
RETROSPECTIVE: 

Simultaneous Multithreading: Maximizing On-Chip Parallelism 

Dean M. Tullsen, Susan J Eggers, and Henry M. Levy 

Department of Computer Science and Engineering 
University of Washington 

{eggers,levy}@cs.washington.edu 
tullsen@ucsd.edu 

T his paper was published in 1995 and so it 
seems early to do a retrospective; in fact, research 
in simultaneous multithreading (SMT) is still 
ongoing. The original project began in early 1994. 
We were beginning to see commercial micropro- 
cessors that could issue many instructions per 
cycle (wide superscalars), but which rarely did so 
due to dependencies and long memory latencies. 
In fact, processor utilization seemed to be declin- 
ing as fast as instruction issue width was increas- 
ing. 

We actually began by looking at targeted solu- 
tions to the low processor utilization problem, such 
as improved branch prediction, but quickly real- 
ized that no single such mechanism was likely to 
solve the overall problem we faced. The graph in 
the paper attributing the many causes of lost cycles 
was one key to our intuition, and made us realize 
that we needed a more global, latency-tolerant 
solution. This led us to the basic idea of using a 
much finer-grained multithreading than had been 
previously attempted as a general way to tolerate 
all forms of lost utilization. The idea was surely 
influenced by previous designs such as the Tera, 
MIT Alewife, and M-machine projects, and by 
Radhika Thekkath’s UW thesis. Several other 
projects had also looked at various forms of multi- 
thread, superscalar issue. However, as we exam- 
ined them, each of these studies seemed to be lim- 
ited in some way by the constraints of a particular 
hardware architecture in which it was embedded. 
None of the previous projects, to our mind, had 
really explored or analyzed the total potential of 
the fully-general concept we were considering, nor 
had they described it in the way we were thinking 
about it. We chose the name “simultaneous multi- 
threading” to give this general concept a new label. 

The more we thought about it, though, the 
more we realized that simultaneous multithread- 

ing (SMT) was significantly different from the tra- 
ditional (context-switching) multithreading 
designs. In particular, there was something aes- 
thetically pleasing about the concept of sharing all 
processor resources every cycle: basically, just 
throw all the threads in the machine, and let it 
make the best dynamic decision about what 
instructions to send to what functional ,units at 
every instant. The result of this was effectively to 
use thread-level parallelism to make up for a lack 
of instruction-level parallelism in individual pro- 
grams. This is a somewhat different goal than that 
addressed by previous multithreaded designs. If 
you have one or a few threads with moderate ILP 
each, that’s fine; many threads with a little ILP 
each, that’s fine; multiprogramming, that’s fine. 
The figure that appears in the paper, showing the 
effect of “horizontal waste” and “vertical waste,” 
was also a useful tool for us in understanding and 
explaining why SMT was likely to work better 
than the alternative schemes (superscalar and tra- 
ditional multithreading, and later single-chip mul- 
tiprocessors). 

There were a few major goals of the work from 
the start, both arising from our desire to target 
mainstream processor designs. First, we were very 
aware that poor single-thread performance would 
not be acceptable in this market (as opposed to the 
types of uses the Tera is targeting, for example); 
therefore, it was crucial that single-thread perfor- 
mance not be harmed by the addition of SMT. Sec- 
ond, we wanted SMT to be easily implementable 
on state-of-the-art microprocessors. The “state-of- 
the-art” that eventually facilitated meeting this 
goal was dynamic instruction issue (i.e., out-of- 
order processors); in fact, we were a little ahead of 
this at the time, which caused many people to 
doubt that SMT was achievable. Following this 
paper, we were lucky to work with colleagues Joel 

115 



Emer and Rebecca Stamm from Digital’s Alpha 
group, who greatly contributed to the microarchi- 
tecture design and helped us to show how SMT 
required only limited changes to an out-of-order 
processor; we also discovered how SMT perfor- 
mance could be improved significantly by fetching 
from the “right” threads, i.e., those making best 
use of the processor. By the time our second paper 
was published at the following ISCA (1996), many 
people saw the appearance of out-of-order 
machines and realized that once you have dynamic 
instruction issue, you’ve already provided most of 
the complexity with respect to the instruction issue 
mechanism required by SMT. It was quite interest- 
ing (and exciting) in retrospect to see a major 
change in response to the idea of SMT that 
occurred over the period of less than one year. 

Acknowledgments 

We would like to thank Digital Equipment 
Corporation and Equator Technologies Inc. for 

access to the Multiflow compiler. This work was 
supported by the National Science Foundation 
Grant No. MIP-9632977. 

About the authors 

Susan Eggers is Associate Professor of Com- 
puter Science and Engineering at University of 
Washington. Her research includes computer sys- 
tems architecture, machine-dependent compiler 
optimizations, and dynamic compilation tech- 
niques. 

Henry Levy is Professor of Computer Science 
and Engineering at the University of Washington. 
His research focuses on operating system design, 
computer architecture, and their interaction. 

Dean Tullsen finished his PhD at University of 
Washington on the topic of Simultaneous Multi- 
threading. He is currently Assistant Professor of 
Computer Science at University of California, San 
Diego, where he works on architecture and simul- 
taneous multithreading. 

116 


