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ABSTRACT
Technological progress in integrated, low-power, CMOS com-
munication devices and sensors makes a rich design space of
networked sensors viable. They can be deeply embedded
in the physical world and spread throughout our environ-
ment like smart dust. The missing elements are an overall
system architecture and a methodology for systematic ad-
vance. To this end, we identify key requirements, develop a
small device that is representative of the class, design a tiny
event-driven operating system, and show that it provides
support for efficient modularity and concurrency-intensive
operation. Our operating system fits in 178 bytes of mem-
ory, propagates events in the time it takes to copy 1.25 bytes
of memory, context switches in the time it takes to copy 6
bytes of memory and supports two level scheduling. The
analysis lays a groundwork for future architectural advances.

1. INTRODUCTION
As the post-PC era emerges, several new niches of com-

puter system design are taking shape with characteristics
that are quite different from traditional desktop and server
regimes. Many new regimes have been enabled, in part, by
“Moore’s Law” pushing a given level of functionality into
a smaller, cheaper, lower-power unit. In addition, three
other trends are equally important: complete systems on a
chip, integrated low-power communication, and integrated
low-power transducers. All four of these trends are working
together to enable the networked sensor. The basic micro-
controller building block now includes not just memory and
processing, but non-volatile memory and interface resources,
such as DACs, ADCs, UARTs, interrupt controllers, and
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counters. Communication can now take the form of wired,
short-range RF, infrared, optical, and various other tech-
niques [18]. Sensors now interact with various fields and
forces to detect light, heat, position, movement, chemical
presence, and so on. In each of these areas, the technology
is crossing a critical threshold that makes networked sensors
an exciting regime to apply systematic design methods.

Today, networked sensors can be constructed using com-
mercial components on the scale of a square inch in size
and a fraction of a watt in power. They use one or more
microcontrollers connected to various sensor devices and to
small transceiver chips. One such sensor is described in this
study. Many researchers envision driving the networked sen-
sor down to microscopic scale by taking advantage of ad-
vances in semiconductor processes. This includes having
communication integrated on-chip with a rich set of micro-
electromechanical (MEMS) sensors and CMOS logic at ex-
tremely low cost [37, 5]. They envision that this smart
dust will be integrated into the physical environment, per-
haps even powered by ambient energy [31], and used in many
smart space scenarios. Alternatively, others envision ramp-
ing up the functionality associated with one-inch devices
dramatically. In either scenario, it is essential that the net-
work sensor design regime be subjected to the same rigorous,
workload-driven, quantitative analysis that allowed micro-
processor performance to advance so significantly over the
past 15 years. It should not be surprising that the unique
characteristics of this regime give rise to very different design
trade-offs than current general-purpose systems.

This paper provides an initial exploration of system archi-
tectures for networked sensors. The investigation is ground-
ed in a prototype “current generation” device constructed
from off-the-shelf components. Other research projects [37,
5] are trying to compress this class of devices onto a sin-
gle chip. The key missing technology is the system soft-
ware support to manage and operate the device. To ad-
dress this problem, we have developed a tiny microthreaded
OS, called TinyOS. It draws on previous architectural work
on lightweight thread support and efficient network inter-
faces. While working in this design regime two issues emerge
strongly: these devices are concurrency intensive - several
different flows of data must be kept moving simultaneously;
and the system must provide efficient modularity - hardware
specific and application specific components must snap to-
gether with little processing and storage overhead. We ad-
dress these two problems with our tiny microthreaded OS.
Analysis of this solution provides valuable initial directions
for future architectural innovation.
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Section 2 outlines the design requirements that character-
ize the networked sensor regime and guide our microthread-
ing approach. Section 3 describes our baseline, current-
technology hardware design. Section 4 develops our TinyOS
for devices of this general class. Section 5 evaluates the ef-
fectiveness of the design against a collection of preliminary
benchmarks. Section 6 contrasts our approach with that of
prevailing embedded operating systems. Finally, Section 7
draws together the study and considers its implications for
architectural directions.

2. NETWORKED SENSOR CHARACTER-
ISTICS

This section outlines the requirements that shape the de-
sign of network sensor systems; these observations are made
more concrete by later sections.

Small physical size and low power consumption: At any
point in technological evolution, size and power constrain
the processing, storage, and interconnect capability of the
basic device. Obviously, reducing the size and power re-
quired for a given capability are driving factors in the hard-
ware design. Likewise, the software must make efficient use
of processor and memory while enabling low power commu-
nication.

Concurrency-intensive operation: The primary mode of
operation for these devices is to flow information from place
to place with a modest amount of processing on-the-fly,
rather than to accept a command, stop, think, and respond.
For example, information may be simultaneously captured
from sensors, manipulated, and streamed onto a network.
Alternatively, data may be received from other nodes and
forwarded in multi-hop routing or bridging situations. There
is little internal storage capacity, so buffering large amounts
of data between the inbound and the outbound flows is
unattractive. Moreover, each of the flows generally involve
a large number of low-level events interleaved with higher-
level processing. Some of the high-level processing will ex-
tend over multiple real-time events.

Limited Physical Parallelism and Controller Hierarchy:
The number of independent controllers, the capabilities of
the controllers, and the sophistication of the processor-mem-
ory-switch level interconnect are much lower than in conven-
tional systems. Typically, the sensor or actuator provides a
primitive interface directly to a single-chip microcontroller.
In contrast, conventional systems distribute the concurrent
processing associated with the collection of devices over mul-
tiple levels of controllers interconnected by an elaborate bus
structure. Space and power constraints and limited physical
configurability on-chip are likely to drive the need to sup-
port concurrency-intensive management of flows through the
embedded microprocessor.

Diversity in Design and Usage: Networked sensor devices
will tend to be application specific, rather than general pur-
pose, and carry only the available hardware support actu-
ally needed for the application. As there is a wide range
of potential applications, the variation in physical devices is
likely to be large. On any particular device, it is important
to easily assemble just the software components required to
synthesize the application from the hardware components.
Thus, these devices require an unusual degree of software
modularity that must also be very efficient. A generic de-
velopment environment is needed which allows specialized

applications to be constructed from a spectrum of devices
without heavyweight interfaces. Moreover, it should be nat-
ural to migrate components across the hardware/software
boundary as technology evolves.

Robust Operation: These devices will be numerous, largely
unattended, and expected to form an application which will
be operational a large percentage of the time. The ap-
plication of traditional redundancy techniques to enhance
the reliability of individual units is limited by space and
power. Although redundancy across devices is more attrac-
tive than within devices, the communication cost for cross
device failover is prohibitive. Thus enhancing the reliabil-
ity of individual devices is essential. Additionally, we can
increase the reliability of the application by tolerating indi-
vidual device failures. To that end, the operating system
running on a single node should not only be robust, but
also should facilitate the development of reliable distributed
applications.

3. EXAMPLE DESIGN POINT
To ground our system design study, we have developed a

small, flexible networked sensor platform that has many of
the key characteristics of the general class and utilizes the
various internal interfaces using currently available compo-
nents [33]. A photograph and schematic for the hardware
configuration of this device appear in Figure 1. It consists
of a microcontroller with internal flash program memory,
data SRAM and data EEPROM, connected to a set of actu-
ator and sensor devices, including LEDs, a low-power radio
transceiver, an analog photo-sensor, a digital temperature
sensor, a serial port, and a small coprocessor unit. While
not a breakthrough in its own right, this prototype has been
invaluable in developing a feel for the salient issues in this
design regime.

3.1 Hardware Organization
The processor within the MCU (ATMEL 90LS8535) [2],

which conventionally receives so much attention, is not par-
ticularly noteworthy. It is an 8-bit Harvard architecture
with 16-bit addresses. It provides 32 8-bit general registers
and runs at 4 MHz and 3.0 V. The system is very memory
constrained: it has 8 KB of flash as the program memory,
and 512 bytes of SRAM as the data memory. The MCU
is designed such that the processor cannot write to instruc-
tion memory; our prototype uses a coprocessor to perform
that function. Additionally, the processor integrates a set of
timers and counters which can be configured to generate in-
terrupts at regular time intervals. More noteworthy are the
three sleep modes: idle, which just shuts off the processor,
power down, which shuts off everything but the watchdog
and asynchronous interrupt logic necessary for wake up, and
power save, which is similar to the power down mode, but
leaves an asynchronous timer running.

Three LEDs represent outputs connected through general
I/O ports; they may be used to display digital values or
status. The photo-sensor represents an analog input de-
vice with simple control lines. In this case, the control lines
eliminate power drain through the photo resistor when not
in use. The input signal can be directed to an internal ADC
in continuous or sampled modes.

The radio is the most important component. It repre-
sents an asynchronous input/output device with hard real
time constraints. It consists of an RF Monolithics 916.50



MHz transceiver (TR1000) [10], antenna, and collection of
discrete components to configure the physical layer charac-
teristics such as signal strength and sensitivity. It operates
in an ON-OFF key mode at speeds up to 19.2 Kbps. Control
signals configure the radio to operate in either transmit, re-
ceive, or power-off mode. The radio contains no buffering so
each bit must be serviced by the controller on time. Addi-
tionally, the transmitted value is not latched by the radio, so
jitter at the radio input is propagated into the transmission
signal.

The temperature sensor (Analog Devices AD7418) repre-
sents a large class of digital sensors which have internal A/D
converters and interface over a standard chip-to-chip proto-
col. In this case, the synchronous, two-wire I2C [39] protocol
is used with software on the microcontroller synthesizing the
I2C master over general I/O pins. In general, up to eight
different I2C devices can be attached to this serial bus, each
with a unique ID. The protocol is rather different from con-
ventional bus protocols, as there is no explicit arbiter. Bus
negotiations must be carried out by software on the micro-
controller.

The serial port represents an important asynchronous bit-
level device with byte-level controller support. It uses I/O
pins that are connected to an internal UART controller. In
transmit mode, the UART takes a byte of data and shifts
it out serially at a specified interval. In receive mode, it
samples the input pin for a transition and shifts in bits at a
specified interval from the edge. Interrupts are triggered in
the processor to signal completion events.

The coprocessor represents a synchronous bit-level device
with byte-level support. In this case, it is a very limited
MCU (AT90LS2343 [2], with 2 KB flash instruction mem-
ory, 128 bytes of SRAM and EEPROM) that uses I/O pins
connected to an SPI controller. SPI is a synchronous serial
data link, providing high speed full-duplex connections (up
to 1 Mbit) between various peripherals. The coprocessor is
connected in a way that allows it to reprogram the main
microcontroller. The sensor can be reprogrammed by trans-
ferring data from the network into the coprocessor’s 256 KB
EEPROM (24LC256). Alternatively the main processor can
use the coprocessor as a gateway to extra storage.

Future extensions to the design follow two paths: making
the design more modular and systematic and adding self-
monitoring capabilities. In order to make it more modular, a
daughterboard connector will be defined; it will expose sev-
eral chip-to-chip busses like I2C and SPI, as well as analog
sensor interfaces and power. The self-monitoring capabili-
ties will include sensors for battery strength and radio signal
strength, and an actuator for controlling radio transmission
strength.

3.2 Power Characteristics
Table 1 shows the current drawn by each hardware com-

ponent under three scenarios: peak load when active, load
in “idle” mode, and inactive. When active, the power con-
sumption of the LED and radio reception are about equal
to the processor. The processor, radio, and sensors running
at peak load consume 19.5 mA at 3 volts, or about 60 mW.
(If all the LEDs are on, this increases to 100 mW.) This
figure should be contrasted with the 10 µA current draw in
the inactive mode. Clearly, the biggest savings are obtained
by making unused components inactive whenever possible.
The system must embrace the philosophy of getting the work

Component Active Idle Inactive
(mA) (mA) (µA)

MCU core (AT90S8535) 5 2 1
MCU pins 1.5 - -
LED 4.6 each - -
Photocell .3 - -
Radio (RFM TR1000) 12 tx - 5
Radio (RFM TR1000) 4.5 rx - 5
Temp (AD7416) 1 0.6 1.5
Co-proc (AT90LS2343) 2.4 .5 1
EEPROM (24LC256) 3 - 1

Table 1: Current per hardware component of base-
line networked sensor platform. Our prototype is
powered by an Energizer CR2450 lithium battery
rated at 575 mAh. At peak load, the system con-
sumes 19.5 mA of current, or can run about 30 hours
on a single battery. In the idle mode, the system
can run for 200 hours. When switched into inactive
mode, the system draws only 10 µA of current, and
a single battery can run for over a year.

done as quickly as possible and going to sleep.
The minimum pulse width for the RFM radio is 52 µs.

Thus, it takes on the order of 1 µJ of energy to transmit a
single bit1 and on the order of 0.5 µJ of energy to receive a
bit. During this time, the processor can execute 208 cycles
(roughly 100 instructions) and can consume up to .8 µJ.
A fraction of this instruction count is devoted to bit level
processing. The remainder can go to higher level processing
(byte-level, packet level, application level) amortized over
several bit times. Unused time can be spent in idle or power-
down mode.

To broaden the coverage of our study, we deploy these
networked sensors in two configurations. One is a mobile
sensor that picks up temperature and light readings and
periodically presents them on the wireless network as tagged
data objects. It needs to conserve its limited energy. The
second is a stationary sensor that bridges the radio network
through the serial link to a host on the Internet. It has
power supplied by its host, but also has more demanding
data flows.

4. TINY MICROTHREADING OPERATING
SYSTEM (TinyOS)

The core challenge we face is to meet the requirements
for networked sensors put forth in Section 2 upon the class
of platforms represented by the design in Section 3 in man-
ner that scales forward to future technology. Small phys-
ical size, modest active power load and tiny inactive load
are provided by the hardware design. An operating system
framework is needed that will retain these characteristics by
managing the hardware capabilities effectively, while sup-
porting concurrency-intensive operation in a manner that
achieves efficient modularity and robustness.

For reasons described in Section 6, existing embedded de-
vice operating systems do not meet this challenge. Also, we

1Transmitting a one costs 1.9 µJ and transmitting a zero is
free. The transmitter requires DC balance (an equal number
of ones and zeros), so the precise energy cost per bit is very
dependent on the encoding.
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desire a clean open platform to explore alternatives. The
problem we must tackle is strikingly similar to that of build-
ing efficient network interfaces, which also must maintain a
large number of concurrent flows and juggle numerous out-
standing events [20]. This has been tackled through physical
parallelism [21] and virtual machines [27]. We tackle it by
building an extremely efficient multithreading engine. As in
TAM [22] and CILK [23] it maintains a two-level scheduling
structure, so a small amount of processing associated with
hardware events can be performed immediately while long
running tasks are interrupted. The execution model is sim-
ilar to FSM models, but considerably more programmable.

Our system is designed to scale with the current tech-
nology trends supporting both smaller, tightly integrated
designs as well as the crossover of software components into
hardware. This is in contrast to traditional notions of scala-
bility that are centered on scaling up total power/resources/
work for a given computing paradigm. It is essential that
network sensor architectures plan for the eventual integra-
tion of sensors, processing and communication. The days of
sensor packs being dominated by interconnect and support
hardware, as opposed to physical sensors, are numbered.

In TinyOS, we have chosen an event model so that high
levels of concurrency can be handled in a very small amount
of space. A stack-based threaded approach would require
that stack space be reserved for each execution context. Ad-
ditionally, it would need to be able to multi-task between
these execution contexts at a rate of 40,000 switches per sec-
ond, or twice every 50 µs - once to service the radio and once
to perform all other work. It is clear that an event-based
regime lends itself to these requirements. It is not surpris-
ing that researchers in the area of high performance com-
puting have seen this same phenomena – that event based
programming must be used to achieve high performance in
concurrency intensive applications [28, 42].

In this design space, power is the most precious resource.
We believe that the event-based approach creates a system
that uses CPU resources efficiently. The collection of tasks
associated with an event are handled rapidly, and no block-
ing or polling is permitted. Unused CPU cycles are spent
in the sleep state as opposed to actively looking for an in-
teresting event. Additionally, with real-time constraints the
calculation of CPU utilization becomes simple – allowing for
algorithms that adjust processor speed and voltage accord-
ingly [36, 44].

4.1 TinyOS Design
A complete system configuration consists of a tiny sched-

uler and a graph of components. A component has four
interrelated parts: a set of command handlers, a set of event
handlers, an encapsulated fixed-size frame, and a bundle of
simple tasks. Tasks, commands, and handlers execute in the
context of the frame and operate on its state. To facilitate
modularity, each component also declares the commands it
uses and the events it signals. These declarations are used to
compose the modular components in a per-application con-
figuration. The composition process creates layers of com-
ponents where higher level components issue commands to
lower level components and lower level components signal
events to the higher level components. Physical hardware
represents the lowest level of components.

The fixed size frames are statically allocated which al-
lows us to know the memory requirements of a component

at compile time. Additionally, it prevents the overhead as-
sociated with dynamic allocation. This savings manifests
itself in many ways, including execution time savings be-
cause variable locations can be statically compiled into the
program instead of accessing state via pointers.

Commands are non-blocking requests made to lower level
components. Typically, a command will deposit request pa-
rameters into its frame and conditionally post a task for
later execution. It may also invoke lower commands, but it
must not wait for long or indeterminate latency actions to
take place. A command must provide feedback to its caller
by returning status indicating whether it was successful or
not, e.g., buffer overrun.

Event handlers are invoked to deal with hardware events,
either directly or indirectly. The lowest level components
have handlers connected directly to hardware interrupts,
which may be external interrupts, timer events, or counter
events. An event handler can deposit information into its
frame, post tasks, signal higher level events or call lower
level commands. A hardware event triggers a fountain of
processing that goes upward through events and can bend
downward through commands. In order to avoid cycles in
the command/event chain, commands cannot signal events.
Both commands and events are intended to perform a small,
fixed amount of work, which occurs within the context of
their component’s state.

Tasks perform the primary work. They are atomic with
respect to other tasks and run to completion, though they
can be preempted by events. Tasks can call lower level com-
mands, signal higher level events, and schedule other tasks
within a component. The run-to-completion semantics of
tasks make it possible to allocate a single stack that is as-
signed to the currently executing task. This is essential
in memory constrained systems. Tasks allow us to simu-
late concurrency within each component, since they execute
asynchronously with respect to events. However, tasks must
never block or spin wait or they will prevent progress in other
components. While events and commands approximate in-
stantaneous state transitions, task bundles provide a way
to incorporate arbitrary computation into the event driven
model.

The task scheduler is currently a simple FIFO scheduler,
utilizing a bounded size scheduling data structure. Depend-
ing on the requirements of the application, more sophis-
ticated priority-based or deadline-based structures can be
used. It is crucial that the scheduler is power aware: our
prototype puts the processor to sleep when the task queue
is empty, but leaves the peripherals operating, so that any
of them can wake up the system. This behavior enables us
to provide efficient battery usage (see Section 5). Once the
queue is empty, another task can be scheduled only as a
result of an event, thus there is no need for the scheduler
to wake up until a hardware event triggers activity. More
aggressive power management is left to the application.

4.2 Example Component
A typical component including a frame, event handlers,

commands and tasks for a message handling component is
pictured in Figure 2. Like most components, it exports com-
mands for initialization and power management. Addition-
ally, it has a command for initiating a message transmission,
and signals events on the completion of a transmission or
the arrival of a message. In order to perform its function,



the messaging component issues commands to a packet level
component and handles two types of events: one that indi-
cates a message has been transmitted and one that signals
that a message has been received.

Since the components describe both the resources they
provide and the resources they require, connecting them to-
gether is very simple. The programmer simply matches the
signatures of events and commands required by one compo-
nent with the signatures of events and commands provided
by another component. The communication across the com-
ponents takes the form of a function call, which has low
overhead and provides compile time type checking.

4.3 Component Types
In general, components fall into one of three categories:

hardware abstractions, synthetic hardware, and high level
software components.

Hardware abstraction components map physical hardware
into our component model. The RFM radio component
(shown in lower left corner of Figure 3) is representative
of this class. This component exports commands to ma-
nipulate the individual I/O pins connected to the RFM
transceiver and posts events informing other components
about the transmission and reception of bits. Its frame con-
tains information about the current state of the component
(the transceiver is in sending or receiving mode, the current
bit rate, etc.). The RFM consumes the hardware interrupt,
which is transformed into either the RX bit evt or into the
TX bit evt. There are no tasks within the RFM because
the hardware itself provides the concurrency. This model of
abstracting over the hardware resources can scale from very
simple resources, like individual I/O pins, to quite complex
ones, like UARTs.

Synthetic hardware components simulate the behavior of
advanced hardware. A good example of such component is
the Radio Byte component (see Figure 3). It shifts data
into or out of the underlying RFM module and signals when
an entire byte has completed. The internal tasks perform
simple encoding and decoding of the data. 2 Conceptually,
this component is an enhanced state machine that could
be directly cast into hardware. From the point of view of
the higher levels, this component provides an interface and
functionality very similar to the UART hardware abstrac-
tion component: they provide the same commands and sig-
nal the same events, deal with data of the same granularity,
and internally perform similar tasks (looking for a start bit
or symbol, perform simple encoding, etc.).

The high level software components perform control, rout-
ing and all data transformations. A representative of this
class is the messaging module presented above, in Figure 2.
It performs the function of filling in a packet buffer prior
to transmission and dispatches received messages to their
appropriate place. Additionally, components that perform
calculations on data or data aggregation fall into this cate-
gory.

Our component model allows for easy migration of the
hardware/software boundary. This is possible because our
event based model is complementary to the underlying hard-
ware. Additionally, the use of fixed size, preallocated storage
is a requirement for hardware based implementations. This
ease of migration from software to hardware will be par-

2The radio requires that the data transmitted is DC-
balanced. We currently use Manchester encoding.

ticularly important for networked sensors, where the system
designers will want to explore the tradeoffs between the scale
of integration, power requirements, and the cost of the sys-
tem.

4.4 Putting it all together
Now, that we have shown a few sample components, we

will examine their composition and their interaction within
a complete configuration. To illustrate the interaction of the
components, we describe a networked sensor application we
have developed. The application consists of a number of sen-
sors distributed within a localized area. They monitor the
temperature and light conditions and periodically transmit
their measurements to a central base station. Each sensor
not only acts as a data source, but it may also forward data
for sensors that are out of range of the base station. In our
application, each sensor dynamically determines the correct
routing topology for the network. The internal component
graph of a base station sensor is shown in Figure 3 along
with the routing topology created by a collection of sensors.

There are three I/O devices that this application must
service: the network, the light sensor, and the temperature
sensor. Each of these devices is represented by a vertical
stack of components. The stacks are tied together by the
application layer. We chose an abstraction similar to active
messages [42] for our top level communication model. The
active message model includes handler identifiers with each
message. The networking layer invokes the indicated han-
dler when a message arrives. This integrates well with our
execution model because the invocation of message handlers
takes the form of events being signaled in the application.
Our application data is broadcast in the form of fixed length
active messages. If the receiver is an intermediate hop on the
way to the base station, the message handler initiates the
retransmission of the message to the next recipient. Once
at the base station, the handler forwards the packet to the
attached computer.

The application works by having a base station periodi-
cally broadcast out route updates. Any sensors in range of
this broadcast record the identity of the base station and
then rebroadcast out the update. Each sensor remembers
the first update that is received in an era, and uses the
source of the update as the destination for routing data to
the base station. Each device also periodically reads its sen-
sor data and transmits the collected data towards the base
station. At the high level, there are three significant events
that each device must respond to: the arrival of a rout up-
date, the arrival of a message that needs to be forwarded,
and the collection of new data.

Internally, when our application is running, thousands of
events are flowing through each sensor. A timer event is
used to periodically start the data collection. Once the
temperature and light information have been collected, the
application uses the messaging layer’s send message com-
mand to initiate a transfer. This command records the mes-
sage location in the AM component’s frame and schedules
a task to handle the transmission. When executed, this task
composes a packet, and initiates a downward chain of com-
mands by calling the TX packet command in the Packet
component. In turn, the command calls TX byte within the
Radio Byte component to start the byte-by-byte trans-
mission. The Packet component internally acts as a data
drain, handing bytes down to the Radio Byte component
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Figure 2: A sample messaging component. Pictorially, we represent the component as a bundle of tasks, a
block of state (component frame) a set of commands (upside-down triangles), a set of handlers (triangles),
solid downward arcs for commands they use, and dashed upward arcs for events they signal. All of these
elements are explicit in the component code.

whenever the previous byte transmission is complete. In-
ternally, Radio Byte prepares for transmission by putting
the RFM component into the transmission state (if appro-
priate) and scheduling the encode task to prepare the byte
for transmission. When the encode task is scheduled, it en-
codes the data, and sends the first bit of data to the RFM
component for transmission. The Radio Byte also acts
as a data drain, providing bits to the RFM in response to
the TX bit evt event. If the byte transmission is complete,
then the Radio Byte will propagate the TX bit evt sig-
nal to the packet-level controller through the TX byte done

event. When all the bytes of the packet have been drained,
the packet level will signal the TX packet done event, which
will signal the the application through the msg send done

event.
When a transmission is not in progress, and the sensor

is active, the Radio Byte component receives bits from
the RFM component. If the start sequence is detected,
the transmission process is reversed: bits are collected into
bytes and bytes are collected into packets. Each component
acts as a data-pump: it actively signals the incoming data
to the higher levels of the system, rather than respond to a
read operation from above. Once a packet is available, the
address of the packet is checked and if it matches the local
address, the appropriate handler is invoked.

5. EVALUATION
Small physical size: Table 2 shows the code and data size

for each of the components in our system. It is clear that
the code size of our complete system, including a network
sensor application with simple multi-hop routing, is remark-
able. In particular, our scheduler only occupies 178 bytes
and our complete network sensor application requires only
about 3KB of instruction memory. Furthermore, the data
size of our scheduler is only 16 bytes, which utilizes only 3%
of the available data memory. Our entire application comes
in at 226 bytes of data, still under 50% of the 512 bytes

Component Name Code Size Data Size
(bytes) (bytes)

Multihop router 88 0
AM dispatch 40 0
AM temperature 78 32
AM light 146 8
AM 356 40
Packet 334 40
RADIO byte 810 8
RFM 310 1
Photo 84 1
Temperature 64 1
UART 196 1
UART packet 314 40
I2C bus 198 8
Procesor init 172 30
TinyOS scheduler 178 16
C runtime 82 0
Total 3450 226

Table 2: Code and data size breakdown for our
complete system. Only the processor init, the
TinyOS scheduler, and the C runtime are required
for every application, the other components are in-
cluded as needed.

available.
Concurrency-intensive operations: As we argued in Sec-

tion 2, network sensors need to handle multiple flows of in-
formation simultaneously. In this context, an important
baseline characteristic of a network sensor is its context
switch speed. Table 3 shows this aspect calibrated against
the intrinsic hardware cost for moving bytes in memory. The
cost of propagating an event is roughly equivalent to that of
copying one byte of data. This low overhead is essential for
achieving modular efficiency. Posting a task and switching
context costs about as much as moving 6 bytes of memory.
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Operations Cost Time Normalized
(cycles) (µs) to byte copy

Byte copy 8 2 1
Post an Event 10 2.5 1.25
Call a Command 10 2.5 1.25
Post a task to scheduler 46 11.5 6
Context switch overhead 51 12.75 6
Interrupt (hardware cost) 9 2.25 1
Interrupt (software cost) 71 17.75 9

Table 3: Overhead of primitive operations in
TinyOS

Our most expensive operation involves the low-level aspects
of interrupt handling. Though the hardware operations for
handling interrupts are fast, the software operations that
save and restore registers in memory impose a significant
overhead. Several techniques can be used to reduce that
overhead: partitioning the register set [22] or use of register
windows [14].

Efficient modularity: One of the key characteristics of our
systems is that events and commands can propagate through
components quickly. Projects such as paths, in Scout [35],
and stackable systems [29, 25, 24] have had similar goals in
other regimes. Table 3 gives the cost of individual compo-
nent crossing, while Figure 4 shows the dynamic composition
of these crossings. It contains a timing diagram from a logic
analyzer of an event chain that flows through the system
at the completion of a radio transmission. The events fire
up through our component stack eventually causing a com-
mand to transmit a second message. The total propagation
delay up the five layer radio communication stack is 40 µs
or about 80 instructions. This is discussed in detail in Fig-
ure 4; steps 0 through 4 show the event crossing these layers.
The entire event propagation delay plus the cost of posting
a command to schedule a task to send the next packet (step
0 through 6) is about 90 µs.

Limited physical parallelism and controller hierarchy: We
have successfully demonstrated a system managing multi-
ple flows of data through a single microcontroller. Table 4
shows the work and energy distribution among each of our
software components while engaged in active data transmis-
sion. Even during this highly active period, the processor
is idle approximately 50% of the time. The remaining time
can be used to access other sensors, like the photo sensor,
or the I2C temperature controller. Even if other I/O de-
vices provide an interface as primitive as our radio, a single
controller can support flows of data at rates up to 40 µs
per bit or 25Kbps. Furthermore, this data can be used to
make design choices about the amount of physical paral-
lelism necessary. For example, while the low level bit and
byte processing utilize significant CPU resources, the CPU
is not the system bottleneck. If bit level functions were
implemented on a separate microcontroller, we would not
realize a performance gain because of the radio bandwidth
limitations. We would also incur additional power and time
expense in transferring data between microcontrollers. How-
ever, if these components were implemented by dedicated
hardware, we would be able to make several power saving
design choices including sleeping, which would save 690 µJ
per bit, or lowering the frequency of the processor 20-fold.
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Figure 4: A timing diagram from a logic analyzer
capturing event propagation across networking com-
ponents at a granularity of 50 µs per division. The
graph shows the send message scenario described in
Section 4.4 focusing on transmission of the last bit
of the packet. Starting from the hardware timer in-
terrupt of step 0, events propagate up through the
TX bit evt in step 1, into byte-level processing. The
handler issues a command to transmit the final bit
and then fires the TX byte ready event in step 2 to sig-
nal the end of the byte. This triggers TX packet done

in step 3. Step 4 signals the application that the
send msg command has finished. The application
then issues another asynchronous send msg command
in step 5 which post a task at step 6 to send the
packet. While send msg task prepares the message,
the RFM component is periodically scheduled to lis-
ten for incoming packets. The event propagation de-
lay from step 0 to step 4 is about 40 µs while for the
entire event and command fountain starting from
step 0 to step 6 to be completed, the total elapsed
time is about 95 µs.

Diversity in usage and robust operation: Finally, we have
been able to test the versatility of this architecture by creat-
ing sample applications that exploit the modular structure
of our system. These include source based multi-hop routing
applications, active-badge-like [43] location detection appli-
cations and sensor network monitoring applications. Addi-
tionally by developing our system in C, we have the ability
to target multiple CPU architectures in future systems. Fur-
thermore, our multi-hop routing application automatically
reconfigures itself to withstand individual node failure so
that the sensor network as a whole is robust.

6. RELATED WORK
There is a large amount of work on developing micro-

electromechanical sensors and new communication devices
[38, 37]. The development of these new devices make a
strong case for the development of a software platform to
support and connect them. TinyOS is designed to fill this
role. We believe that current real-time operating systems
do not meet the needs of this emerging integrated regime.
Many of them have followed the performance growth of the
wallet size device.

Traditional real time embedded operating systems include
VxWorks [13], WinCE [19], PalmOS [4], and QNX [26] and
many others [8, 32, 34]. Table 5 shows the characteris-
tics for a handful of these systems. Many are based on
microkernels that allow for capabilities to be added or re-
moved based on system needs. They provide an execution
environment that is similar to traditional desktop systems.



Name Preemption Protection ROM Size Configurable Targets

pOSEK Tasks No 2K Static Microcontrollers
pSOSystem POSIX Optional Dynamic PII → ARM Thumb
VxWorks POSIX Yes ≈ 286K Dynamic Pentium → Strong ARM
QNX Neutrino POSIX Yes > 100K Dynamic Pentium II → NEC chips
QNX Realtime POSIX Yes 100K Dynamic Pentium II → 386’s
OS-9 Process Yes Dynamic Pentium → SH4
Chorus OS POSIX Optional 10K Dynamic Pentium → Strong ARM
Ariel Tasks No 19K Static SH2, ARM Thumb
CREEM data-flow No 560 bytes Static ATMEL 8051

Table 5: A comparison of selected architecture features of several embedded OSes.

Components Packet Percent Energy
reception CPU (nJ/bit)

breakdown Utilization
AM 0.05% 0.02% 0.33
Packet 1.12% 0.51% 7.58
Radio handler 26.87% 12.16% 182.38
Radio decode task 5.48% 2.48% 37.2
RFM 66.48% 30.08% 451.17
Radio Reception - - 1350
Idle - 54.75% -
Total 100.00% 100.00% 2028.66

Components Packet Percent Energy
transmission CPU (nJ/bit)

breakdown Utilization
AM 0.03% 0.01% 0.18
Packet 3.33% 1.59% 23.89
Radio handler 35.32% 16.90% 253.55
Radio encode task 4.53% 2.17% 32.52
RFM 56.80% 27.18% 407.17
Radio Transmission - - 1800
Idle - 52.14% -
Total 100.00% 100.00% 4317.89

Table 4: Details breakdown of work distribution
and energy consumption across each layer for packet
transmission and reception. For example, 66.48% of
the work in receiving packets is done in the RFM
bit-level component and it utilizes 30.08% of the
CPU time during the entire period of receiving the
packet. It also consumes 451.17nJ per bit it pro-
cesses. Note that these measurements are done with
respect to raw bits at the physical layer with the bit
rate of the radio set to 100 µs/bit using DC-balanced
ON-OFF keying.

Their POSIX [40] compatible thread packages allow system
programmers to reuse existing code and multiprogramming
techniques. The largest RTOSs provide memory protection
given the appropriate hardware support. This becomes in-
creasingly important as the size of the embedded applica-
tions grow. In addition to providing fault isolation, memory
protection prevents corrupt pointers from causing seemingly
unrelated errors in other parts of the program allowing for
easier software development. These systems are a popular
choice for PDAs, cell phones and set-top-boxes. However,
they do not come close to meeting our requirements; they
are more suited to the world of embedded PCs. For example,
a QNX context switch requires over 2400 cycles on a 33MHz
386EX processor, and the memory footprint of VxWorks is

in the hundreds of kilobytes. 3 Both of these statistics are
more than an order of magnitude beyond our required limits.

There is also a collection of smaller real time executives in-
cluding Creem [30], pOSEK [7], and Ariel [3], which are min-
imal operating systems designed for deeply embedded sys-
tems, such as motor controllers or microwave ovens. While
providing support for preemptive tasks, they have severely
constrained execution and storage models. pOSEK, for ex-
ample, provides a task-based execution model that is stat-
ically configured to meet the requirements of a specific ap-
plication. Generally, these systems approach the space re-
quirements and represent designs closest to ours. However,
they tend to be control centric – controlling access to hard-
ware resources – as opposed to dataflow-centric. Even the
pOSEK, which meets our memory requirements, exceeds the
limitations we have on context switch time. At its optimal
performance level and with the assumption that the CPI and
instructions per program of the PowerPC are equivalent to
that of the 8-bit ATMEL the context switch time would be
over 40 µs.

Other related work includes [17] where a finite state ma-
chine (FSM) description language is used to express compo-
nent designs that are compiled down to software. However,
they assume that this software will then operate on top of
a real-time OS that will give them the necessary concur-
rency. This work is complementary to our own in that the
requirements of an FSM based design maps well onto our
event/command structure. We also have the ability to sup-
port the high levels of concurrency inherent in many finite
state machines.

On the device side, [6] is developing a cubic millimeter
integrated network sensors. Additionally, [38, 15] has de-
veloped low power hardware to support the streaming of
sensor readings over wireless communication channels. In
their work, they explicitly mention the need for the inclusion
of a microcontroller and the support of multi-hop routing.
Both of these systems require the support of an efficient soft-
ware architecture that allows high levels of concurrency to
manage communication and data collection. Our system is
designed to scale down to the types of devices they envision.

A final class of related work is that of applications that
will be enabled by networked sensors. Piconet [16] and
The Active Badge Location System [43] have explored the
utility of networked sensors. Their applications include per-

3It is troubling to note that while there is a large amount of
information on code size of embedded OSes, there are very
few hard performance numbers published. [9] has started a
program to test various real-time operating systems yet they
are keeping the results confidential - you can view them for
a fee.



sonnel tracking and information distribution from wireless,
portable communication devices. However, they have fo-
cused on the applications of such devices as opposed to the
system architecture that will allow a heterogeneous group of
devices to scale down to the cubic millimeter category.

7. ARCHITECTURAL IMPLICATIONS
A major architectural question in the design of network

sensors is whether or not individual microcontrollers should
be used to manage each I/O device. We have demonstrated
that it is possible to maintain multiple flows of data with a
single microcontroller. This shows that it is an architectural
option - not a requirement - to utilize individual microcon-
trollers per device. Moreover, the interconnect of such a
system will need to support an efficient event based com-
munication model. Tradeoffs quickly arise between power
consumption, speed of off chip communication, flexibility
and functionality. Additionally, our quantitative analysis
has enabled us to consider the effects of using alternative
microcontrollers. We believe that the use of a higher perfor-
mance ARM Thumb [1] would not change our architecture.
Furthermore, our architecture allows us to calculate the min-
imum performance requirements of a processor. Along simi-
lar lines, we can extrapolate how our technology will perform
in the presence of higher speed radio components. It is clear
that bit level processing cannot be used with the transfer
rates of Bluetooth radios [11]; the Radio Byte component
needs to become a hardware abstraction rather than syn-
thetic hardware.

Further analysis of our timing breakdown in Table 4 can
reveal the impact of architectural changes in microcontrollers.
For example, the inclusion of hardware support for events
would make a significant performance impact. An additional
register set for the execution of events would save us about
20 µs per event or about 20% of our total CPU load. This
savings could be directly transferred to either higher perfor-
mance or lower power consumption.

Additionally, we are able to quantify the effects of ad-
ditional hardware support for managing data transmission.
Table 4 shows that hardware support for the byte level col-
lection of data from the radio would save us a total of about
690 µJ per bit in processor overhead. This represents the
elimination of the bit level processing from the CPU. Ex-
tension of this analysis can reveal the implication of several
other architectural changes including the use of radios that
can automatically wake themselves at the start of an incom-
ing transmission or a hardware implementation of a MAC
layer.

Furthermore, the impact of reconfigurable computing can
be investigated relative to our design point. In traditional
systems, the interconnect and controller hierarchy is config-
ured for a particular system niche, where as in future net-
work sensors it will be integrated on chip. Reconfigurable
computing has the potential of making integrated network
sensors highly versatile. The Radio Byte component is a
perfect candidate for reconfigurable support. It consumes a
significant amount of CPU time and must be radio proto-
col specific. A standard UART or DMA controller is much
less effective in this situation because the component must
search for the complex start symbol prior to clocking in the
bits of the transmission. However, it could be trivially im-
plemented in a FPGA.

All of this extrapolation was made possible by fully devel-

oping and analyzing quantitatively a specific design point for
a network sensor. It is clear that there is a strong tie between
the software execution model and the hardware architecture
that supports it. Just as SPEC benchmarks attempted to
evaluate the impact of architectural changes on the entire
system in the workstation regime, we have attempted to be-
gin the systematic analysis architectural alternatives in the
network sensor regime.
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