
Can dataflow subsume von Neumann computing?

Rishiyur S. Nikhil
Arvind

Massachusetts Institute of Technology
Laboratory for Computer Science

545 Technology Square, Cambridge, MA 02139, USA

Abstract: We explore the question: “What can
a von Neumann processor borrow from dataflow to
make it more suitable for a multiprocessor?” Start-
ing with a simple, ‘%ISC-like” instruction set, we
show how to change the underlying processor orga-
nization to make it multithreaded. Then, we extend
it with three instructions that give it a fine-grained,
dataflow capability. We call the result P-RISC, for
“Parallel RISC.” Finally, we discuss memory support
for such multiprocessors. We compare our approach
to existing MIMD machines and to other dataflow
machines.

Keywords and phrases: parallelism, MIMD, data-
flow, multiprocessors, multithreaded architectures

I Introduction

DatafIow architectures appear attractive for scalable
multiprocessing because they have mechanisms (a)
to tolerate increased latencies and (b) to handle
greater synchronization requirements [l]. Unfortu-
nately, these architectures have been sufficiently dif-
ferent that it has been difficult to substantiate or re-
fute this claim objectively. In this paper, we sidestep
this issue and continue a recent trend towards a syn-
thesis of dataflow and von Neumann architectures.
In [4, 31, Ekanadham and Buehrer explored the use
of dataflow structures in a von Neumann architec-
ture. Papadopoulos’ Monsoon dataflow processor
[13] uses directly-addressed frames instead of an asso-
ciative wait-match memory, showing a similarity to
von Neumann machines. Iannucci [9, lo] explored

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy othexwise, or to republish,
requires a fee and/or specific permission.

8 1989 ACM 0884-7495#9/0000/W62$01.50

a dataflow/von Neumann hybri.d architecture. In
this paper, we propose an architecture called P-RISC
(for Parallel RISC). Not only can it exploit both
conventional and dataflow compiling technology but,
more so than its predecessors, it can be viewed as
a dataflow machine that can achieve complete soft-
ware compatibility with conventional von Neumann
machines.

In Section 2, we describe the runtime storage
model and the simple, RISC-l.ike instructions on
which we base our work. By RISC-like, our pri-
mary implication is that there are two categories of
instructions-three-address instructions that operate
entirely locally, i.e., within a processing element, and
load/store instructions to move data in and out of the
processing element, without arithmetic [7, 14, 15, 181.
Further, the instructions are simple and regular, suit-
able for pipelining. Nevertheless, our storage model
is unusual.

In Section 3, we change the underlying processor or-
ganization to make it multithreaded (a la HEP), it-
self an improvement for multiprocessors. In Section
4, we extend it with three instructions, giving it a
fine-grained, dataflow capability, making it an even
better building block for multiprocessors. Section 5
discusses memory support for such multiprocessors;
Section 6 discusses some of the serious unresolved
engineering issues, and Section 7 concludes with a
comparision with other work. Our concern here is
with asynchronous, MIMD mod’els. This covers most
current and proposed parallel machines, such as the
HEP, BBN Butterfly, Intel Hypercube, IBM RP3,
Cray YMP, IBM 3090, Sequent, Encore, etc., and ex-
cludes machines like the Connection Machine, Warp,
and VLIW machines.

2 The runtime model

2.1 Trees of frames, and heaps

Consider the following progiam:

262

procedure h(x) . . . ;

procedure g(y) . . . h(a) . . . ;

procedure H() . . . g(e1) . . . h(e2) . . . ;

A sequential implementation uses a stack of frames
(activation records) which goes through the config-
urations of Figure 1 (our stack grows upward). At
each instant, only the code for the topmost frame
is active-lower frames are dormant. In a parallel
1 1

I Figure 1: Stacks of frames (sequential) I

implementation, however, M may call g and h concur-
rently, and g may call h concurrently as well, i.e., all
frames may exist concurrently. We must generalize
the structure to a tree of frames (Figure 2). Further,
at each instant, the code for any of the frames can be
active, not just at the leaves.

Figure 2: Tree of frames (parallel)

Another difference is in loops. Sequential loops nor-
mally use a single frame. In parallel loops, however,
we need many frames in order that multiple iterations
may run concurrently. Still, it is a tree structure: all
frames for iterations of a loop have the same parent,
and any procedure calls from the loop body are sub-
trees above the iteration frames. The set of paths to
the root frame, in the parallel implementation’s tree
of frames, corresponds to the states of the sequential
implementation’s stack.

Of course, frames are not enough. In many modern
programming languages, e.g., Lisp, Smalltalk, ML,
Id, etc., it is possible for the lifetimes of data struc-
tures to differ from the the lifetimes of frames. Thus,
data structures must be allocated on a global heap.

A pair of frames can share values in two ways. They
may both refer to a common ancestor frame (by lex-

ical scoping), or they may both refer to a data struc-
ture in the heap. In this paper, we will only consider
the latter mechanism, as lexical scoping of scalars can
always be eliminated by “lambda-lifting” [ll],

To summarize: our runtime model of storage consists
of a tree of frames and a global heap memory, with
frames containing pointers into the heap.

2.2 Processing Elements, Continua-
tions and sequential “RISC” code

How is this abstract storage model mapped to a mul-
tiprocessor? We assume..an. interconnection of Pro-
cessing Elements (PEs) and Heap Memory Elements
(see Figure 3). Each PE has local memory for code
and frames. Even though the memories may be phys-
ically distributed, we assume a single, global address
space for all memories.

P& (Processing
Elements) and

Figure 3: P-RISC multiprocessor organization

At each instant, a PE runs a thread of computa-
tion, which is completely described by an instruction
pointer IP, and a frame pointer FP. The IP points into
code in the PE, and the FP points at a frame in the
PE (see Figure 4). We can regard this pair of pointers
as a continuation, or “flyweight” process descriptor,
and we use the notation <FP. IP>. They correspond
exactly to the “tag” part of a token in the termi-
nology of tagged-token dataflow. It is convenient for
continuations to have the same size as other values,
e.g., integers and floats, so that continuations can be
manipulated as values.

As a running example, we use the following procedure
that computes the inner-product of two vectors A and
B of size n:

def vip A B =
x 8 = 0
In (for i C- 1 to n do

next s = s + A[il * BEil
finally 833 ;

S is zero for the first iteration of the loop. For each
subsequent iteration, s has the value from the previ-
ous iteration plus the product of two vector compo-
nents. The value of the entire expression is the value

263

Figure 4: A continuation

of s in the final iteration. We use the language Id
[12], but other parallel languages are also acceptable.

Every instruction is executed with respect to a cur-
rent FP and IP. All arithmetic/logic operations are
3-address frame-t-frame operations, e.g.:

plus al s2 d

which reads the contents of frame locations
FP+sl and FP+s2 and stores the sum at FP+d.
“Compare sl s2 d” compares the values at FP+sl
and FP+s2 and stores a condition code at FP+d. A
j cond instruction:

jcond s IPt

(for various conds) reads a condition code from FP+s
and changes IP to IP+I or IF% accordingly. For com-
puted jumps, a variation would be to pick up IPt
from the frame.

“Load a x” and “Store x a” move data between
frame location FP+x and the heap location whose ad-
dress is in the frame at FP+a.

The instruction set is RISC-like in the following
sense. All arithmetic operations are local to the PE.
Load and store are the only instructions for moving
data in and out of the PE, and they do not involve
any arithmetic. Thus, instruction fetches and frame
accesses involve local PE memory only, and no net-
work traffic. Further, the arithmetic instructions are
simple and regular so that they can be pipelined.

Sequential code for vip is shown in Figure 5 with the
frame shown on the right (for expository reasons, we
use more frame slots than necessary).

load-immed 0 s
load-immed 1 i

LOOP :
compare i n b
jgt b DONE
plus A i aA
load aA Ai
plus B i aB
load aB Bi
mult Ai Bi AiBi
plus s AiBi s
incr i i
jump LOOP

DONE:

Frame

. . .

Figure 5: Sequential code for vip

2.3 Frames as register sets

In most RISCs there is a local register set, and both
frames and heap are non-local [15,7]. To reduce non-
local traffic, one can have more: registers, have mul-
tiple register sets (as in the HEP and Berkeley RISC
[14]), or provide instruction and data caches.

In P-RISC, we think of a frame as being local and
synonymous with a register set. The collection of
frames on a PE is regarded as a, collection of register
sets, a particular register set being identified by an
FP.

The total frame memory in a PE is likely to be large.
This is inconsistent with the requirement for two
reads and a write per cycle. We think that a high-
speed cache that holds some subset of frames is nec-
essary. An attempt to execute a continuation that
refers to a missing frame will cause a fault, trigger-
ing a swap of frames between the cache and frame
memory. Such a cache implementation would per-
haps be simplified if frames were of fixed size. The
compiler may have to split large code blocks to meet
this requirement.

2.4 Problems: memory latency and
distributed memory

A major problem in our vip code is the latency of
the loads. The round trip to heap memory can take
significant time, especially in a multiprocessor. A
cache may help, but even caches are less effective
in multiprocessors. Thus, a processor may idle dur-
ing a load, thereby reducing performance. In bus
or circuit-switched networks, long-latency loads can
also interfere mutually, also degrading performance.
Ideally,

264

1.

2.

3.

4.

Loads should be split-phase transactions (request
and response) so that the path to memory is not
occupied during the entire transaction.
The processor should be able to issue multiple
loads into the network before receiving a response,
i.e., the network should be a pipeline for memory
requests and responses.
The processor should be able to accept responses
in a different order from that in which requests
were issued. This is especially true in a multipro-
cessor, where distances to memories may vary.
The processor should be able to switch to another
thread of computation rather than idle.

Many previous processor designs address this issue
to varying degrees. The Encore Multimax uses split-
phase bus transactions but a particular PE can have
only one outstanding load. The CDC 6600 [18], the
Cray [16], and some RISCs can pipeline memory re-
quests, but requests must come back in the same
order. The IBM 360/91 could pipeline memory re-.
quests and receive them out of order, but there was
a small limit to the number of such outstanding re-
quests. Further, in all these cases there is significant
added complexity in the processor circuits. A more
detailed discussion of this issue is in [I]. An alter-
native is to make the processor multithreaded (d la
HEP [17]).

3 Multithreaded RISC

Maintaining the same instruction set, we change the
underlying processor organization to support fine-
grained interleaving of multiple threads.

In most high-performance machines (including
RISCs), the instruction pipeline is single-threaded,
i.e., consecutive entities in the pipeline are instruc-
tions from the same thread, from addresses IP, IP+l,
IP+2, and so on. This introduces some extra com-
plexity in the detection and resolution of inter-
instruction hazards. Further, long latency instruc-
tions such as loads disrupt the pipeline and add com-
plexity. The HEP’s pipeline, on the other hand,
was time-multiplexed among several threads [l?]. On
each clock, a different thread descriptor was inserted
into the pipe. As they emerged from the end of the
pipe, they were recirculated via a queue to the start
of the pipe. Thus, there was no hazard between con-
secutive instructions in a particular thread. Further,
when a thread encountered a load, it was taken aside
into a separate pool of threads waiting for memory
responses; thus, threads did not block execution of
other threads during loads. Unfortunately, the num-
ber of threads that could be interleaved in the pipe
and the number of threads that could be waiting for
loads was limited.

For multithreaded RISC, we generalize the HEP ap-
proach to an arbitrary number of interleaved threads.
The organization of the PE is shown in Figure 6. Re-
call that our thread descriptors (continuations) are
<FP. IP> pairs. Since they are circulated in the pro-
cessor, we also refer to them as tokens. Tokens reside
in the token queue (like the HEP’s PSW queue). On
each clock, a token <FP. IP> dequeued and inserted
into the pipeline, fetching the instruction at IP and
executing it relative to the frame at FP. The pipeline
consists of the traditional instruction fetch, operand
fetch, execution and operand store stages. At the end
of the pipe, tokens are produced specifying the con-
tinuation of the thread; these tokens are enqueued.

For arithmetic/logic instructions, the continuation is
simply <FP. IPtl>. For the jump instruction, the
continuation is simply <FP . IPt>. For j cond in-
structions, the continuation is either <FP. IP+i> or
<FP. IPt>, depending on the condition code in FPtx.

The first interesting difference arises in the load in-
struction. A heap address a is fetched from frame
location FPta, and the following message is sent into
the network:

<READ,a,FP.IP+l,x>

There is no continuation inserted into the token
queue! Meanwhile, the pipeline is free to process
other tokens from the token queue. Some of them, in
turn, may be loads, pumping more READ messages
into the network.

The READ messages are processed by Heap Memory
Elements, which respond with START messages:

<START,V,FP.IP+l,x>

When such a message enters the PE, the value v
is written into the location FP+x, and the token
<FP.IP+I> is inserted into the token queue. Thus,
the thread descriptor travels to the heap and back.

A store fetches a heap address a from frame loca-
tion FP+a, and a value v from FP+x, and sends the
message:

<WRITE,a,u>

into the network. A Heap Memory Element receives
this, and stores the value. Meanwhile, the token
<FP. IP+l> emerges from the pipe and is inserted into
the token queue.

3.1 Discussion

Notice that we have achieved our goals:

l loads are split-phase transactions,
l any number of loads can be pipelined into the

communication network,
l responses can come back in any order

265

PE organization:

Token
queue

code

Frames

4 Instructi$ Fetch 1

Instruction set summary:

Format Frame operations Continuations Outgoing messages

Ordinary RISC-like instructions:
op sl s2 d [FP+sl] op [FP+s21 + FP+d <FP.IP+I> --
jump IPt - <FP.IPt> --
jcond x IPt [FP+xl + <FP.IPt> or <FP.IP+l> --

(depending on [FPtxl)
load a x CFPtal + none <READ.CFP+al,

store x a CFPtxl,CFPtal + cFP.IP+I>

FP.IP+l,
X>

<WRITE,CFPtal,
[FP+xl>

Incoming messages (from memory, other PEs):
<START,v,FP.IP,y> 1 v + FP+y 1 <FP.IP>

P-RISC instructions (extensions for fine-grained parallelism):
fork IPt - <FP.IP+l>, <FP.IPt>
join x toggle CFPtxl if LFPtxl: none

if 1 [FP+x]: <FP.IP+I>
start v c d [FP+v],[FP+c],[FP+d] -+ none

loadc a x IPr CFP+al + <FP. IP+l>

- --
-

--

<START, Cmwl,
CFP+cl ,
[FP+d]>

<READ,CFP+~I,
FP.IPr
x>

Figure 6: P-RISC Processing Element (PE) organization and instruction set summary

266

l The processor interleaves threads on a per-
instruction basis, and is not blocked during loads.
The number of threads it can support is the size of
the token queue. Assuming enough tokens in the
token queue, the pipeline can be kept full during
memory loads-the processor never has to idle.

In the HEP, too, each thread could issue a load. The
main difference is that the HEP had a small limit on
the’number of threads and outstanding loads. The
HEP had another limitation shared by our multi-
threaded PE: even though there can be many out-
standing loads from multiple computations, a partic-
alar computation can have no more than one out-
standing load. We correct this situation next.

4 P-RISC: An extension for
’ fine-grained parallelism

In any multithreaded system, there must be a way to
initiate new threads and to synchronize two threads.
Often, these involve operating system calls, traps,
pseudo-instructions, etc. It is difficult to make
this cheap and so one avoids fine-grained parallelism
which, in turn, reduces the exploitable parallelism in
programs.

We extend the multithreaded RISC to P-RISC with
two instructions for thread initiation and synchro-
nization. It is important that these are simple in-
structions-not operating system calls-that are ex-
ecuted entirely within the normal processor pipeline
(again, please refer to Figure 6):

l Fork IPt is just like a jump, except that it pro-
duces both CFP, IPt> and <FP,IPtI> tokens as
continuations.

l Join x toggles the contents of frame location
FP+x. If it was zero (empty) it produces no contin-
uation. If it was one (full) it produces <FP, IP+l>.

4.1 Inner-product revisited

Figure 7 shows, in outline, a new control flow in order
to do the two loads concurrently. The corresponding
code is shown in Figure 8 along with its frame. The
frame has an additional location w used by the join,
initialized to zero (empty) in the third statement.

The fork produces two continuations: <FP .LOADAi>,
i.e., the next instruction, and <FP .LOADBi>. Then,
both address calculations and loads are executed con-
currently. When the load in the LOADAi sequence is
executed, it sends the continuation <FP. LOADAi+2>
in its message to heap memory (LOADAit2 points at
the jump SYNCH instruction). When the response ar-
rives, the value is written into frame location Ai, the

I

*

fork
r-- “1

Figure 7: Sequential and parallel control flows
the two loads

for

load-immed 0 s
load-immed I i
load-immed 0 w % new

LOOP :
compare i n b
ji3t b DONE
fork LOADBi % new

LOADAi :
plus A i aA
load aA Ai
jump SYNCH % new

LOADBi:
plus B i aB
load aB Bi

SYNCH :
join w % new
mult Ai Bi AiBi
plus s AiBi s
incr i i
jump LOOP

DONE :

Frame

. . .

Figure 8: Code for concurrent loads

jump is taken, and join w is executed. When the
LOADBi sequence is executed, it sends the continu-
ation CFP .SYNCH> in its message to heap memory.
When this response arrives, the value is written into
frame location Bi and join w is executed.

Thus, join w is executed twice, once after the com-
pletion of each load. The first time, it toggles the
location FPtw from empty to full and nothing further
happens. The second time, it toggles it from full to
empty and execution continues at the mult instruc-
tion. Note that the order in which the loads complete
does not matter. Also, note that the location FP+w
is ready for the next iteration as it has been reset to
empty.

261

4.2 Fine-grained dataflow

With lightweight fork and join instructions, it is
possible to simulate the fine-grained asynchronous
parallelism of pure dataflow. For example, the top
of Figure 9 shows a classical dataflow “+” instruction
(at address IPO). When tokens tl and t, arrive on its
input arcs carrying values, it “fires,” i.e., consumes
the tokens and produces tokens carrying the sum on
each of its output arcs, destined for instructions at
IPl and IP2. -

Dataflow Graph G %
x IPO +

IPl IP2

P-RISC Control Flow Graph
I I

Frame

FP
Code

a

W

IPO :
1

join w r

SY
lue 1 r 0 0

ork IP2
jump IPl

Figure 9: Dyadic dataflow “+” instruction in P.
RISC

The P-RISC control graph is shown next, followed by
the P-RISC code and frame. The slots 1 and r are
used to hold the left and right input values, respec-
tively; the slot o is used to hold the output value, and
the slot w is used for synchronization.

Corresponding to the dataflow graph producing tl,
there would be some P-RISC code that stores the
left input value in 1 and inserts <FP. IPO> in the to
ken queue. Similarly, some P-RISC code would store
the right input value in r and insert an identical to
ken <FP . IPO> in the token queue. Thus, getting past
the join is a guarantee that both inputs are avail-
able. The last two instructions place the two tokens
<FP. IPI> and <FP. IP2> in the token queue. With a

little analysis, it is fairly easy to do better, i.e., to
have fewer joins than might be required by such a
direct translation.

4.3 Extracting more parallelism

So far, the iterations of our inner-product program
went sequentially, with just the two loads of each iter-
ation proceeding concurrently. In principle, however,
all 2n loads are independent, and .a11 n multiplications
are independent of each other. A loop compilation
scheme that achieves this concurrency is described in
[2, 193, along with optimizations permitting reuse of
frames. Here, instead, we outline a recursive refor-
mulation that is easier to describe:

def vip A B = vip-aux A B 1 ;

def vip-aux A B i =
if i > n then 0
else

A[i]*B[i] + (vip-aux A B (i+l)) ;

The recursive call can be done concurrently with the
two loads Further, the multiplication can be done be-
fore the recursive call has completed, as soon as both
loads have completed (Figure 10). All 2n loads can

--
Is ‘oin

0 mlllt --
‘oin

8 lus

Figure 10: Control graph for concurrent loads and
iterations

be issued in parallel, the responses can come back in
any order, and the multiplications are performed in
an arbitrary order, automatically scheduling them-
selves as the load-responses arrive.

The additions in our program still proceed sequen-
tially, and it would be easy to write a divide-
and-conquer version where this is not so. How-
ever, the program as it stands dramatically illus-
trates that even in “apparently” sequential programs,
there is much parallelism to be exploited by our

268

architecture-all index calculations,
tiplications can be done in parallel.

4.4 Procedure call/return

loads and mul-

There is no specific architectural support for proce-
dure linkage- it is purely a compilation issue. In
[2, 191, a mechanism is described that is capable
of supporting the high degree of parallelism in non-
strict function calls. We summarize it here in P-RISC
terms, keeping in mind that it is always possible to
constrain it for less parallelism.

Suppose g calls h with n arguments. We can visualize
this as storing n values into h’s frame and initiating
n corresponding threads in h. Similarly, to return m
results, we store m values in g’s frame and initiate m
threads in g.l All this can be done asynchronously,
i.e., the n arguments and m results can be sent in
any order. A fact often surprising to those unfamil-
iar with nonstrict functional languages is that it is
possible to return results before all the arguments
have been sent! For example, if h computes a vector-
sum, it could allocate and return a pointer to the
result vector even before it received the input vec-
tors (assuming the size is known beforehand). This
caller/callee overlap is a tremendous source of paral-
lelism.

There is only one synchronization requirement-the
j’th thread
gument has
for returned
tion:

start dv

which reads

in h must not begin until the j’th ar-
been stored in its frame (and similarly
results). For this we use a new instruc-

dFPIP dd

a value v from FP+dv, an <FP .IP> con-
tinuation from FP+dFPIP and an offset d from FP+dd,
and sends the message:

CSTART,u,FP.IP,d>

to the destination PE. No continuation is placed in
the token queue. We have already seen START mes-
sages (memory responses); when one arrives at a PE,
it writes a value into a frame and initiates a thread.

A possible linkage convention is this. Let the first
instruction in h be at IPh. Let FPh point at its frame.
In g, we fork a thread for each argument. The j’th
thread ends in a start instruction that sends:

<START,argj ,FPh.IPhtj, j>

This deposits the argument into FPh+j and initiates
a thread at IPh+j. Returned results are handled sim-
ilarly. The only subtlety is that g needs to send extra
arguments to h that describe its own slots and con-
tinuations that await the results.

IOf ~cm.rse, other threads may be active in g throughout.

The only remaining issue is frame allocation and deal-
location. Since simple stack allocation will not do,
g issues a call to a frame manager which returns a
pointer to a frame allocated from a free list that it
maintains in frame memory. The manager call is it-
self a split-phase transaction, so that other computa-
tions may proceed concurrently. The frame manager
is not an ordinary procedure. It has a fixed, known
context (frame), and is coded as a critical section,
responding to requests in the order that they arrive.
Requests that arrive while it is servicing a previous
request are queued, possibly in I-structure memory.
In a multiprocessor, there will typically be a frame
manager on each PE, and these managers also per-
form load balancing to ensure that frames are evenly
distributed across PEs.

After all results are received, g sends FPh back to the
frame manager for deallocation. Many details are de-
scribed in [2, 191, including automatic recirculation of
frames and the generation of “self-cleaning” graphs
to guarantee that a frame is not returned while there
are still references to it. Frame allocation and deal-
location does not need general garbage collection.

4.5 Discussion

Every join is fetched and executed twice. The first
time, it introduces a bubble into the pipe because the
thread dies. These bubbles correspond to the bubbles
in the pipe of a Tagged-Token Dataflow Architecture
when the wait-match operation fails (first token to
arrive at a dyadic operator) [2, 5, 81.

Arithmetic instructions do two reads and one write
into a frame. There is a potential hazard if two suc-
cessive instructions in the pipe compete for the same
frame location. To avoid this, many machines use
reservation bits to stall the pipe. In a multithreaded
machine, successive instructions can be from unre-
lated threads and are thus less likely to compete for
the same location. This may mitigate, but not elim-
inate, the problem. In the HEP, an instruction was
converted into a no-op and recirculated if it accessed
an empty register.

If code is systematically and directly compiled from
dataflow graphs (as in the “*” example in Section 4.2)
we can, in fact, guarantee that, with one exception,
such hazards will not arise-there will always be an
adequate number of joins to prevent races between
normal instructions. The exception is that there can
still be a race between two join instructions. Each
join reads a location, tests it, toggles it, and writes it
back, and this must be atomic. If the next instruction
in the pipe is a join for the same rendezvous location,
the pipeline must be stalled.

We described a join as referring to an entire location,
even though it needs only one bit. Several variations

269

are possible. The ‘bits for all join locations in a frame
could be packed into a few frame locations. Or, we
could generalize it to an n-way synchronization: the
frame location x is initialized to n - 1; a “join x n”
instruction decrements it and dies if it is non-zero; if
zero, it is reinitialized to n and the thread continues.

The start instruction and START message take three
parameters: a value, a tag <FP.IP> and an offset d.
An obvious variation is to combine the latter two:
<FPd. IP>, where FPd = FP+d. The value is stored
directly at FPd and the tag <FPd. IP> enqueued. The
thread at IP can then adjust the frame pointer back
to FP by subtracting d.

We can see that loads are frequently surrounded by
forks and jumps to gain concurrency. It is thus use-
ful to have the following ‘load and continue” instruc-
tion:

loadc a x IPr

It picks up a heap address a from FP+a, sends the
message:

<READ,a,FP.IPr,x>

and continues at IP+I. Thus, it does an implicit fork.
It simplifies the code of Figure 8:

LOOP :
. . .
jgt b DONE
plus A i aA

loadc aA Ai SYNCH
plus B i aB
load aB Bi

SYNCH :
. . .

5 Memory support for fine-
grained parallelism

We have seen the following behavior for a Heap Mem-
ory Element. It receives two kinds of messages and re-
sponds with one kind of message. On receiving:

<READ,a,FP.IP,d>

it reads value v from location a and responds
with:

<START,v.FP.IP,d>

On receiving:

<WRITE, a, 0

it writes the value v into address a.

However, this is inadequate, because it does not pro-
vide synchronization-a READ for a location may ar-
rive from PEo before the corresponding WRITE from

PEi. To solve this, we extend the behavior of Heap
Memory Elements in the direction of “I-Structures”
[2]. Every location has additional presence bits that
encode a state for that location.

For producer-consumer situations, we introduce two
new types of messages. On receiving:

<I-READ,a,FP.IP,d>

if the location a is full, it behaves like an ordinary
READ. If it is empty, the location contains a “deferred-
list” (initially nil). Each list el,ement contains the
(FP. IP,d) information of a pending read. The in-
formation in the current I-READ :message is added to
the list. On receiving:

<I-WRITE,a,u>

if the location a is empty, for each (FP. IP,d) in the
deferred list, the memory sends out a message:

<START,v,FP.IP,d>

and, finally, v is written into a. Thus, I-READS can
safely arrive before the correspo:nding I-WRITES. Of
course, this assumes that the location is written only
once; it may be possible to guarantee this at the lan-
guage level and/or by compiler analysis (e.g., it is
easy in functional and logic languages).

There are, of course, other useful messages that can
be processed by Heap Memory Ellements, such as ex-
changes, test-and-sets, etc.

6 Implementation issues

Our development of P-RISC went as follows:

Start with a RISC-like instruction set, i.e., a
load/store instruction set in which most in-
structions are simple, regular, 3-address frame-to-
frame operations. Many variations on our instruc-
tion set are possible. In particular, it is possible
to take the instruction set of .an existing, commer-
cial RISC and to generalize it in the direction of a
P-RISC. This would facilitate a smooth transition
for software development. One of the attractions
of P-RISC is that it can use both conventional
and dataflow compiling technology.
Make it multithreaded, using a token queue and
by circulating <FP. IP> tokens (thread descrip-
tors) through the processor pipeline and token
queue. Loads are split-phase-request to mem-
ory and response, so that the processor pipeline
and the interconnection network are not blocked
in the interim. Request and response messages are
identified by the full continuation, so that the syn-
chronization namespace is the full address space,
network traffic can be pipelined, and responses
may arrive in any order.

270

PEs. The loadc instruction is a useful optimiza-
tion.

l Introduce synchronization in the Heap Memory
Elements using I-structure semantics.

l Introduce fork and join instructions that are ex- I-structure write, on the other hand, can trigger an
ecuted in the processor pipe, and a start instruc- arbitrary number of continuations since it may have
tion to communicate between frames on different any number of consumers.

Compiler analysis of lifetimes and accessibility of
variables can reveal additional information that can
make use of the cheaper synchronization and better
locality of frame storage by allocating data structures

Frames as register sets

This is perhaps the most serious implementation issue
in P-RISC. Our dataflow experience indicates that
total frame memory requirements are likely to be
larae. As mentioned earlier, the necessity for two
reads and a write on each cycle will probably re-
quire an implementation that uses a cache for a sub-
set of frames. With current technology, it should be
possible to build a cache that can hold hundreds of
frames. When a token referring to a missing frame is
dequeued, it will trigger a fault that causes a frame to
be swapped between the cache and the frame mem-
ory. It may be possible to continue executing other
tokens during the swap. To avoid thrashing, the com-
piler/hardware would have to give preference to to-
kens in the token queue that refer to frames currently
in the cache. Note that in P-RISC, a small num-
ber of frames can support a large number of concur-
rent threads, because of the fine-grained concurrency
within a procedure activation or loop iteration.

in frames instead of on the heap.

7 Comparison with other work

The work of Ekanadham and Buehrer was an impor-
tant step in exploring the use of dataflow structures
in a von Neumann architecture [4, 31. Halstead and
Fujita proposed a multithreaded processor architec-
ture for Lisp [S].

Papadopoulos’ Monsoon architecture [13] is a pure
dataflow architecture in the sense that tokens not
only schedule instructions but also carry data. Inter-
processor tokens are identical to intra-processor to-
kens. Since tokens carry data, only one frame opera-
tion is required in each pass through the pipe, un-
like P-RISC’s three frame operations. While it is
clear how to use dataflow compiling techniques for
Monsoon, it is not clear how to use compiling tech-
niques from conventional processors. Further, unlike
P-RISC, it is not easy to imagine an implementa-
tion that uses the conventional “FP+l” instruction
scheduling.

Storage classes

We described four kinds of stores-code, token
queues, frames and the global heap. For complete-
ness, e.g., for loading programs, debugging, garbage
collection, etc., additional instructions are necessary
to read and write all stores. An interesting possibility
would be to consider all local memory as a temporary
copy taken from the global store.

Instruction scheduling

In our description, the processor pipe and the token
queue formed a ring around which tokens were circu-
lated. An alternative is this: as long as a thread does
not die (due to load or join), continue executing the
same thread, using the normal “IP+l” scheduling of
a von Neumann processor; extract a token from the
token queue only when a thread dies. This solution
reintroduces the complexity of inter-instruction haz-
ard detection and resolution, but it does allow ad-
jacent instructions in a thread to communicate via
a small set of named high-speed registers. Also, it
could improve locality for a cache-based frame mem-
ory.

Closest to P-RISC is Iannucci’s dataflow/von Neu-
mann hybrid architecture [9, lo]. Every frame loca-
tion has full/empty presence bits. A load instruction
sends a request to memory along with the address of
the destination frame location, and execution con-
tinues at the next instruction. An operation that
tries to read an empty frame location traps, storing
its process descriptor in that location and marking it
“pending”; execution resumes at some other thread.
When a response returns from memory to a pend-
ing frame location, the value is exchanged with the
process descriptor residing there, and the process is
re-enabled. Thus, Iannucci’s architecture has split-
phase loads, loads can be pipelined, responses can
come in any order, and the namespace for waiting
threads is the address space of local memory.

The primary difference between Iannucci’s machine
and P-RISC is that he has presence bits on every lo-
cation in frame memory, and synchronization can oc-

Compilation issues cur in any instruction by using a synchronizing frame
access operation. In P-RISC, frame memory does not
have presence bits; instead, some locations-are inter-
preted as full/empty synchronization locations. Syn-
chronization occurs only at join instructions. Thus,
P-RISC is a simpler architecture, but it may execute

Synchronization occurs in two places-in frames dur-
ing a join, and in heap memory with I-structure op-
erations. The former is more efficient because it needs
no queueing- there is exactly one continuation. An

271

more instructions since synchronization is separated
from arithmetic instructions.

These comparisons are by no means exhaustive, and
much detailed design and experimentation remains
to evaluate P-RISC. We hope this paper will stimu-
late research in this direction. The focus of current
work at MIT is to take an existing RISC implemen-
tation and modify/extend it in the direction of P-
RISC, while maintaining software compatibility with
the original processor.

Acknowledgements: We thank current and past mem-
bers of the Computation Structures Group at MIT, espe-
cially G.P. Papadopoulos and R.A. Iannucci, for an excit-
ing and stimulating environment. We appreciate greatly
the ideas and comments of K. Ekanadham of IBM, and
the comments of S.L. Peyton Jones and K.J. Ottenstein.
Funding for this work is provided in part by the Advanced
Research Projects Agency of the Department of Defense
under the Office of Naval Research contract N00014-84-
K-0099.

References

PI

PI

[31

PI

PI

PI

Arvind and R. A. Iannucci. Two Fundamen-
tal Issues in Multiprocessing. In Proc. DFVLR
Conf. 1987 on Parallel Processing in Science
and Engineering, Bonn-Bad Godesberg, W. Ger-
many, Springer- Verlag LNCS 295, June 1987.

Arvind and R. S. Nikhil. Executing a Pro-
gram on the MIT Tagged-Token Dataflow Ar-
chitecture. IEEE Trans. on Computers, 1989
(to appear). An earlier version appeared in Proc.
PARLE, Eindhoven, The Netherlands, Springer-
Verlag LNCS 259, June, 1987.

R. Buehrer and K. Ekanadham. Incorporating
Datahow Ideas into von Neumann Processors for
Parallel Execution. IEEE Trans. on Computers,
C-36(12):1515-1522, Dec. 1987.

K. Ekanadham. Multi-tasking on a dataflow-
like architecture. Technical Report RC 12307
(55198), IBM T.J.Watson Res. Ctr., Yorktown
Heights, NY, Nov. 1986.

J. R. Gurd, C. Kirkham, and I. Watson.
The Manchester Prototype Dataflow Computer.
Comm. of ihe ACM, 28(1):34-52, Jan. 1985.

R. H. Halstead, Jr. and T. Fujita. MASA: A
Multithreaded Processor Architecture for Paral-
lel Symbolic Computing. In Proc. 15th. Annual
Intl. Symp. on Comp. Arch., Honolulu, Hawaii,
June 1988.

PI

PI

PI

WI

PII

P21

P31

P41

1151

1161

P71

P31

WI

J. Hennessey. VLSI Processor Architecture.
IEEE Trans. on Computers, C-33(12):1221-
1246, Dec. 1984.

K. Hi&i, S. Sekiguchi, and T. Shimada. Sys-
tem Architecture of a Dataflow Supercomputer.
Technical report, Computer Systems Division,
Electrotechnical Lab., l-l-4 Umezono, Sakura-
mura, Niihari-gun, Ibaraki, 305, Japan, 1987.

R. A. Iannucci. A Dataflow/von Neumann Hy-
brid Architecture. Technical Report TR-418,
MIT Lab. for Computer Science, 545 Tech. Sq.,
Cambridge, MA 02139, May 1988.

R. A. Iannucci. Toward a Dataflow/von Neu-
mann Hybrid Architecture. In Proc. 15th. An-
nual Intl. Symp. on Camp. Arch., Honolulu,
Hawaii, June 1988.

T. Johnsson. Lambda Lifting: Transforming
Programs to Recursive Equations. In Proc.
Func. Prog. Langs. and Comp. Arch., Nancy,
France, Springer- Verlag LNCS 201, Sept. 1985.

R. S. Nikhil. Id (Version 88.1) Reference Manual.
Technical Report CSG Memo 284, MIT Lab. for
Computer Science, 545 Tech. Sq., Cambridge,
MA 02139, Aug. 1988. . ..

G. M. Papadopoulos. Implementation of
a General-Purpose Datallow Multiprocessor.
Technical Report TR-432, MIT Lab. for Com-
puter Science, 545 Tech. Sq., Cambridge, MA
02139, Aug. 1988.

D. Patterson. Reduced Instruction Set Comput-
ers. Comm. of the ACM, 28(1):9-21, Jan. 1985.

G. Radin. The 801 Minicomputer. In Proc. ACM
Symp. on Arch. Support of Prog. Langs. and Op.
Sys., pages 39-47, Mar. 1982.

R. Russell. The CRAY-I Computer System.
Comm. of the ACM, 21(1):63-72, Jan. 1978.

B. J. Smith. A Pipelined, Shared Resource
MIMD Computer. In PTOC. 1978 Int’l Conf. on
Parallel Processing, pages 6-8, 1978.

J. Thornton. Parallel Operations in the Control
Data 6600. In PTOC. SJCC, pages 33-39, 1964.

K. R. Traub. A Compiler for the MIT Tagged-
Token Dataflow Architectlure. Technical Re-
port LCS TR-370, MIT La.b. for Computer Sci-
ence, 545 Tech. Sq., Cambridge, MA 02139, Aug.
1986.

272

