
Wattch-alpha: A Power Analysis Simulator for Alpha Architecture 
 

CSE548 Computer Architecture Project 
Song Li, Zizhen Yao 

  
Abstract 
  

1. Introduction 
 Traditionally, power dissipation problem was a major concern largely in embedded 
system and portable computer community. Their goal is design low power chips that work within 
limited battery life. More recently, however, power issues are also becoming one of the major 
constraints in high-performance microprocessor design.  With fast increasing clock rate and 
transistors density, it is becoming more difficult to dissipate the heat produced by the chip 
efficiently.  Conventional air-cooling technique is already reaching its limits in today’s high-
performance microprocessors.  
  
 A number of power saving technologies have been proposed and widely deployed in 
current microprocessor design.  Voltage scaling is among the most important ones. Specialized 
lower-level circuit techniques, conditional clocking, and low swing busses all play a big role in 
power-efficient computer system. However, none of these techniques are sufficient for chips with 
fast increasing clock rate and die size. More aggressive approaches have to be taken.   
 
 Power analysis tools are needed to evaluate and quantifies the power efficiency of 
different architecture designs. Lower-level power tools such as PowerMill[1] operate on circuit or 
Verilog level. While providing pretty good simulation accuracy, they can be applied only at the 
late stage of architecture design when circuit level details are known. It would be more desirable 
to estimate the power consumption given the high level description of architecture to avoid the 
waste of efforts on inappropriate design. Tradeoff between simulation efficiency and accuracy 
has to be made.  Wattch is an architecture-level power analysis tool developed at Princeton 
University. Their power estimates are based on parameterized power models for different 
hardware and on resource utilization through cycle -level simulation. It is built on SimpleScalar. 
Wattch is orders of magnitude faster than low-level simulator. Compared to the published 
statistics of power consumption for commercial high-end microprocessors, the simulator gives 
consistent results across different processors, and across difference components of one processor, 
though the absolute power consumption is not accurate. Therefore, Wattch can be used a tool for 
comparison of power consumption of different architecture designs, but not for real power 
consumption estimation. Other similar power analysis tools include SimplePower[3] that 
simulates bus and memory system, and the PowerAnalyzer[4] on ARM architecture in 
SimpleScalar toolkits.   
 
 In this project, we extend the work in Wattch in the following ways: first, we make 
Wattch portable to Sim-Alpha simulator, and name it Wattch-Alpha (Wattch for Alpha processor). 
Sim-Alpha is a superscalar simulator based on alpha 21264 architecture, the state-of-art high-end 
microprocessor with published architecture design details. Sim-Alpha is claimed as a more 
realistic, detailed, and hopefully a more accurate simulator compared to SimpleScalar 3.0. In 
prospect that Sim-Alpha will be a more popular simulation tool in future, we design the power 
analysis tool based on Sim-Alpha, which is likely to yield more accurate simulation results for 
alpha-like microprocessors. We compute the simulation results of Wattch and Wattch-Alpha, and 
show that there are non-trivial differences between the two because of the underline differences in 



the architectures/assumptions made by SimpleScalar 3.0 and Sim-Alpha. Then, we apply Wattch-
Alpha to evaluate a FIFO-based microarchitecture for issue window design, and we show that this 
design can effectively reduce the complexity of the circuit, and thus saving power, while 
preserving good performance.    

 
 

2. Power Modeling Methodology in Wattch 
 
 In CMOS microprocessors, dynamic power consumption is the main source of power 
consumption. Dynamic power is dissipated when the device output capacitance is charged to 
VDD through the PMOS device and discharged to VSS through the NMOS device. This power is 
given by p=cv2af, where c is the load capacitance, v is the supply voltage, and f is the clock 
frequency. The activity factor a, is between 0 and 1 indicating how often clock ticks lead to 
switching activity on average.  For circuits pre-charge or discharge each cycle, the activity factor 
is 1. The activity factors of some other critical circuits are measured by running benchmark 
programs on architecture simulator. For some circuits, it is impossible to measure the activity 
factor, and base value of .5 is used.  
 
 Wattch use parameterized modeling techniques to estimate the capacitance for the 
circuits that make up the processor. For each hardware unit, the capacitance consists of three 
components: diffusion capacitance, gate capacitance and metal capacitance of wires (not 
necessarily all three). Wattch classified the main processor units into following four categories     
• Array structure: Data and instruction caches, cache tag arrays, register files, register alias 

table, branch predictor, instruction window, and load/store queue. 
Array structure is parameterized on number of rows, columns and read/write ports.  
The components modeled include decoder, wordline drive, bitline discharge, and output drive. 
Among them, wordline drive and bitline discharge accounts for bulk of the power 
consumption.  The wordline capacitance is computed as follows: 

Cwordline=Cdiff(WordlineDriver) + Cgate(CellAccess)*NumBitlines + 
Cmetal*WordlineLength 

The Bitline capacitance is computed similarly 
Cbitline= Cdiff(Precharge) + Cgate(CellAccess)*NumWordlines + Cmetal*BitlineLength 

  
• Fully Associative Content-Addressable Memories: Instruction window/ reorder buffer 

wakeup logic, load/store checks, TLB. 
The major components of CAM structures are taglines and matchlines. Again, the parameters 
are number of rows, columns and ports. The computation formula for the capacitance is  

Ctagline= Cgate(CompareEn) *TagSize+ Cdiff(CompareDriver) + Cmetal*TaglineLength 
Cmatchline= 2*Cdiff(CompareEn) *TagSize+ Cdiff(MatchPreCharge) + 

Cdiff(MatchOR)+Cmetal*MatchlineLength 
    
• Combinational Logic and wire: Function units, instruction window selection logic, 

dependency check logic, and result buses.  
ALU power in Wattch is a simple constant [6].  
Instruction window selection modeling [5] 
 CinstSelection= (DecodeWidth-1)*DecodeWidth* Ccompare 
Result buses modeling[7]: 

CresultBus=0.5* Cmetal*NumALU*ALUHeight + Cmetal * RegfileHeight 
 

• Clocking: Clock buffers, clock wires and capacitive loads. 



Clocking network is the most significant source of power consumption in microprocessor, 
which can be categorized into three sources: 
1. Global Clock Metal lines. Wires that route the clock across the processor. Wattch 

assumes H-tree network that clock routing paths all over the chip have same length, and 
have no clock skew.  

2. Global Clock Buffers: large transistors used to drive the clock throughout the chip.   
3. Clock Loading: both explicit and implicit clock loading are considered. Explicit clock 

loads include the gate capacitance of nodes directed connected to clock, while implicit 
clock loads include the load due to pipeline stages.  

 
Conditional Clocking: 

To accomplish more power saving for multi-ports hardware units, current CPU designs 
increasingly use conditional clocking to turnoff parts of a hardware that is not needed on a 
cycle to cycle basis. Wattch simulates three clocking style: 
1. All or nothing clock gating: assume full power consumption independent of number of 

accesses in one cycle. 
2. Linear clock gating: power consumption is in proportional to number of accesses.  
3.  Linear scale with port or unit usage, plus unused units dissipates 10% of their maximum 

power.  
   

3. Sim-Wattch Outline 
 In Wattch, the power models are interfaced with SimpleScalar. SimpleScalar simulates 5 
stages out-of-order processor: fetch, decode, issue/execute, writeback and commit. The simulated 
resources include fetch queue, issue queue, reservation update unit (RUU), etc. It contains 32 
integer registers and 32 floating point registers that make up architecture register files. For more 
accurate estimation of cycle time, Wattch assume three additional pipestages between fetch and 
issue, and seven cycles of mispredict penalty. Wattch keeps track of which units access on each 
cycle and how, and power model is applied on accessed units to estimate the power consumption.  
 

Unit Power Unit Access Counter 
Integer ALU ialu_access; 
Function Unit falu_access 
Branch Predictor bpred_access  
Renaming Logic rename_access  

window_preg_access  
window_selection_access  

Issue Window  (read operands, select 
ready instructions to FU,  
  wake up pending instructions) window_wakeup_access  

lsq_preg_access Load and Store Queue (read operands, 
wake up pending loads and stores) lsq_wakeup_access  
Register File  regfile_access 
Result bus  resultbus_access  
Instruction cache  icache_access  
Data Cache dcache_access  
Level 2 Data Cache Dcache2_access  
Clock  
Table 1:  Power consumption of hardware structures simulated by Wattch and access counter 

involved.  
 
 
 
 



4. Wattch-Alpha Design 
 We notice that Sim-Alpha and SimpleScalar has some architecture level differences. 
Some of them have great effect on the redesign of Wattch-Alpha based on Wattch. Below we 
describe some of these differences between Sim-Alpha and SimpleScalar, their impact on power 
consumption, and how we deal with such differences.   
   
1. Reservation station vs. Physical register architecture. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SimpleScaler 3.0, thus Wattch is based on Reservation station architecture, while Sim-Alpha, and 
our Wattch-Alpha uses baseline model.  In reservation station model, the reorder buffer holds 
speculative values and register file holds only committed, non-speculative data. In baseline model, 
register file holds both committed and speculative data. Another difference is, in the reservation 
station model, completing instructions broadcast results values to the reservation stations, while 
in the baseline model, the results are broadcast to issue window.   

There are no fundamental differences between the two except that the register file in baseline 
model is much bigger than the reservation station model. The physical registers can be viewed as 
reservation stations in some sense.  The differences are however, significant to our 
implementation.     
 
2. Number of pipeline stages. 

As we mention above, SimpleScalar has 5 pipeline stages: fetch, decode, issue/execute, 
writeback, and commit while Sim-Alpha has 6 pipeline stages, with one more slot stage between 
fetch and map (corresponding to decode stage in SimpleScalar). In slot stage, instructions are 
statically slotted to either UPPER or LOWER sub-clusters depending on their positions in the 

Fig.1. Reservation station architecture (adopted by Intel Pentium Pro, PowerPC) 

Fig.2. Baseline architecture (adopted by Alpha 21264, MIPS R10000) 



fetch packet and their resource requirement. Since we are not modeling slot logic power 
consumption, we do not keep it access counter.  

 
3. Fetch unit. 
Sim-Alpha fetches the whole block of instructions while SimpleScalar fetches each instruction 
separately. This will cause significant change of in performance. Sim-Alpha simulates aggressive 
speculative fetches and execution. All the instructions fetched in a block will be issued and 
executed unless pipeline is flushed. The actual number of issued instruction could vary 
significantly compared to number of committed instructions.  This will affect the number of 
accesses to almost all major units in the processors. Therefore power computation based on Sim-
Alpha could be very different from the one based on SimpleScalar, even if the power models and 
parameters used for the major structure units are similar.  

 
4. Line and set prediction.  

The Alpha 211264 instruction cache implements two-way associability via line and set 
prediction technique that combines the speed advantage of a direct-mapped cache with the lower 
miss ratio of a two-way set-associative cache [8]. Each fetch block of four instructions includes a 
line and set prediction, which indicates where is the next block of instructions.  Sim-Alpha 
simulates this design while it is not available in SimpleScalar. Line and set prediction is looked 
up at fetch stage, and updated at slot stage.  We do not simulate power consumption of Line and 
Set prediction at this stage due to time constraint.  

We notice some limitations of Wattch that may affect its accuracy. In Wattch, branch 
predictor access counter is updated only when branch predictor buffer is updated, and ignore the 
branch predictor buffer lookup at fetch or slot stage.  Though it is not accurate, we take the same 
approach due to our lack of knowledge in branch prediction circuit design. Similarly, Wattch also 
ignore the renaming table lookup at dispatch or map stage. Again, we are not addressing this issue 
here. We also notice that Sim-Alpha simulates larger instruction set compared to SimpleScalar 
3.0, which includes ITOF, FTOI, and two more addressing modes, DISP, RR. In ITOF, the 
instruction uses integer function unit, while Wattch assumes that the instruction will access 
floating-point unit. Wattch also assumes that load and store instructions do not access functional 
units, which is not true.  We have fixed this problem.  

 
5. Sim-Alpha simulate more Memory management units, e.g. mshr, victim buffer and bus. We 
ignore these structures in power consumption computation.  
 
5. Comparison of Wattch and Wattch-Alpha  

1.  Architecture configuration: 
To compare Wattch and Wattch-Alpha, we need to test under the similar architecture 

configuration, so that the results are comparable. We choose Alpha 21264 microprocessor as 
targeted simulation environment and use the same set of parameters. However, because Wattch is 
based on a different architecture, we cannot use exactly the same configuration. Summarization 
of the configuration we used for Wattch and Sim-Wattch is given in Table 2. 

  
There are some subtle differences between Wattch and Sim-Alpha in addition to the ones 

we discuss in section 4. In Wattch, load and store instructions share a single load/store queue, 
while in Sim-Alpha, load instructions and store instructions use different queues. Sim-Alpha can 
issue up to of 4 integer instructions and 2 floating point instructions at one cycle, while Wattch 
uses issue width of 4, independent instruction type. Wattch uses a shared issue queue for both 
integer instructions and floating-point instructions, while Alpha uses separate queues. Wattch-
Alpha conforms to Alpha architecture, therefore inherits these differences from Wattch.  

 



 Wattch Wattch-Alpha 
Fetch width 4 4 
Issue width 4 4(int), 2(float) 
Commit width 11 11 
Reorder Buffer size 32 80 
Issue window 32 20(int), 15(float) 
Load/store queue 64 32 (load) 32 (store) 
Register file  32 160 
Floating-point ALU 1 adder, 1 multiplier 1 adder, 1 multiplier 
Integer ALU 4 adder, 4 multiplier 4 adder, 4 multiplier 
L1 Data cache 
(nsize, bsize, asso) 

512, 64, 2 512, 64, 2 

Instruction Cache 512, 64, 2 512, 64, 2 
Dtlb  1, 64, 128 (fully associative) 1, 64, 128 (fully associative) 
Itlb 1, 32, 128 (fully associative) 1, 32, 128 (fully associative) 

  Table. 2. Configuration for Wattch-Alpha and Wattch. 
 

2. Maximum Power consumption analysis  
We first compare the power consumption of each structure when they are accessed based 

on power model only. Then we use execution-driven simulation to estimate runtime power 
consumption based on different conditional clocking scheme as we discussed in section 2.  

Table.3 summarizes the maximum power consumption of each component on chip. We 
do not include the L2 Data Cache because it is not defined in Sim-Alpha. Using power model, the 
estimated power consumption for a 2M direct-mapped L2 cache is about 10 W. We do not 
include the comparison to real Alpha 21264 power dissipation statistics because our simulator 
does not model power consumption the memory management units and I/O logic, which 
contribute more than 10% of total power dissipation. In addition, the published statistics for 
21264 [10] are very coarse-grained, and we cannot set up the direct mapping with the components 
that we simulate. The results are nevertheless quite consistent according to our observation. 

 
 Wattch-Alpha Wattch 
Branch Predictor   1.58118    (2.14%)  1.52119    (2.59%) 
Rename Logic   0.753685  (1.02%)  0.311073  (0.53%) 
Instruction Window   4.27723    (5.79%)  2.05246    (3.5%) 
Load/Store Queue   2.90389    (3.93%)  2.66736    (4.54%) 
Register File   7.62154    (10.3%)  1.77124    (3.02%) 
Result Bus   7.63545    (10.3%)  4.73024    (8.06%) 
Total Clock   19.8863    (26.1%)  16.7163    (28.5%) 
Int ALU   9.32026    (12.6%)  9.32026    (15.9%) 
FP ALU   7.14052    (9.66%)  7.14052    (12.2%) 
Instruction Cache   4.08059    (5.52%)  4.08059    (6.95%) 
Itlb_power (W)  0.080420  (0.109%)  0.080420  (0.137%) 
Data Cache   8.16117    (11%)  8.16117    (13.9%) 
Dtlb_power (W)  0.16084    (0.218%)  0.16084    (0.274%) 
Total Power Consumption 75.9282 60.7137 
Table 3. Power consumption of each structure computed by Wattch and Wattch-Alpha  
 



The major differences of power consumption estimated between Wattch and Wattch-
Alpha present in renaming table, instruction window, register file and result bus. This is due the 
difference of architecture design as we mentioned in the section 4. Other components have 
similar or the same power consumption.    
  
3. Run-time Power Analysis.   

Conditional clocking strategy that turns off unused units/ports is now widely applied in 
modern microprocessor like Alpha 21264. The power consumption is then heavily dependent on 
types of application. In the table below, we summaries the average power consumption of a set of 
benchmark programs tested on Wattch-Alpha for different condition clocking options as we 
defined in section2.  

 

0.00 
1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 

cc1 cc2 cc3 

rename 
bpred 
window 
lsq 
regfile 
icache 
dcache 
alu 
resultbus 
clock 

 
 

 
 
As shown in Fig.3, using conditional clocking can significantly reduce power 

consumption. Even with option "all nor nothing clock gating", the power dissipation is less than 
35 W in all cases, which is less than half than the maximal power consumption. It suggests that 
most components are idle most of the time. Conditional scaling is therefore, a power saving 
technique with great potential. In Fig.4 we show the power consumption for each component with 
conditional clocking scheme. Clock as always, is the top power consumer. Multi-ports structures, 
like register file, ALU, result bus consumes much less power in linear clocking scheme, which 
implies that conditional clocking technique should be applied on these structures.  
 

As we have showed in the power simulation above, associative structures are the major 
contributors to the power consumption on chip. Therefore, a lot of research on power saving 
techniques focuses on the issue of reducing associability. One of such research that looks 
particularly interesting to us is FIFO-based micro architecture [7,9]. This technique has been 
applied to design of issue window: instead of using fully associative wake up logic and expensive 
selection logic on all instructions in the issue queue, a set of FIFO queues are used, each contains 
a set of dependent instructions. Only the instructions on head of the queue can be issued, and the 
result bus only needs to broadcast/wakeup the instructions on the heads of the queue. This will 
significantly reduce the circuit complexity and power consumption. The idea behind the FIFO-
based microarchitecture is to exploit the natural dependence among the instructions. The key 
point is, dependent instructions cannot be issued in parallel. Limited instruction-level parallelism 
bounds the performances of superscalar machine, it also signifies the waste of excessive 
associative structures one the parallelism that will never present in practice. In the next section, 

0

5

10

15

20

25

30

35

gc
c

gz
ip

pa
rs

er

tw
ol

f

vo
rt

ex vp
r

All or Nothing Clk Gating

Linear Clk Gating

Linear Clk Gating w/ 10%

Fig.3 Power consumption with Conditional Clocking  Fig.4 Power consumption breakdown run on gcc 
(cc1: All or nothing, cc2: linear clk, cc3: linear clk w/ 10%) 



we first give a brief introduction of the FIFO-based microarchitecture, and discuss the power 
modeling of the FIFO-queue microarchitecture. Then, we propose a scheduling heuristics for 
instructions-queue allocation and analyze its performance. We have implemented the FIFO-based 
architecture in Wattch-Alpha. However, the current version is not stable with observed abnormal 
behaviors for NOP instructions. Instead of presenting the unreliable results we produced, we cited 
the results in [7] for reader’s reference.  
 
6. FIFO-based Microarchitecture 

The FIFO-queue microarchitecture is shown in Fig 3. Instructions are steering to FIFO 
queues after map stage. At map stage, each instruction checks whether its source operands are 
dependent on other live instructions. If yes, the instruction should be put to the same FIFO queue 
as the instruction that it is dependent on. In order to store the dependence information between 
the instructions, for each architecture registers that contains non committed value, we need to 
keep queue tag of the instruction that produce the result for the registers in a table. This table is 
referred as SCR_FIFO table in [7]. For example, if an instruction that need operand Ra, and Ra is 
the destination of instruction that is in queue q, which can be found in SRC_FIFO table, then the 
instruction should also be put into queue q.   

 
 
 

 
To implement FIFO-based microarchitecture, we need two additional structures: 

SCR_FIFO table and FIFO queues. At this point, we ignore the power consumption of steering 
logic, which allocate instructions to queues, whose complexity is heavily relied on the complexity 
of the scheduling algorithm it uses. The issue window now contains only the head of the queues. 
Both SCR_FIFO table and FIFO queues are implemented as RAM. SCR_FIFO is a RAM indexed 
by architecture register address, and each entry contains a queue tag of logN bits where N is the 
number of queue.  The RAM for FIFO queue has queue length number of entries, and the number 
of bits in each entry is equal to the data width of the system. Each FIFO queue has only one port 
for read, and one port for write, compared to the 2*issue-width number of read ports, and issue-
width of write port in a fully associative queue. Fully associative issue window can be treated as a 
special case of FIFO_based architecture in which queue length is one. In this case, SCR_FIFO 
and FIFO queues are not needed. In the power analysis we conduct below, we change the queue 
number (or queue length) while fixing the total number of entries in the issue window, i.e., 
keeping the product of number of queues and queue length constant, and compute the power 
consumption in each case. The results are given in Fig. 4.  

          

Fig.3. FIFO Queue Microarchitecture. 



 As we observe from Fig. 4, the power consumption increases significantly as the number 
of queues increases. All three components, SCR_FIFO, FIFO queues and issue queues have 
increasing power consumption as the number of queues increase. For SCR_FIFO, the power 
increases as Log (Queue_size), each look like linear in Fig. 4 since the queue number grow 
exponentially. The power for FIFO queue increases at the ratio less than 2, because as the queue 
length decrease, the power consumption for each queue decreases. The power for issue queue 
grows proportional to number of FIFO queues.    
 

Now let’s turn to the performance of FIFO-based queue. The overall performance of a 
FIFO-based microarchitecture is highly dependent on the amount of ILP that can be extracted 
relative to the conventional microarchitecture. If the number of queues is smaller than the 
available ILP, then performance will be compromised. The performance is also highly dependent 
on the strategy to allocate instructions to queues. Following is a simple heuristics that we use: 
 

If both operands of an instruction are ready, then assign it to an empty queue if there is one. If 
there are no empty queues, assign it to the shortest queue.  
 If the first operand is unavailable, assign the instruction to the same queue as the instruction that 
produces the operand. If the queue is full, check the second operand. 

If the second operand is unavailable, assign the instruction to the same queue as the instruction 
that produces its second operand. If the queue is full, select a nearby queue. 

 
 This heuristics works well if each instruction is dependent on the instruction right in front 
of it in the queue, and instructions belong to different queues have no dependence. However, 
instruction dependence graph is in general, a DAG. It is hard to partition instructions into queues 
to minimize the parallelism within a queue while maximize the parallelism among the queues. 
We present two cases, as shown in Figure 3, in which FIFO queue design degrade performance. 
In the first case, instruction 2, 3, 4, 5 are dependent on instruction 1, while they are independent 
of each other. They are steered into the same queue, waiting for the results from instruction 1. 
Once the first instruction is finished, instructions 2, 3, 4, 5 can be executed in parallel, 
theoretically. However, because they are in a same FIFO queue, they are executed sequentially, 
even if there are empty queues available, resulting in lower ILP. In case 2, instruction 5 is put in 
the same FIFO queue as instruction 1. When instruction 1 is finished, instruction 5 becomes the 
head of queue. However, instruction 5 is still waiting for its second operands, blocking instruction 
6. It is an inherent problem due to the inconsistency of FIFO-based model and DAG.  The 
scheduling problem of this type is NP-hard problem, and there is no easy fix. Moreover, 
scheduling algorithm for this problem should use as less circuit as possible, because our 

Fig 4. Power consumption for FIFO-based 
architecture (64 entries) 

Fig 5. Performance for FIFO-based architecture 
(cited from [7]) 

Power Consumption for issue window
(64 entries)

0
1
2
3
4
5
6
7
8

2 4 8 16 32 64

Number of FIFO queues

Po
w

er
 c

on
su

m
pt

io
n 

(W
) FIFO Queue

Source Table

Issue queue



motivation is to reduce the complexity of the system. Based on above reasons, we decide to use 
the above simple heuristic despite of its defects. To avoid the situations discussed in Fig, we limit 
the length of the queue, which partly alleviate the problem. The hope is, in practice, when the 
number of queues available is about the same or higher level of ILP in the program, the above 
situations is unlikely to happen.  
 

At this point, our implementation of FIFO-based architecture in Wattch still contains 

bugs caused by NOP instructions. Within the time constraint, we cannot produce reliable 
experimental results. Fig.5 presents the results given in [7]. Compared to fully associatively issue 
window of the equal entries, the FIFO-based architecture with 8 FIFO queues, each with 8 entries 
has cycle count numbers within 5% for five of the seven benchmarks, and the worst performance 
degradation is 8.7%.    
 
 
Discussion 

In this project, we have successfully developed Wattch-Alpha, version of Wattch that is 
portable to Sim-Alpha with justified modification. The experimental data show that the simulated 
power dissipation of Wattch-Alpha compared to Wattch fall within the expected scope, 
considering their architecture level differences.  Compared with published Alpha 21264 data, the 
estimated power consumption of Wattch-Alpha is 75 W, which is pretty close to 72 W in [10]. 
Power model in Wattch provides a general framework for power analysis and we find it a 
convenient tool to analysis the power consumption of a new architecture design FIFO-based 
architecture. 

The FIFO-based issue window design we studied in this project provides some hint of 
reducing power consumption without hampering the processor's performance too much. There's a 
considerable amount of energy spent on exploiting IPC, and since the marginal utility is 
decreasing with the energy spent on finding IPC, there will be a point, which varies from 
architecture to architecture, that the energy spent on looking for more IPC won't pay back as 
much as it should be. Either higher IPC needs to be found, or the energy should be saved for 
better usage. 

Conditional clocking is shown to be an effective way of saving energy. Current 
conditional clocking technology applies at functional unit level. With the increasing number of 
homogeneous architectures emerging, like Computational Cache and Nano-fabric architecture, 
conditional clocking can be used at a much finer level, i.e. certain block of fine-grained units can 
be turned off when not in use. The function of turning units on or off can be implemented by 

1 

2 3 4 5 

1 2 3 4 5 

1 5. 6   

2 3 4   

Case 1 1 

5 

2

3 

4 

Case 2 

6 

Figure 6: Two cases in which FIFO-based architecture has poor performance  



hardware. It can also be implemented by software, which hides the detail of the architecture from 
upper software, including operating system and the application.  
 
 
Reference 
 
[1].  Mentor Graphics Corporation, 1999 
[2].  Synopsys Corporation. Powermill Data Sheet, 1999 
[3].  N. Vijaykrishnam, M. Kandemir, M.J.Irwin, H,Y.Kim, and W.Ye. Energy-driven integraded 

hardware-software optimizations using SimplePower.  In Proc. The International Symposium 
on Computer Architecture, Vancouver, British Columbia, June 2000. 20. 

[4].  The SimpleScalar-Arm Power Modeling Project. http://www.eecs.umich.edu/~tnm/power/  
[5].  B. Bishop, T. Kelliher, and M. Irwin. The Design of a Register Renaming Unit. In Proc. Of 

Great Lakes Symposium on VLSI, 1999. 
[6].  M. Borah, R.Owens, and M.Irwin. Transistpr sizing for low power CMOS circuits.  IEEE 

Transactions on Computer Aided Design of Integrated Circuits and System.s 15(6):665-71,  
1996. 

[7].  S. Palacharla, N. Jouppi, and J. Smith. Quantifying the Complexity of SuperScalar 
Processors.  In Proc. Of the 24th Int’l Symp. On Computer Architecture, 1997 

[8].  R. E. Kesseler, E.J. McLellan, and D.A. Webb. The Alpha 21264 Microprocessor 
Architecture. Compaq Computer Corporation. 

[9]   S. Palacharla, N.P. Jouppi, and J.E. Smith, Complexity Effective Superscalar Processors, in 
Proc of the 24th. Int. Symp. on Comp. Architecture, 1997, pp 1-13.  

[10]M. K. Gowan, L. L. Biro, D. B. Jackson, Power Considerations in the Design of the Alpha 
21264 Microprocessor  35th Design Automation Conference, June 1998. 


