
Cache Coherence Protocols: Evaluation
Using a Multiprocessor Simulation Model

JAMES ARCHIBALD and JEAN-LOUP BAER

University of Washington

Using simulation, we examine the efficiency of several distributed, hardware-based solutions to the
cache coherence problem in shared-bus multiprocessors. For each of the approaches, the associated
protocol is outlined. The simulation model is described, and results from that model are presented.
The magnitude of the potential performance difference between the various approaches indicates
that the choice of coherence solution is very important in the design of an efficient shared-bus
multiprocessor, since it may limit the number of processors in the system.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles-cache memories;
C.1.2 [Processor Architectures]: Multiple Data Stream Architectures (Multiprocessors)--multiple-
instruction-stream, multiple-data-stream processors (MIMD); C.4 [Computer Systems Organiza-
tion]: Performance of Systems-measurement techniques; modeling techniques; D.4.2 [Operating
Systems]: Storage management-distributed memories

General Terms: Design, Performance

Additional Key Words and Phrases: Cache coherence, shared-bus multiprocessor, simulation

1. INTRODUCTION

There is currently considerable interest in the computer architecture community
on the subject of shared-memory multiprocessors. Proposed multiprocessor de-
signs often include a private cache for each processor in the system, which gives
rise to the cache coherence problem. If multiple caches are allowed to have copies
simultaneously of a given memory location, a mechanism must exist to ensure
that all copies remain consistent when the contents of that memory location
are modified. In some systems, a software approach is taken to prevent the
existence of multiple copies by marking shared blocks as not to be cached, and
by restricting or prohibiting task migration. An alternate approach is to allow all
blocks to be cached by all processors and to rely on a cache coherence protocol
(between the cache controllers and, in some cases, memory controllers) to
maintain consistency.

Several such protocols have been proposed or described-some suitable for
a general interconnection network [l, 2, 14, 161 and some specifically for a

This work was supported in part by NSF grants MCS-8304534 and DCR-8503250.
Authors’ address: Department of Computer Science, University of Washington, Seattle, WA 98195.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1986 ACM 0734-2071/86/1100-0273 $00.75

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986, Pages 273-298.

274 - J. Archibald and J.-L. Baer

shared-bus [5, 6, 8-11, 151. Shared-bus protocols differ substantially from pro-
tocols for general networks because first, they depend on each cache controllser
observing the bus transactions of all other processors in the system, taking
appropriate actions to maintain consistency, and second, the state of each block
in the system is encoded in a distributed way among all cache controllers. Cache
controllers that observe the bus traffic for coherence purposes are called snooping
cache controllers.

In this paper we examine several distributed hardware-based protocols for
shared-bus multiprocessors and evaluate their relative performance on the basis
of a simulation model. All of the schemes discussed in this paper require snooping
cache controllers. Although a number of different hardware implementations fmor
such cache controllers exist, each with a different level of performance, it is our
goal in this paper to identify the relative performance of the protocols indepen-
dent of differences in implementation. For this reason, we evaluate the schemes
assuming identical processors and caches, except for the necessary differences in
the cache controller to support the protocol. We begin with a brief description of
the schemes to be analyzed and then describe the simulation model used.
Simulation resuits are then presented and discussed.

2. CACHE COHERENCE PROTOCOLS

In a shared-bus multiprocessor, the bus becomes the limiting system resource
with even a moderate number of processors. The key to maximizing overall
system performance is minimizing the bus requirements of each individual
processor. The addition of a private cache for each processor can greatly reduce
the bus traffic, since most references can then be serviced without a bus trans-
action. Bus requirements of the caches can be further reduced by choosing a
write-back (also called copy-back) main memory update policy instead of a write-
through approach [12]. (In write-through, stores are immediately transmitted to
main memory; write-back initially modifies only the cache with the change
reflected to main memory when the block is removed from the cache.) All of the
schemes considered here use a form of write-back. However, we shall simulate a
write-through mechanism for comparison purposes.

With few exceptions (e.g., Firefly [15] and Dragon [9]), all proposed solutions
enforce consistency by allowing any number of caches to read a given block but
allowing only one cache at a time permission to write the block. Unlike efficient
solutions for general interconnection networks requiring information in a global
table, shared-bus solutions maintain coherence on the basis of information
maintained locally at each cache. Each cache controller listens to transactions
on the bus and takes actions, if necessary (depending on the type of transaction
and the local state of the block), to maintain the consistency of those blocks of
which it has copies. For each bus transaction, the snooping cache controller must
determine whether it has a copy of the block by attempting to match the block
address observed on the bus with the address in the cache directory. If there is a
single copy of the cache directory, each attempted match will require a cache
cycle, during which time the cache is unable to service processor memory requests.
A far more efficient alternative is to provide the controller with a duplicate co:py

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Cache Coherence Protocols l 275

Write hit

\ Write miss

Processor-based transition -

Bus-induced transition .______________. ,

State 0 : Invalid
State 1 : Valid (clean, potentially shared)
State 2 : Reserved
State 3 : Dirty (modified, in one cache only)

Fig. 1. Write-once transition diagram.

of the cache directory, allowing all unsuccessful attempts to match to be com-
pleted without affecting processor performance.

Each cache coherence protocol consists of a specification of possible block
states in the local caches and the actions that are to be taken by the cache
controller as certain bus transactions are observed. To outline the protocols that
we examine in this paper, consider the essential actions of each scheme in the
following four cases: read hit, read miss, write hit, and write miss. The case of
read hit is easily dealt with-in all schemes the requested data are returned
immediately to the processor with no action necessary by the protocol. Differences
in the other three cases are outlined below. States are written in capital letters.
(See also the accompanying state transition diagrams.)

2.1 Write-Once

Chronologically the first scheme described in the literature [6], Goodman’s write-
once scheme was designed for single-board computers using Multibus. The
requirement that the scheme work with an existing bus protocol was a severe
restriction but one that results in implementation simplicity. In the write-once
scheme, blocks in the local cache can be in one of four states: INVALID, VALID
(not modified, possibly shared), RESERVED (not needing a write-back, but
guaranteed the only copy in any cache), and DIRTY (written more than once
and the only copy in any cache) (see Figure 1). Blocks selected for replacement
in the cache need to be written back to main memory only if in the DIRTY state.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

276 l J. Archibald and J.-L. Baer

The scheme works as follows:

(1) Read miss. If another copy of the block exists that is in state DIRTY, the
cache with that copy inhibits the memory from supplying the data and
supplies the block itself, as well as writing the block back to main memory.
If no cache has a DIRTY copy, the block comes from memory. All caches
with a copy of the block set their state to VALID.

(2) Write hit. If the block is already DIRTY, the write can proceed locally
without delay. If the block is in state RESERVED, the write can also proceed
without delay, and the state is changed to DIRTY. If the block is in state
VALID, the word being written is written through to main memory (i.e., the
bus is obtained, and a one-word write to the backing store takes place) and
the local state is set to RESERVED. Other caches with a copy of that black
(if any) observe the bus write and change the state of their block copies to
INVALID. If the block is replaced in state RESERVED, it need not be
written back, since the copy in main memory is current.

(3) Write miss. Like a read miss, the block is loaded from memory, or, if the
block is DIRTY, from the cache that has the DIRTY copy, which then
invalidates its copy. Upon seeing the write miss on the bus, all other caches
with the block invalidate their copies. Once the block is loaded, the write
takes place and the state is set to DIRTY.

2.2 Synapse

This approach was used in the Synapse N + 1, a multiprocessor for fault-tolera.nt
transaction processing [5]. The N + 1 differs from other shared bus designs
considered here in that it has two system buses. The added bandwidth of the
extra bus allows the system to be expanded to a maximum of 28 processors.
Another noteworthy difference is the inclusion of a single-bit tag with each cache
block in main memory, indicating whether main memory is to respond to a m.iss
on that block. If a cache has a modified copy of the block, the bit tells the memory
that it need not respond. This prevents a possible race condition if a cache does
not respond quickly enough to inhibit main memory from responding. Cache
blocks are in one of the following states: INVALID, VALID (unmodified, possibly
shared), and DIRTY (modified, no other copies) (see Figure 2). Only blocks in
state DIRTY are written back when replaced. Any cache with a copy of a block
in state DIRTY is called the owner of that block. If no DIRTY copy exists,
memory is the owner. The Synapse coherence solution is the following:

(1) Read miss. If another cache has a DIRTY copy, the cache submitting the
read miss receives a negative acknowledgement. The owner then writes the
block back to main memory, simultaneously resetting the bit tag and changing
the local state to INVALID. The requesting cache must then send ,an
additional miss request to get the block from main memory. In all other cases
the block comes directly from main memory. Note that the block is always
supplied by its owner, whether memory or a cache. The loaded block is always
in state VALID.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Cache Coherence Protocols l 277

(private read)

Processor-based transition B

Bus-induced transition _____.._. _ ._____,

State 0 : Invalid
State 1 : Valid (clean, unowned, potentially shared)
State 2 : Dirty (modified, owned)

Fig. 2. Synapse transition diagram.

(2) Write hit. If the block is DIRTY, the write can proceed without delay. If the
block is VALID, the procedure is identical to a write miss (including a full
data transfer) since there is no invalidation signal.

(3) Write miss. Like a read miss, the block always comes from memory-if the
block was DIRTY in another cache, it must first be written to memory by
the owner. Any caches with a VALID block copy set their state to INVALID,
and the block is loaded in state DIRTY. The block’s tag in main memory is
set so that the memory ignores subsequent requests for the block.

2.3 Berkeley

This approach is to be implemented in a RISC multiprocessor currently being
designed at the University of California at Berkeley [8]. The scheme is similar
to the Synapse approach, with two major differences: It uses direct cache-to-
cache transfers in the case of shared blocks, and dirty blocks are not written
back to memory when they become shared-requiring one additional state. The
following states are used: INVALID, VALID (possibly shared and not modified),
SHARED-DIRTY (possibly shared and modified), and DIRTY (no other copies
in caches and modified) (see Figure 3). A block in either state SHARED-DIRTY
or DIRTY must be written back to main memory if it is selected for replacement.
A block in state DIRTY can be in only one cache. A block can be in state
SHARED-DIRTY in only one cache, but it might also be present in state VALID
in other caches. Like the Synapse protocol, Berkeley uses the idea of ownership-
the cache that has the block in state DIRTY or SHARED-DIRTY is the owner

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

278 * J. Archibald and J.-L. Baer

Write

\ Write miss

Processor-based transition -

Bus-induced transition ____________..._,

State 0 : Invalid
state 1 : Valid (clean, potentially shared, unowned)
State 2 : Shared-Dirty (modified, potentially shared, owned)
State 3 : Dirty (modified, only copy, owned)

Fig. 3. Berkeley transition diagram.

of that block. If a block is not owned by any cache, memory is the owner. The
consistency solution is the following:

(1) Read miss. If the block is DIRTY or SHARED-DIRTY, the cache with that
copy must supply the block contents directly to the other cache and set its
local state to SHARED-DIRTY. If the block is in any other state or not
cached, it is loaded from main memory. In any case, the block state in the
requesting cache is set to VALID. Note that the block always comes directly
from its owner.

(2) Write hit. If the block is already DIRTY, the write proceeds with no delay.
If the block is VALID or SHARED-DIRTY, an invalidation signal must be
sent on the bus before the write is allowed to proceed. All other caches
invalidate their copies upon matching the block address, and the local state
is changed to DIRTY in the originating cache.

(3) Write miss. Like a read miss, the block comes directly from the owner. All
other caches with copies change the state to INVALID and the block in the
requesting cache is loaded in state DIRTY.

2.4 Illinois

This approach [lo] assumes that missed blocks always come from other caches,
if any copies are cached, and from memory if no cache has a copy, and it is also
assumed that the requesting cache will be able to determine the source of the
block. Each time that a block is loaded it can therefore be determined whether
or not it is shared. This information can significantly improve the system

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Cache Coherence Protocols 279

Write

Processor-based transition B

Bus-induced transition

State 0 : Invalid
State 1 : Valid-Exclusive (clean, only copy)
State 2 : Shared (clean, possibly other Copies)
State 3 : Dirty (modified, only copy)

Fig. 4. Illinois transition diagram.

performance since invalidations for write hits on unmodified private blocks can
be entirely avoided. The scheme has the following four states for cached blocks:
INVALID, VALID-EXCLUSIVE (not modified, the only copy in caches),
SHARED (not modified, possibly other copies cached), and DIRTY (modified
and the only cached copy) (see Figure 4). Blocks are written back at replacement
only if they are in state DIRTY. The scheme works as follows:

(1) Read miss. If any other cache has a copy of the block, it puts it on the bus.
If the block is DIRTY, it is also written to main memory at the same time.
If the block is SHARED, the cache with the highest priority will succeed in
putting the block on the bus. All caches with a copy of the block will observe
the miss and set their local states to SHARED, and the requesting cache sets
the state of the loaded block to SHARED. If the block comes from memory,
no other caches have the block, and the block is loaded in state VALID-
EXCLUSIVE.

(2) Write hit. If the block is DIRTY, it can be written with no delay. If the block
is VALID-EXCLUSIVE, it can be written immediately with a state change
to DIRTY. If the block is SHARED, the write is delayed until an invalidation
signal can be sent on the bus, which causes all other caches with a copy to
set their state to INVALID. The writing cache can then write to the block
and set the local state to DIRTY.

(3) Write miss. Like a read miss, the block comes from a cache, if any cache has
a copy of the block. All other caches invalidate their copies, and the block is
loaded in state DIRTY.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

280 l J. Archibald and J.-L. Baer

Read miss
(not Msh)

Write miss
(not Msh)

Write miss
(Msh)

Processor-based transition j

Bus-induced transition . ..---....-...+

State 0: Valid-Exclusive (clean, only copy)
State 1: Shared (clean 1
State 2: Dirty (dirty, only copy)

Fig. 5. Firefly transition diagram.

2.5 Firefly

This scheme is used in the Firefly [15], a multiprocessor workstation currently
being developed by Digital Equipment Corporation. Possible states for blocks in
local caches are: VALID-EXCLUSIVE (not modified, only copy in caches),
SHARED (not modified, possibly other caches with a copy), and DIRTY (modi-
fied, only copy in caches) (see Figure 5). Blocks in state DIRTY are the olnly
ones that are written back to memory at replacement. The main difference
between this scheme and those previously discussed is that multiple writers iare
permitted-the data for each write to a shared block are transmitted to each
cache and to the backing store. As a result, this scheme never causes an
invalidation, and so the INVALID state is not included in this description. Th’ere
is a special bus line used to detect sharing, which we refer to as the SharedLine.
The protocol is described as follows:

(1) Read miss. If another cache has the block, it supplies it directly to the
requesting cache and raises the SharedLine. All caches with a copy respond
by putting the data on the bus-the bus timing is fixed so that they all
respond in the same cycle. All caches, including the requesting cache, set -the
state to SHARED. If the owning cache had the block in state DIRTY, ,the
block is written to main memory at the same time. If no other cache has a
copy of the block, it is supplied by main memory, and it is loaded in state
VALID-EXCLUSIVE.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Cache Coherence Protocols l 281

(2) Write hit. If the block is DIRTY, the write can take place without delay. If
the block is in state VALID-EXCLUSIVE, the write can be performed
immediately and the state is changed to DIRTY. If the block is in state
SHARED, the write is delayed until the bus is acquired and a write-word to
main memory can be initiated. Other caches with the block observe the write-
word on the bus and take the new data and overwrite that word in their copy
of the block. In addition, these other caches raise the SharedLine. The
writing cache can determine whether sharing has stopped by testing this line.
If it is not raised, no other cache has a copy and writes need no longer be
broadcast-allowing a state change to VALID-EXCLUSIVE (and then to
DIRTY on the next local write). If the line is high, sharing continues and
the block remains in state SHARED.

(3) Write miss. As with a read miss, the block is supplied by other caches, if any
other caches have a copy. The requesting cache determines from the
SharedLine whether or not the block came from other caches. If it came
from memory, it is loaded in state DIRTY and written to without additional
overhead. If it came from a cache, it is loaded in state SHARED and the
requesting cache must write the word to memory. Other caches with a copy
of the block will take the new data and overwrite the old block contents with
the new word.

2.6 Dragon

The Dragon [9] is a multiprocessor being designed at Xerox Palo Alto Research
Center. The coherence solution employed is very similar to the Firefly scheme
described above. The scheme employs the following states for blocks present in
the cache: VALID-EXCLUSIVE (only copy in caches, but not modified),
SHARED-DIRTY (write-back required at replacement), SHARED-CLEAN,
and DIRTY (only copy in caches and modified) (see Figure 6). As with the
Firefly, the Dragon scheme allows multiple writers, but, unlike the Firefly, writes
to shared blocks are not immediately sent to main memory, only to other caches
that have a copy of the block. This necessitates the addition of the SHARED-
DIRTY state, implying that the block may be shared, and that it is modified
with respect to the backing store, and that the cache with this copy is responsible
for updating memory when the block is replaced. When a block is actually shared,
the last cache to write it, if any, will have the block in state SHARED-DIRTY.
All other caches with a copy will have the block in state SHARED-CLEAN. As
with the Firefly scheme, the INVALID state is not included, and a SharedLine
on the bus is assumed. The protocol works as follows:

(1) Read miss. If another cache has a DIRTY or SHARED-DIRTY copy, that
cache supplies the data, raises the SharedLine, and sets its block state to
SHARED-DIRTY. Otherwise, the block comes from main memory. Any
caches with a VALID-EXCLUSIVE or SHARED-CLEAN copy raise the
SharedLine and set their local state to SHARED-CLEAN. The requesting
cache loads the block in state SHARED-CLEAN if the SharedLine is high;
otherwise, it is loaded in state VALID-EXCLUSIVE.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

282 - J. Archibald and J.-L. Baer

Read miss
(not sh)

Write miss
(not sh)

Write miss
(sh)

Processor-based transition -

Bus-induced transition-...-.......

State 0: Valid - Exclusive (clean, only copy)
State 1: Shared -clean (clean, one or more copy)
State 2: Shared -dirty (modified, one or more copy)
State 3: Dirty (modified, only copy)

Fig. 6. Dragon transition diagram.

(2) Write hit. If the block is DIRTY, the write can take place locally without
delay. If the block is in state VALID-EXCLUSIVE, the write can also take
place immediately with a local state change to DIRTY. Otherwise, the block
is SHARED-CLEAN or SHARED-DIRTY and a bus-write must take placle.
When the bus is obtained, the new contents of the written word are put on
the bus and read by all caches with a copy of that block, which take the new
data and overwrite that word of their copy of the block. Additionally, each
such cache sets the local state of the block to SHARED-CLEAN and raises
the SharedLine, indicating that the data are still shared. By observing th:is
line on the bus, the cache performing the write can determine whether other
caches still have a copy and hence whether further writes to that block must
be broadcast. If the SharedLine is not raised, the block state is changed to
DIRTY; else it is set to SHARED-DIRTY. Note that the single-word writ.e
does not go to main memory.

(3) Write miss. As with a read miss, the block comes from a cache if it is DIRTY
or SHARED-DIRTY and from memory otherwise. Other caches with copies
set their local state to SHARED-CLEAN. Upon loading the block, the
requesting cache sets the local state to DIRTY if the SharedLine is not
raised. If the SharedLine is high, the requesting cache sets the state to
SHARED-DIRTY and performs a single-word bus write to broadcast the
new contents.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Cache Coherence Protocols l 283

3. SIMULATION MODEL

The order in which the protocols were described in the previous section was
purposely chosen to show, qualitatively, either a more complex protocol or an
increased reliance on the bus intelligence. The primary goal of this study is to
give some quantitative measure of the efficiency of the protocols with the main
metrics, defined more precisely later, being related to the number of processors
that can share a common bus without reaching saturation of the system. For this
purpose we use a simulation model, described below, rather than analytical
models, which could not capture the subtle differences between some of the
protocols. The simulation model is driven by synthetic reference streams rather
than by actual traces, since no such multiprocessor traces exist. Such traces could
be created, but they would be as artificial as the method that we have employed.

The first step in the simulation, written in Simula, was the creation of a basic
multiprocessor model. To this basic model, protocol-specific additions were made,
creating a different version for each scheme evaluated. As our intent was to
evaluate the protocols themselves and not implementations thereof, we assume
all protocol-independent system parameters to be identical. Thus the workload
is the same: For each simulation run the reference stream of a processor is
identical for all schemes and depends only on the seed variable. We also assume
identical system configurations: All schemes are evaluated with one bus (although
the Synapse N + 1 actually has two) and with caches with two copies of the
cache directory (although not actually implemented in the Firefly and Dragon
workstations). This added directory allows the bus-watching logic to attempt
block address matches without affecting the performance of the cache, except in
the case of a successful match when action needs to be taken.

3.1 Multiprocessor Model

The basic model consists of a Simula process for each processor, a process for
each cache, and a single process for the system bus. Each processor, after
performing useful work for some w cycles (picked from some distribution),
generates a memory request, puts that request into the service queue of its cache,
and waits for a response, during which time no work is done. Processor utilization
is measured by the ratio of time spent doing useful work to the total run time.
System performance is measured by the total sum of processor utilization in the
system.

Each cache services memory requests from its processor by determining
whether the requested block is present or absent, or, more precisely, whether the
request can be serviced without a bus transaction. If so, after one cycle the cache
sends the processor a command to continue. If a bus transaction is required, a
bus request is generated and inserted into the service queue of the bus. The cache
sends the processor a command to continue only upon completion of the bus
transaction.

The cache can also receive commands from the bus process relating to actions
that must be performed on blocks of which it has copies. Such commands have
higher priority for service by the cache than processor memory requests. In a
multiprocessor, this is equivalent to matching a block address on a bus transaction

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

284 + J. Archibald and J.-L. Baer

and halting the service of processor requests to take action as specified by tbe
protocol. After that action is completed, the cache is free to respond to processor
requests. Note that such a match can occur only in the case of actual data sharing
and hence is infrequent.

The bus process receives service requests from all caches and services them in
first-in, first-out order. Requests are one of four types: read miss, write miss,
write-back of a dirty block, and (depending on the scheme) a request for write
permission, an invalidation signal, or a broadcast of the new value of a word-
all dealing with write hits on unmodified shared blocks. Conceptually, the bus
process includes the added cache logic responsible for matching addresses and so
can determine the location of all cached copies of shared blocks. If, in servicing
one of the four types of requests listed above, the bus process determines that
other caches need to supply the data (if the block is requested elsewhere and is
dirty), or that they need to change the local state (e.g., invalidate their copy on
a shared-block write), commands are sent to the appropriate caches. When the
transaction is complete, the bus signals the cache to continue.

3.2 Workload Model

The choice of workload model was viewed as critical, since it determines the
nature of data sharing, and since the performance of all coherence solutions is
known to depend heavily on the level of sharing. The model selected is similar
to one developed in [3], although it has been extended to reflect locality of
shared references. The simulation parameters and ranges used are summarized
in Table I.

The reference stream of each processor is viewed as the merging of two
reference streams-one being references to shared blocks and the other references
to private blocks. Each time a memory reference is called for, the processor
generates a reference to a shared block with probability shd and a reference to a
private block is generated with probability 1 - shd. Similarly, the probability
that the reference is a read is rd and the probability that it is a write is 1 - rd.

If the request is to a private block, it is a hit with probability h and a miss
with probability 1 - h. If the request is a write hit, the block is already modified
with probability wmd and the block is not yet modified (in the local cache) with
probability 1 - wmd. Private blocks are never present in other caches by
definition. Note that the workload model for private blocks reflects steady-state
behavior and not behavior including a cold start (i.e., the cache is already loaded
with most of the blocks that it will access in the next several references and the
hit ratio has leveled out).

In the simulation model an explicit representation is chosen for shared blocks,
whereas the representation of private block references is probabilistic, For private
blocks the reference nature is unchanged from the uniprocessor case, and it is
therefore possible to use existing uniprocessor cache measurements to reflect
actions resulting from private block references. Shared block references, however,
are not sufficiently well documented to use a probabilistic approach. To reflect
the differences between the protocols, a probabilistic shared block model would
necessarily include such information as the probability that a block is present in
another cache and modified on a write miss in the local cache. In the absence of
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Cache Coherence Protocols 285

Table I. Summary of Parameters and Ranges

Parameter Range

shd
rd
h
1-wmd
md
W

Main memory cycle time
Block size
Cache size
Number of shared blocks
Numberofprocessors

O.l-5%
70-85%
95-98%
1.75-5.26%
30-40%
Uniform [0..5] -
Four cache cycles
Four words
2-16 kbytes
16-1024
1-15

such information, all references to shared blocks in our model include a specific
block number, and actions are taken by the cache controllers on the basis of the
actual state of that block at that point in time.

If the request is to a shared block, the block number of the reference is
determined using a least recently used (LRU) stack (unique for each processor).
The probability of referencing the blocks near the top is significantly higher than
those near the bottom. After each reference the most recently referenced block
is placed at the top of the stack, with the others shifting down one position. The
LRU stack, used to reflect locality of shared block references, is initialized
uniquely for each processor in such a way that the average depth over all stacks
is approximately the same for each block. To service a shared block request, the
cache determines from a local table (needed for the simulation but, of course, not
included in the actual implementation) whether the requested block is present,
and whether a bus request must be generated (determined by the coherence
protocol). Note that references to shared blocks (in the simulation) are not
necessarily references to blocks that are actually present in other caches. Hence
the percentage of references to shared blocks and the amount of actual sharing
can be quite different.

If a cache miss occurs, either for a shared block or for a private block, a block
must be ejected to make room for the new block. The probability that a shared
block is selected is equal to the percentage of blocks in the cache that are shared
blocks at that point in time. If the selected block is private, it is modified and
needs to be written back with probability md, with probability 1 - md it has not
been modified (and hence no action need be taken). If a shared block is chosen
for replacement, one of those present in the cache is chosen at random. The local
state of that particular block determines whether or not it is to be written back.
The presence tables and local state are changed to indicate that it is no longer
present in this cache-following a write-back, if any. If a write-back is required
of either shared or private blocks, it is completed before the missed block is
loaded.

The probabilities md, wmd, and rd are not independent. The probability that
a block is dirty when it is replaced (md) is equal to the probability that it was
loaded on a write miss plus the probability that it was loaded on a read miss and

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

286 - J. Archibald and J.-L. Baer

later modified. The probability of loading on a read miss (or write miss) can be
approximated by the percentage of read requests (or write requests), assuming
that the miss ratios on reads and writes are nearly identical to the overall miss
ratio. Using this approximation, if x is the percentage of blocks loaded on a read
miss that are eventually modified, then

md = (1 - rd) + x(rd).

In steady state, the probability of writing to an unmodified block present in the
cache must equal the probability of loading a clean block into the cache times
the percentage of blocks loaded on a read miss and eventually modified (or x
above). That is,

(1 - rd)(h)(l - wmd) = x(1 - h)(rd).

These two equations define a relationship that is assumed for the simulation
results that are presented here. Although these approximations are not exact,
they serve as good estimates of the relative magnitude of the simulation
parameters md, wmd, and rd.

3.3 System Parameters

The main memory cycle time is four cache cycles. It is assumed that the block is
always sent in the same order, regardless of which word was referenced; the cache
does not proceed until the entire block is loaded. The block size is four words,
where a word is the unit of data that can be transmitted on the bus in a single
cycle. The bus is held during the entire time of each bus transaction, including
completion of the memory cycle if memory was accessed. Invalidation signals
require one cycle of bus time; transactions involving data transfers to or fro:m
memory require the memory cycle time for the first word of the block plus one
cycle for each additional word. The cache size varies from 2K to 16K words. The
number of processor-cache pairs in the system varies from 1 to 15.

3.4 Simulation Parameters

For the results shown in Section 4 the following parameter values are used (see
Table I). The hit ratio on private blocks varies from 95 to 98 percent. The
probability that a memory reference is to a shared block ranges from 0.1 to 5
percent. The percentage of memory references that are reads varies from 85 to
70 percent. The probability that a write hit on a private block finds that bloc:k
in a previously unmodified state (calculated on the basis of the equations in
Section 3.2) varies from 1.75 to 5.26 percent. When a private block is selected
for replacement, it is modified with respect to main memory (and hence is written
back) 30-40 percent of the time. For the write-once scheme this percentage is
reduced somewhat since those blocks written exactly once need not be written
back. Estimates of the amount of write-backs saved vary from a few percentage
points to about one-third. We include results assuming that 33 percent of the
write-backs are eliminated, and also results with the pessimistic assumption that
the reduction is only 5 percent. The number of shared blocks varies from 16 to
1024. The probability that a shared block reference is to the block at level i in
the LRU stack is g(1/(5 + i) - l/(6 + i)), where g is a normalizing factor. This

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Cache Coherence Protocols 287

probability was selected because it results in a shared block hit ratio comparable
to the private block hit ratio-slightly less since shared blocks are expected to
exhibit less locality of reference than private blocks [3]. The distribution of time
between successive processor requests (w of Section 3.1) is uniform from 0 to 5
cycles. Each simulation was run for 25,000 cycles. Tests indicated that extending
the run time had little effect on the simulation results.

3.5 Simulation Output

Output of the simulation includes bus utilization figures, processor utilization,
and a result referred to as the system power. This is simply the sum of the
processor utilization in the system, multiplied by 100. Although a metric of
effective number of processors might be more common, we use system power as
the performance measure, because the uniprocessor utilization varies between
coherence solutions and between simulation runs (with new parameters) of the
same scheme. For example, it would be possible to have two protocols, A and B,
where A is more efficient than B with a single processor, but, evaluated with ten
processors, the resulting “effective number of processors” for both protocols are
identical-perhaps at eight times the uniprocessor performance. Protocol A is
actually more powerful and more efficient than B, but a metric using a multiple
of the uniprocessor power does not reflect this difference. Defining a common
uniprocessor power for all schemes and dividing the system performance of each
protocol by this constant would not alter the relative position of the curves in
our figures-only the labels on the vertical axis would change. Since our intent
here is to determine the relative performance of the schemes, rather than the
maximum number of processors possible in a particular system, we use the system
power metric. As expected, the system power rises almost linearly until the bus
begins to reach saturation. When a bus utilization near 100 percent is reached,
the system power levels out.

4. SIMULATION RESULTS

Figures 7-16 summarize the results from four experiments chosen as represent-
ative of the simulations we have run. Each figure shows the results obtained with
the indicated parameter values for all schemes from one to fifteen processors.
Included in each figure are the simulation results of a simple write-through
scheme in which blocks are not loaded into the cache on a write miss, and the
data are written to main memory and invalidated in all other caches on each
write. It should be noted that the write-through performance is somewhat inflated
since it is simulated with the same hit ratio as the write-back protocols-in
practice the hit ratio will be lower as a result of not loading the block into the
cache on a write miss.

As was previously stated, references to shared blocks in the simulation are not
necessarily references to blocks present in other caches. For a fixed number of
shared blocks and a given percentage of shared block references, the actual
sharing increases as the number of caches in the system increases. The actual
sharing also varies from scheme to scheme-those approaches that invalidate
other copies on a shared write have a lower level of actual sharing (as much as

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

1 ‘0

Cache Coherence Protocols 293

20 percent lower) than those approaches that distribute the new data. Each figure
indicates the average level of actual sharing (the average from 2 to 15 caches),
measured as the percentage of references that are to blocks present in another
cache.

The first experiment (Figure 7) reflects a very low amount of sharing. (Only
results with 1024 blocks are presented because results with 16 and 128 shared
blocks are virtually indistinguishable.) The second experiment (Figures 8-10)
reflects a higher level of shared block references. Figures 11-13 show results from
a third experiment with an increased write ratio. The fourth experiment (Figures
14-16) uses a very high hit ratio and a larger cache.

4.1 Performance Issues Related to Private Blocks

As the figures demonstrate, the performance measurements of the protocols vary
significantly. The first cause of dissimilar performance is efficiency in handling
private blocks. Since the vast majority of all references are to private blocks,
differences in their handling can be much more significant than those arising in
the handling of shared blocks. Figure 7 shows the performance of the protocols
with virtually no sharing. Differences between the curves are due entirely to
private block overhead.

For the cache-coherence protocols that we modeled there are only two differ-
ences in the handling of private blocks: the actions that must be taken on a write
hit on an unmodified block, and the actions that must be taken when a block is
replaced in the cache. (The write-through method also differs in write misses
and write hits on blocks that were previously written.) All schemes have identical
overhead on read or write misses. The block comes from memory and requires
the same transfer time. All schemes are also identical in handling read hits since
the cache services the request locally and returns the data to the processor in a
single cache cycle. The servicing of write hits on modified blocks requires the
same time for all schemes since there is no additional overhead for a write after
the first write has been completed.

In the case of write hits on unmodified private blocks the protocols span a
wide range of actions. Theoretically, any overhead is logically unnecessary since
private blocks are never in other caches, but only the Dragon, Firefly, and Illinois
schemes are able to detect this information dynamically. In these schemes the
state can be changed from VALID-EXCLUSIVE to DIRTY without any bus
transaction since it is known that the unmodified block is not present elsewhere.
The Berkeley scheme requires a single bus cycle for an invalidation signal. Write-
once (like write-through) requires a single word write to main memory. The
Synapse scheme performs a complete block load, as if a write miss had occurred.

The difference that arises in the replacement of blocks in the cache is that, for
the write-once scheme, the probability that a block needs to be written back is
reduced. In this scheme those blocks written exactly once are up-to-date in
memory and therefore do not require a write-back.

Figure 7 indicates that the Dragon, Firefly, and Illinois schemes are identical
in the handling of private blocks. Slightly below these three is Berkeley as a
result of the overhead of invalidation signals. Since the signals are infrequent

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

294 * J. Archibald and J.-L. Baer

(based on the parameters of this simulation) there is little degradation in
performance. The performance of write-once is dependent on the trade-off
between single word writes (on write hits on unmodified blocks) and the reduction
in write-backs. The write to main memory is significantly more overhead in our
model than an invalidation signal, but if 33 percent of the write-backs are
eliminated, the overall performance equals that of the best schemes on private
blocks. If, however, the reduction in write-backs is small, performance drops
below that of Berkeley. The performance of the Synapse scheme is well below
the others as a result of the additional overhead of treating write hits on
unmodified blocks as write misses. It is important to note, however, that all
protocols give much better performance than write-through.

4.2 Performance Issues Related to Shared Blocks

The remaining cause for performance differences between the protocols is over-
head in the handling of shared blocks. Figures 8-16 show results with higher
levels of sharing. Comparison of Figures 8-10 with Figure 7 indicates the impact
of handling shared blocks efficiently-the only parameter that has changed is
increased references to shared blocks. Note, for example, that the curves for
Dragon, Firefly, and Illinois can be very different, although the schemes are
identical with private blocks.

The protocols implement the handling of those blocks that are actually shared
in a variety of ways. In fact, the only case in which they are similar is read hit.
On a read miss in some schemes, the block always comes from another cache (if
any cache has a copy) even if it is clean, whereas in the others the block is loaded
from main memory (requiring slightly more time to service in the simulation). If
the block is modified in another cache with respect to memory, some schelmes
require memory to be updated, but this overhead is eliminated in others with the
addition of a state indicating that a block is both shared and dirty. Write misses
are very similar to read misses with one major exception: Those schemes using a
distributed write approach must distribute the new data to memory and/or caches
after the block is loaded. Write hits on unmodified blocks require actions ranging
from a complete block load to an invalidation signal. The write-back traffic also
differs, since the protocols require blocks to be written back in different local
states. For example, shared blocks in Dragon might be modified with respect to
memory, but actual shared blocks in Firefly are always updated in main memory
on every write and hence never need a write-back.

The results demonstrate that the distributed write approach of Dragon and
Firefly yields the best performance in the handling of shared data. For those
simulations with a small number of shared blocks (and hence more contention
for those blocks) these two protocols significantly outperform the others. This is
because the overhead of distributing the newly written data to everyone with a
copy is much lower than repeatedly invalidating all other copies and subsequently
forcing misses (followed by more invalidations) on the next references in those
caches where the block was invalidated. For simulations with low contention the
differences are negligible, but these protocols remain unsurpassed. Note that the
performance of Dragon and Firefly actually decreases as the contention for sh.ared
blocks decreases and the number of shared blocks increases. In schemes wit.h no
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Cache Coherence Protocols 295

invalidations, the hit ratio depends only on the past references in the local cache
and not on the actions of other caches. The decrease in performance is a result
of an increase in the number of shared blocks in the simulation; with a larger
number of shared blocks, the shared references are spread over more blocks, and
there are fewer cache hits on shared blocks, since each shared block is not
accessed as often, In those schemes with invalidations, the hit ratio is very
dependent on the actions of other caches-for a small number of blocks the
probability is high that referenced blocks are also referenced by other caches and
frequently invalidated. This explains why these schemes improve as the level of
contention is reduced. The performance of the Dragon exceeds that of the Firefly
at levels of high sharing because the Firefly must send distributed writes to
memory while the Dragon sends them to the caches only. However, this gain in
performance comes at the cost of one added state (SHARED-DIRTY) for the
Dragon.

The Berkeley scheme, although somewhat less efficient in handling private
blocks, actually surpasses the Illinois scheme at levels of high sharing as a result
of its improved efficiency in the handling of shared blocks. On a miss on a block
modified in another cache, Berkeley does not require updating main memory as
does Illinois. It appears that for high levels of sharing this outweighs the
differences of Berkeley’s invalidation signals (logically unnecessary for private
blocks) and getting clean blocks from memory and not from caches as does
Illinois.

The performance of write-once is lower than the above schemes (for high levels
of contention) as a result of the added overhead of updating memory each time
a DIRTY block is missed in another cache. In addition, the single word write to
main memory (on write hits on unmodified blocks) appears to cost more than it
saves in reducing write-backs of shared blocks.

The performance of Synapse is considerably lower owing to the increased
overhead of read misses on blocks that are DIRTY in another cache (the
originating cache must resubmit the read miss request) and to the added overhead
of loading new data on a write hit on an unmodified block, as was also the case
with private blocks. Synapse does, however, demonstrate significantly better
performance than write-through, as do all other protocols.

4.3 Implementation Considerations

Improvements in performance are generally the result of increased hardware
complexity and cost. The complexity of the bus is an important consideration.
As was previously mentioned, write-once is able to work with the existing
Multibus protocol without modification. The Dragon and Firefly schemes require
a bus with a dedicated line to detect sharing. Similarly, the Illinois scheme
assumes that a cache can detect whether a block came from memory or a cache,
which could be implemented with an added bus line as with Dragon and Firefly.
Both Illinois and Firefly obtain clean blocks from other caches if they are cached.
In the Illinois approach, exactly one cache will succeed in putting the data on
the bus-the cache with the highest priority. Since that cache may be busy
servicing a memory request, the bus arbiter or prioritizer might need to wait for
it to respond, increasing the service time of the request. The Firefly assumes that

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

296 - J. Archibald and J.-L. Baer

all caches with a copy will succeed in putting the block on the bus, which requires
a bus with fixed timing. These considerations, coupled with the possibility of
slowing down the processors of those caches that succeed in putting data on the
bus, have led some designers to conclude that it is more efficient to obtain the
data from memory whenever possible.

All protocols but Synapse assume that each cache has the capability of
inhibiting memory from responding to a request for a block when a modified
copy of the block is present in that cache. The Synapse scheme uses a single bit
in main memory for each block to indicate whether or not memory is to respond
to requests for that block. This requires additional memory and specially designed
memory controllers, but it avoids problems arising when the cache with the
modified block is delayed in responding.

Additional capabilities of the bus are assumed by those schemes in which
cache-to-cache transfers of modified blocks are written back to main memory at
the same time (e.g., Illinois, Firefly). The added complexity of having three
cooperating members on a bus can be avoided simply by performing the write-
back as a separate bus operation (as with write-once) but this results in lower
performance. Note that Dragon and Berkeley avoid the problem altogether sirme
the block is not written back to memory at all (a benefit of having state
SHARED-DIRTY). Synapse has no cache-to-cache transfer-the block can be
loaded in the requesting cache only after the block is written back to main
memory.

In our simplified model the bus remains busy until the entire memory cycle
has completed, although in the case of a write, the cache is allowed to continue
as soon as the data are put on the bus. One possible modification to our basic
model would be to allow the bus to begin servicing the next transaction before a
write has completed (assuming no contention for the same memory module).
This would significantly reduce the cost of a write. Although this reduction would
have little impact on relative performance in the case of write-backs, the effect
on single word writes could be very significant. More precisely, the cost of a
single word write could approach that of an invalidation signal, boosting the
relative performance of write-once, Firefly, and write-through.

An additional issue to consider is extensions to existing protocols. Although
we have only considered hardware-based protocols in this paper, it is possible to
improve performance of some approaches with software assistance. For example,
the Berkeley scheme includes provisions for software-based hints provided by a
compiler or the operating system, indicating that the block is private and can
therefore be loaded in the equivalent of a VALID-EXCLUSIVE state, allowing
local modification without any further global interaction. This enhancement
would reduce the invalidation traffic and could make the performance of the
Berkeley scheme on private blocks equal to the most efficient protocols.

As was previously stated, the write-once scheme was restricted by the stipula-
tion that it work with an existing bus protocol. A modified version of write-once
has been proposed for the Futurebus [7], which would allow dynamic detection
of sharing, as with Dragon, Firefly, and Illinois. In this version, blocks that are
not present in other caches can be loaded in state RESERVED on a read miss,
allowing modifications locally without additional overhead (just as the other
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Cache Coherence Protocols 297

schemes use the VALID-EXCLUSIVE state). This would make write-once
identical to the most efficient schemes in the handling of private blocks. Note
that it would also eliminate the reduction in write-backs for private blocks, since
blocks written only once would be modified with respect to main memory and
would need to be written back upon replacement. Simulation results of this
modified write-once scheme show overall performance to be very similar to
Illinois and Berkeley.

Our simulation model assumes that the bus, cache, and processor are imple-
mented in similar technologies and have comparable speed. On the basis of
these assumptions, the maximum number of processors that can be added to
a system and still result in a performance improvement ranges from about 10
(assuming a 95 percent hit ratio) to about 20 (assuming a 98 percent hit ratio).
Validation of these limits is unlikely until the completion of the Dragon and
Firefly workstations.

Since the bus is by far the most limiting resource, system performance can be
increased considerably by increasing the capacity of the bus. This explains, at
least in part, why the Synapse N + 1 can be expanded to 28 processors (some
dedicated to I/O management) using two high-performance buses, and why the
Sequent Balance 8000 [4] can support 12 processors using a write-through
approach. The Sequent machine uses a sophisticated bus protocol, allowing the
interleaving of memory requests on the bus, and it also has a second bus for
synchronization purposes. In addition, in the time-sharing environment of the
Sequent, the bus traffic would be reduced since a fair proportion of the 12
processors can be in an idle state at any point in time. Owing to these factors,
the behavior of these two multiprocessor systems corresponds to the linear part
of the performance curves-before the bus reaches saturation. Any significant
increase in the number of processors would saturate the system at a lower level
than would be the case with the more efficient protocols, assuming the same
hardware features. The relative performance of the protocols with more efficient
buses and a modified workload would remain essentially unaltered.

5. SUMMARY AND CONCLUSIONS

We have reviewed six protocols for cache coherence in shared-bus multi-
processors. Each scheme was described using a uniform terminology. A multi-
processor simulation model was presented and described, including a mechanism
for simulating explicitly the dynamic reference behavior of shared data while
expressing locality of references. Results using the model have been presented
and discussed. The results indicate that the choice of coherence protocol in a
shared-bus system is a significant design decision, since the hardware require-
ments vary, and since the performance differences between the protocols can be
quite large. In particular, there appear to be significant differences in performance
between those schemes that permit multiple writers and distribute the new data
to all caches with copies and those schemes that permit only a single writer and
invalidate all other copies at each write.

Among topics for future research is an investigation to determine whether
there can be developed additional protocols of each type that demonstrate
performance superior to the protocols described in this paper. Another interesting

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

298 - J. Archibald and J.-L. Baer

topic is a study of compatible protocols that can be used by different caches at
the same time in the same system [13]. Finally, we observe that actual run-time
measurements from multiprocessors would be extremely valuable, providing more
accurate parameter values and allowing validation of simulation results.

ACKNOWLEDGMENTS

We are very grateful for the extensive suggestions, comments, and corrections of
Susan Eggers, Jim Goodman, and Janak Patel. We thank Ed Lazowska, Ed
McCreight, Chuck Thacker, John Zahorjan, and the referees for their helpful
comments.

REFERENCES

1. ARCHIBALD, J., AND BAER, J.-L. An economical solution to the cache coherence problem. In
Proceedings of the 11th International Symposium on Computer Architecture. IEEE, New York,
1984, pp. 355-362.

2. CENSIER, L. M., AND FEAUTRIER, P. A new solution to coherence problems in multicache
systems. IEEE Trans. Comput. C-27, 12 (Dec. 1978), 1112-1118.

3. DUBOIS, M., AND BRIGGS, F. Effects of cache coherency in multiprocessors. IEEE Trans.
Comput. C-32, 11 (Nov. 1982), 1083-1099.

4. FIELLAND, G., AND RODGERS, D. 32-bit computer system shares load equally among up to 12
processors. Electron. Design (Sept. 1984), 153-168.

5. FRANK, S. J. Tightly coupled multiprocessor systems speed memory access times. E/ectronics
57, 1 (Jan. 1984), 164-169.

6. GOODMAN, J. R. Using cache memory to reduce processor-memory traffic. In Proceedings
of the 10th International Symposium on Computer Architecture. IEEE, New York, 1!383,
pp. 124-131.

7. GOODMAN, J. R. Cache memory optimization to reduce processor-memory traffic. J. VLSI
Comput. Syst. 2, 1 (1986), in press.

8. KATZ, R., EGGERS, S., WOOD, D. A., PERKINS, C., AND SHELDON, R. G. Implementing a cache
consistency protocol. In Proceedings of the 12th International Symposium on Computer Archttec-
ture. IEEE, New York, 1985, pp. 276-283.

9. MCCREIGHT, E. The Dragon computer system: An early overview. Tech. Rep., Xerox Corp.,
Sept. 1984.

10. PAPAMARCOS, M., AND PATEL, J. A low overhead coherence solution for multiprocessors with
private cache memories. In Proceedings of the 11th International Symposium on Computer
Architecture. IEEE, New York, 1984, pp. 348-354.

11. RUDOLPH, L., AND SEGALL, Z. Dynamic decentralized cache schemes for MIMD parallel
processors. In Proceedings of the 1 lth International Symposium on Computer Architecture. IEEE,
New York, 1984, pp. 340-347.

12. SMITH, A. J. Cache memories. ACM Comput. Suru. 24,3 (Sept. 1982), 473-530.
13. SWEAZEY, P., AND SMITH, A. J. A class of compatible cache consistency protocols and their

support by the IEEE Futurebus. In Proceedings of the 13th International Symposium on Computer
Architecture. IEEE, New York, 1986, pp. 414-423.

14. TANC., C. K. Cache system design in the tightly coupled multiprocessor system. In Proceedkgs
of the 1976 AFIPS National Computer Conference. AFIPS, Reston, Va., 1976, pp. 749-753.

15. THACKER, C. Private communication, Digital Equipment Corp., July 6, 1984.
16. YEN, W. C., AND Fu, K. S. Coherence problem in a multicache System. In Proceedings of the

1982 International Conference on Parallel Processing. IEEE, New York, 1982, pp. 332-339.

Received November 1985; revised June 1986; accepted June 1986.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

