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1 Introduction

Simultaneous multithreading (SMT) is an
active area of research into an alternative ar-
chitecture for exploiting parallelism. It ad-
dresses the question of how to use the large
number of transistors available on modern
chips given the low IPC available from a sin-
gle thread.

It also requires examination of various
processor and architecture design decisions.
SMT processors may exhibit different cache,
branch-prediction, and utilization patterns
than conventional processors [10, 9]. While
studies of several of these factors have been
undertaken, there are many more variables
to be examined; each component found on
a conventional chip may behave differently
when several threads are competing for its
resources. All past studies have been under-
taken using simulations of SMT processors,
however, the users of the existing simulators
are frustrated by slow execution speeds and
difficulty of modifications.

By simulating the application-level only,
we aim to increase speed. By designing for

extensibility, we hope to make modifications
easier. And finally, by basing our simulator
on a popular, verified, and well-understood
Alpha simulator, we can provide more con-
fidence in its accuracy and share code and
documentation with other efforts.

2 Related Work

2.1 Application-Level Simula-

tors

Our work is a modification to the Sim-
pleScalar [1] Alpha simulator (sim-alpha).
Other groups have also modified Sim-
pleScalar to support various threading ar-
chitectures, including Superthreading and
multi-processors. They do not, however,
support simultaneous multi-threading. We
also have the advantage of starting our work
with a validated simulator [3], lending some
credibility to our results.

Previous SMT researchers have used both
application level simulation [10, 9, 5] and
full machine simulation [8]. While the later
category of simulators are important for
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studying certain workloads, the former can
provide higher performance, allowing longer
traces to be studied, and provide reasonable
accuracy for many workloads [8].

2.2 SMT

It is our intent to support future research
in simultaneous multi-threading by provid-
ing a flexible simulator. Though we cannot
predict all possible experiments or architec-
tural modifications, we have used the past
research to help anticipate and design for
changes.

A simulator-driven analysis of simultane-
ous multi-threading is presented in [10]; that
work demonstrates the need for flexibility
in the simulator. They present experiments
examining the IPC available when several
different restrictions on the issue stage are
in place. They examine the effect of shared
caches by modeling several different modes
for the L1 cache. Finally, they compare
SMT with chip multi-processors, varying is-
sue bandwidth, register sets, and functional
units. We expect that future simulations
will also need to adjust these parameters
and algorithms.

Our base-line simulator is intended to
closely mimic the architecture presented in
[9], which is very close to the Alpha 21164
with an added cycle of register latency. We
allow the user to specify this latency. Also
like their simulator, we provide detailed sim-
ulation of branch misprediction, including
per-thread pipeline flush. Noting that fetch
algorithms are a common experimental pa-
rameter, we have made the fetch stage es-

pecially easy to change.

Later work has looked at parallel pro-
cesses and the thread scheduling and shar-
ing effects on SMT processors [5]. To sup-
port this workload, we use a general model
in which several different multi-threaded
processes may be running concurrently (we
do not currently implement the syscalls
needed for spawning new threads, however).
We do not support any novel synchroniza-
tion primitives [11]. As described in [7],
simulations with more active threads than
hardware contexts reveal effects not seen
when every thread has a hardware con-
text. While our simulation does not cur-
rently support this configuration (we do not
support swapping-out hardware contexts to
memory) we have left that possibility open
for future work.

Some research has been done into regis-
ter deallocation schemes made possible or
useful by SMT processors [6]. While we do
not support any such extensions, we do not
require all of a thread’s architectural regis-
ters be mapped at any time, enabling ex-
perimentation.

Simultaneous multi-threading has also
been examined for non-traditional uses,
such as network processors [2]. Our work
would be difficult to extend to this area
because we simulate an application and do
not model IO, which is performed via fixed-
latency syscalls.
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3 Design

Designing a computer hardware simula-
tor presents interesting challenges from the
standpoint of software engineering. Because
it is a research tool, users are bound to need
to customize it. Because of the detail of
data that must be collected, it is liable to be
slow. The simulator designer must choose
throughout the design between flexibility of
change and speed of execution.

The authors of sim-alpha had the goal of
accurately simulating the application-level
execution of an existing processor, and val-
idating the simulator’s results against the
real thing [3]. Another goal of the authors
was to provide a baseline simulator that
could be extended by researchers in order
to experiment with new microarchitectural
ideas. Unfortunately, little documentation
is currently available about the inner work-
ings of the simulator, and the design is chal-
lengingly complicated.

Our goal has been to extend sim-alpha
to simulate SMT architectures in a man-
ner such that other researchers may eas-
ily implement modifications. Our first step
in this direction has been to sharpen the
rather blurry line between various modules
within the simulator. By restricting the in-
terface between modules, we hope to permit
experimenters to make local changes with-
out need for full global understanding of the
system. Our second step has been to vig-
orously apply procedural abstraction in or-
der to reduce the amount of code that must
be changed during modifications. Our final,
and probably most important step has been

to improve the state of the documentation
available. We have attempted to document
how various global variables form part of
the interfaces between different modules, to
document the proper use of functions and,
when necessary, to document how the code
actually carries out those functions. The
work is incomplete, but we believe it is still
useful.

3.1 Pipeline and Blackboard

The smtsim simulator employs a hybrid
pipeline-blackboard software architecture to
model execution characteristics of a single
hypothetical SMT processor. The black-
board (Figure 2) is the conceptual storage
space for all threads and processes, for the
physical register file, and for instructions.
Threads store information about individual
threads of execution, such as the current
program counter for the thread. Processes
store information about address spaces, and
every thread belongs to exactly one pro-
cess. Instructions store all of the informa-
tion used by the various pipeline stages to
simulate execution, such as op codes, depen-
dent instruction queues, and architectural
and physical register assignments. Every in-
struction belongs to one thread.

As shown in Figure 1, the pipeline con-
sists of six execution modules and eight ex-
plicit queues or buffers. The fetch execution
module constructs new instructions on the
blackboard using data from the simulated
memory. All of the other modules trans-
form those instructions, removing them if
they are no longer valid. All modules except
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fetch receive references to instructions on
the blackboard only via their input queues
and the dependency queues of other instruc-
tions. All of these queues and buffers are
accessed via a unified interface, called the
SMTQ interface.

3.1.1 Map

After the fetch execution module adds in-
structions to the blackboard, it passes them
on to the slot module via the FIFO Fetch
Queue. Once the slot module has added
its Alpha 21164-style slotting information
to the instructions, it passes them on to the
map phase via the FIFO Slot Latch. The
map phase adds instructions to the Reorder
Buffer, which is modeled as a queue with
unusual dequeuing semantics. Specifically,
the head of the reorder buffer is the oldest
instruction in the buffer that has completed
and has no older uncompleted instructions
in its thread. Note that at times, there is no
head of the buffer because no instructions
in it meet these criteria. In the case where
there is only one thread, the reorder buffer is
a FIFO queue that has a head only when the
oldest instruction in the queue is completed.
Since the map module adds instructions to
the reorder buffer in program order, the old-
est instruction in a thread is always the one
nearest the front of the queue. It is the
special semantics of the reorder buffer that
guarantee that instructions commit in order
on a per-thread basis, and that any thread
ready to commit instructions is allowed to
make progress. Interestingly, these seman-
tics also mean that the reorder buffer on a

SMT processor must probably be searched
frequently, making it challenging to keep off
of the critical path.

Once the map phase has placed an in-
struction into the reorder buffer, it takes
action based on the type of the instruction.
If the instruction is a load or a store, it is
added to the load or store queues, respec-
tively. Notably, the load and store queues
in the simulator’s implementation provide
no functionality not available from the re-
order buffer, and could probably stand to
be removed. If the instruction’s operands
are ready, map places the it into the appro-
priate issue queue.

3.1.2 Issue, Exec/Writeback

The issue and exec/writeback stages, and
their associated queues, form the out-of-
order core of the processor. While all other
stages and queues process (or store) in-
structions in program order, these stages
process as resources become available (re-
sources may be functional units or the re-
sults of previous instructions).

The issue queues provide instructions to
the issue execution module, which removes
instructions that can be scheduled onto
available functional units. Such instructions
are placed onto the writeback input queue,
prioritized by the time at which the func-
tional unit will finish executing. The write-
back execution module (Exec/Writeback in
diagram) removes instructions from its in-
put queue in priority order. For each in-
struction i that it removes, it marks as ready
the appropriate operands of all instructions
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dependent on the result of i. If those de-
pendent instructions now have all of their
operands ready, they are placed into the ap-
propriate issue queue. Writeback also marks
i as completed, possibly affecting the head
of the reorder buffer.

3.1.3 Commit

Every cycle, the commit queue removes
up to commit width completed instructions
from the head of the reorder buffer. For each
completed instruction i that it finds, it runs
the following procedure:

1. It checks to see if i is a trap, flushing
the pipeline of i’s thread’s instructions
if it is;

2. It retires any output registers by set-
ting the committed register table entry
for the architectural output register to
the instruction’s allocated physical reg-
ister;

3. It checks to see if i is a mis-predicted
branch, changing i’s thread’s program
counter to the correct target and flush-
ing the pipeline of i’s thread’s instruc-
tions if it is;

4. If the instruction is OK to retire, and
it is a store, commit allows the store to
go to memory;

5. If the instruction is OK to retire, com-
mit removes it from the blackboard, ef-
fectively retiring it.

3.2 Instructions

In the current implementation, instructions
are heavy-weight objects. Each instruc-
tion has three queues for holding references
to other instructions that depend upon it.
Two of those queues are for the standard
operands. The third is for the destination
of Alpha CMOV operations, since CMOV
depends upon the producer of the old value
of its destination register. Instructions also
store their PC value, information used for
the branch predictor, the physical and ar-
chitectural registers that are their targets
and sources, and various information that
determines when they are ready to execute.
It is important to realize that this informa-
tion is combined in order to simplify the im-
plementation of the simulator, not because
all of this information is stored together (or
even stored at all) in hardware implementa-
tions.

3.3 Multiple Thread Contexts

The biggest difference between a SMT and
a traditional super-scalar is the presence of
multiple thread contexts on the processor.

In our simulator, information about a
thread that is used by many modules is han-
dled by a special thread module, while in-
formation about a thread that pertains only
to a single module is handled by that mod-
ule. For example, the architectural regis-
ter file is a property of a thread handled by
the thread module, while the fetch status
of each thread is managed entirely by the
fetch module. In general, the thread module
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handles only those aspects of threads that
are shared between modules and necessarily
thread- or process-specific. An example of
something meeting the former criterion but
not the latter would be caches, which may
be globally shared or thread- private.

Within the thread module, data is either
thread-specific or process-specific. Thread
specific data are the data that pertain ex-
clusively to a specific thread context. Ex-
amples of this are the architectural regis-
ter file and the mapping from architectural
registers to physical registers. Process spe-
cific data are primarily data relating to the
virtual memory address space in which the
thread is operating.

To enhance software clarity and readabil-
ity, access to thread context information
is performed through accessor and muta-
tor functions. These functions are simple
enough to be in-lined by the compiler or re-
placed with simple macros, if they prove to
be a serious bottleneck. We believe, how-
ever, that other computations within the
simulator will dominate its runtime.

3.4 Mediator and Eventq

Two types of indirect invocation are used
to drive the simulator: implicit but immedi-
ate invocation, and delayed invocation. The
former is provided by the mediator module,
and the latter by the eventq module.

The mediator [4] is used in order to reduce
the coupling between execution modules. It
accomplishes this by allowing modules to
post important events, so that interested
modules may learn about them. All func-

tions registered to listen for some kind of
mediator event are executed after the event
is posted and before the posting function re-
sumes, though the order in which they are
executed is not specified. For example, the
mediator allows the commit stage to flush
the pipeline without explicitly flushing ev-
ery inter-phase queue. The reduction in
inter-module coupling gained by this is sub-
stantial, and it seems likely that more ex-
tensive use of the mediator might simplify
modules in the simulator as well.

The eventq module is used in order to in-
voke an event at a specified, future cycle in
the simulation. All modules that perform
multi-cycle events, such as loads, stores or
executions must use this module in order to
arrange for the appropriate timing behavior.
The memory system uses eventq to sched-
ule the termination of operations on differ-
ent levels of the memory hierarchy, and the
issue execution module uses it to perform
proper accounting relating to the execution
of instructions.

3.5 Flexible Fetch

An interesting point of divergence from the
design of sim-alpha is in the instruction
fetching module. Because instruction fetch-
ing on a SMT system is conceptually more
complicated than on a traditional super-
scalar, and because instruction fetch policies
are an area of experimental interest, it has
been a major focus of our design changes.

The smtsim fetch module allows multiple
fetching policies to be linked in at compile
time, leaving selection of a specific policy
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until runtime. This is achieved through a
single level of pointer indirection, and is in-
visible to the rest of the simulator. When
a researcher wishes to test a new instruc-
tion fetching policy, she may implement it
on top of a set of shared auxiliary methods
without removing or destroying the exist-
ing fetching policies. The auxiliary meth-
ods calculate cache latencies, interact with
the branch predictors, and interface to the
memory module; the writer of a new fetch
policy needn’t have a global understanding
of the entire simulator.

Conceptually, a fetch policy is an object
that handles five messages:

• fstage init,

• fstage exec,

• fstage instr retire,

• fstage instr flush, and

• fstage thread flush.

The fstage init message instructs a fetch
policy to initialize itself. It takes no param-
eters, and is expected to use data that it
received from the factory method that cre-
ated it in order to perform its initialization.
The fstage exec message is invoked once ev-
ery cycle, and is the entirety of the fetch
stage. The fetch policy chooses one or more
threads from which to fetch in a given cycle,
and invokes smt fetch from thread in order
to fetch instructions from each of them. The
remaining three messages are used to no-
tify the fetch policy when instructions leave
the pipeline, either because the pipeline was

thread-flushed, because an instruction was
retired, or because a single instruction was
flushed from the pipeline.

Currently, the fetch policy object has two
extensibility flaws. First, it does not allow
for the storage of extra data in the fetch
policy object. Second, due to an oversight,
the policy object itself is not made available
to the methods implementing the fetch pol-
icy messages. This could easily be changed
by making the first parameter of every pol-
icy method be a pointer to the policy ob-
ject, and since the fetch policy object is
completely isolated within the fetch module,
only minimal changes would be necessary to
the source code. The only reason that these
changes would be valuable would be if one
were to build a CMP simulator as an exten-
sion to smtsim. For a single-core simulation,
there is only one fetch policy object at any
given time, so static data suffices.

3.6 Memory Architecture

The memory architecture in smtsim consists
of simple modifications to the memory ar-
chitecture used in simalpha. Every thread
has a reference to the process within which
it operates. Every process has its own vir-
tual address space. There is a single, shared
physical address space, and the MMU and
TLB module maintain a mapping between
(process, virtual-address)-pairs and physi-
cal addresses. Memory operations, such as
memory and cache accesses, use a thread ar-
gument in order to determine which process
space to use.

The current implementation of the MMU
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and TLB module provides every process
with its own complete MMU. This is unreal-
istic, and affects simulation results by reduc-
ing the latency of the MMU in cases where
several threads are simultaneously attempt-
ing to access it. The modifications necessary
to make a more realistic MMU should not
be extensive, nor should they not require
global knowledge of the system; they were
omitted primarily so that we could focus on
other matters.

It could be quite illuminating to study
how shared memory IPC on a SMT com-
pares with that of a traditional multi-
processor. We have therefore attempted to
enable such an extension by eliminating cer-
tain simplifying assumptions used in sim-
alpha. Namely, sim-alpha did not store cor-
rect values in its physical page table, be-
cause such values are not necessary in a sim-
ulator without shared memory.

At present, the only way that threads may
share memory is if they operate within the
same process space. Inter-process communi-
cation via shared memory could be provided
by mapping virtual pages from different pro-
cess spaces to the same physical page. In-
deed, only the virtual-to-physical page map-
ping is necessary for an accurate calcula-
tion of memory access latencies. The most
practical approach for adding this function-
ality would be to define new memory man-
agement system calls. This would require
modifying existing programs, however, the
alternative — supporting POSIX or SysV
shared memory — would require the simu-
lator to support many operating system-like
features.

3.6.1 Challenges

The memory system, though updated
aggressively from sim-alpha, is cumber-
some. It contains some very long meth-
ods with highly complicated logic, much
of which is implemented via side-effecting
macros. It has significant amounts of
dead code, and though the goto state-
ments have been replaced, the prin-
ciple functions (cache timing access and
cache translate address) could stand to be
re-written from scratch.

3.7 Branch Prediction

The branch predictor was left much as it
was in sim-alpha, though the line predictor
was removed. All attempts were made to
preserve the line predictor code, but it was
scattered so liberally throughout the exe-
cution models that it was too challenging
to cope with while make other changes to
the simulator. The result of this seems to
be a drop in branch predictor accuracy to
less than 75%, though the line prediction
code muddled the statistics on this slightly.
The traditional always-not-taken predictor
should continue to operate (if it did in sim-
alpha), as should the always-taken predic-
tor, though the latter might be damaged
due to integration of target address predic-
tion with the line predictor.

4 Results

Because our primary goal was the construc-
tion of a simulator, we have focused on an-

9



alyzing it (see Appendix A for information
on using the simulator).

Having added 3,900 lines of code in 28
new source files, removed 19 files contain-
ing 9,900 lines, and generated 12,800 lines
of differences in pre-existing files, we were
curious to know how we had affected the effi-
ciency of the simulator1. Thus, we ran both
sim-alpha and sim-smt on the same hardware
(a 2GHz P4). We used the first 1 billion
instructions in an execution of gzip to cal-
culate the simulation rate. Sim-alpha pro-
cessed 279 thousand instructions per sec-
ond, while sim-smt clocked in at 154 thou-
sand instructions per second.

The speed difference may be due to a
problem with excess pipeline flushes in sim-
smt; our simulator caused 3.2 times as many
flushes as sim-alpha. Not only do flushes re-
quire re-processing several instructions, but
data must be moved to and from the L1
cache again. While sim-alpha generated
about 1GB of L1 data cache traffic, sim-smt
generated over 2GB.

One aspect we do not believe significantly
influences our performance is the introduc-
tion of abstractions and data hiding.

5 Conclusions

We were quite surprised at the extent of
modifications required to create an SMT
simulation. We were even more surprised,
though, to find that most of the work
was in implementing the per-thread pipeline

1For reference, the sim-smt totals 37,900 lines of
C code

flush logic; it was the only SMT feature
that required global coordination between
the phases. It was also this feature that
prompted us to re-factor sim-alpha because
the number of data structures — instruc-
tion queues, load/store queues, the eventq,
cache accesses, TLB entries, etc. — that re-
quired modification was inordinate with its
conceptual complexity. We wonder whether
pipeline flush complexity increases similarly
in transitioning a real super-scalar processor
to an SMT.

5.1 Directions

An interesting question for hardware sim-
ulation is how SMT and CMP architec-
tures compare under various circumstances.
The smtsim simulator could be extended to
do CMP application simulation, and even
multi-core-multi-threaded simulation with a
reasonable amount of effort.

Another very useful extension to this sim-
ulator would be to improve the statistics
gathering process. Although the system is
quite useful as is, it is used in a manner that
is heavily reliant on global data that is of-
ten modified in subtle ways. This makes it
difficult to add new statistics and thread-
specific statistics.
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A sim-smt

The source for sim-smt is available from
the authors by request. (It is covered by
the SimpleScalar license, which prohibits
commercial use of the software.) Only
Linux/x86 hosts and OSF/Alpha binaries
in ECOFF format are currently supported.
We do not currently support fast-forwarding
of simulated program initialization.

A.1 Usage

Sim-alpha users should find the interface of
sim-smt very familiar. The build process is
identical. The invocation is the same save
for the simulated program specification;
all sim-alpha configuration options are sup-
ported by sim-smt. Where sim-alpha treated
all arguments following the options as a pro-
gram name and simulated arguments, we
allow several program name/argument sets
to be specified. This means the user must
escape the spaces separating each program

and its arguments. As an example, the fol-
lowing would run two threads, one with gzip
and one with bzip:

sim-smt -config mem.cfg ./gzip\ input.gz
./bzip\ input.bz2

By default, sim-smt is compiled with
support for up to 8 thread contexts.
This can be changed by editing the
THREAD MAX CONTEXTS constant in
thread types.h.

A.2 Bugs

sim-smt currently has a unlocated bug in-
volving some form of simulated memory or
register corruption for certain multi-process
workloads (the exact workloads vary from
host to host). The authors believe the is-
sue to be a memory corruption problem, but
neither tools nor scrutiny have revealed the
offending code.

The cache simulation never generates a
“fast-hit,” a lookup found in a hash-table
instead of via linear search, and returned
slightly faster than a regular hit; this should
be easy to fix.
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