
ture, properly configured, can achieve 4 times the instruction



throughput of a single-threaded wide superscalar with the same
issue width (8 instructions per cycle, in our experiments).

2. While fine-grain multithreading (i.e., switching to a new thread
every cycle) helps close the gap, the simultaneous multithread-
ing architecture still outperforms fine-grain multithreading by
a factor of 2. This is due to the inability of fine-grain muliti-
threading to utilize issue slots lost due to horizontal waste.

3. A simultaneous multithreaded architecture is superior in per-
formance to a multiple-issue multiprocessor, given the same
total number of register sets and functional units. Moreover,
achieving a specific performance goal requires fewer hardware
execution resources with simultaneous multithreading.

The advantage of simultaneous multithreading, compared to the
other approaches, is its ability to boost utilization by dynamically
scheduling functional units among multiple threads. SM also in-
creases hardware design flexibility; a simuitaneous multithreaded
architecture can tradeoff functional units, register sets, and issue
bandwidth to achieve better performance, and can add resources in
a fine-grained manner.

Simultaneous muitithreading increases the complexity of instruc-
tion scheduling relative to superscalars, and causes shared resource
contention, particularly in the memory subsystem. However, we
have shown how simplified models of simultaneous muitithreading
reach nearly the performance of the most general SM model with
complexity in key areas commensurate with that of current super-
scalars; we also show how properly tuning the cache organization
can both increase performance and make individual threads less
sensitive to multi-thread contention.
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