

1

Project Report for CSE548

The Study on the Optimality of
Tomasulo’s Algorithm

Xin(Luna), Dong

Gang, Zhao

March 12th, 2002

Department of Computer Science and Engineering, University of Washington

I

Project Report for CSE548

The Study on the Optimality of
Tomasulo’s Algorithm

Abstract

In this report we investigate the optimality of Tomasulo’s Algorithm, the widely used
dynamic scheduling algorithm in last thirty years. We firstly model a generic data-
driven system as the reference system, and an ideal initial model for Tomasulo’s
Algorithm as the starting point of our discussion. Then a series of models with
decreasing assumptions are built. The assumptions include bus delay and
bandwidth, instruction window size, functional units number, reservation station
size, and instruction type and the combination impacts of these factors. For each
model, we either theoretically prove the optimality or find counterexamples. We
show that Tomasulo’s Algorithm is optimal when there are infinite hardware
resources and no Load/Store instructions. But it cannot win under the two
limitations, as the underlying problem is essentially a NP-hard problem. Some
improvements are proposed to boost the scheduling performance from the original
algorithm.

Key words: Tomasulo’s algorithm, optimality, out-of-order execution, dynamic

scheduling

II

Index

1. Introduction... 1

1.1 Related Work ... 1

1.2 Paper Organization.. 2

2. Assumptions... 2

3. The Initial Model.. 3

3.1 Model for a generic data-driven system 4

3.2 Model for Tomasulo’s Algorithm.. 5

3.3 Proof.. 9

4. The Bus Model .. 11

5. Finite Instruction Window ... 13

6. The Limited Resource Model.. 16

6.1 Counterexample for Tomasulo’s Algorithm........................... 16

6.2 Model for Tomasulo’s Algorithm under restricted resources17

6.3 Optimality under limitation of instruction issue 20

7. Improvement ... 20

7.1 The NP-Completeness of the underlying problem................ 20

7.2 The improved schedule algorithm... 21

8. Improved Tomasulo’s Algorithm with Load/Store............... 24

9. Conclusion .. 30

Reference.. 31

1

1. Introduction

Tomasulo’s Algorithm provides a way to effectively exploit parallelism on instruction level and
enhance instruction throughput. It is a hardware algorithm to remove name dependences while
minimizing stalls caused by data dependences. [1] Due to its significant efficiency, Tomasulo’s
Algorithm has become an integral part of today’s RISC processing cores. Moreover, the basic ideas
of the algorithm, out-of-order execution and register renaming, are widely used in the state-of-art
microprocessor architecture design.

As the need for peak-throughput has grown and the cost for hardware complexity has shrunk, it
seems we have good reasons to aggressively pursue better algorithm for improving performance.
The natural questions to ask are – whether Tomasulo’s Algorithm is optimal among many dynamic
scheduling algorithms, whether there is room for improvement, and what should be a wise trade-off
between time and cost. By optimality, we mean the generated instruction execution stream needs the
least execution clock cycles.

To give out the formal analysis of the performance of Tomasulo’s Algorithm, a set of mathematical
models are built up in this paper. The key features of this approach are:

• Optimality is proved by comparison with a reference system, which can produce all the
possible instruction execution orders without violating data dependences.

• Time description variables are led into both systems to record the exact finish time of every
instruction. On the other hand, as our interest lies in instruction flow but not correctness, no
variables are used to record computation results.

• A group of ideal assumptions are made at first, and dropped one by one. In this way, we can
figure out the crucial factors to maintain the algorithm’s optimality.

By comparing the two systems in each model, we have such observations:

• When we have unlimited hardware resources, and no hardware except the functional units
causes delay, Tomasulo’s Algorithm is optimal. This is proved formally.

• When transmission delay is brought into the model, above conclusion remains.
• When the instruction window is limited, the algorithm is still optimal.
• When other hardware, including functional units and bus bandwidth, is restricted, the optimality

does not hold any more. Improvement can be made to give wiser scheduling, which can
generally produces better execution streams, but at the same time brings high overhead and
complexity.

• When the number of instructions we can issue per cycle is restricted, which means the
hardware cannot look ahead infinitely, the algorithm is not optimal and no improvement
technique to the algorithm itself can help.

• When instructions of Load/Store are taken into account, the algorithm is not optimal and can
be improved using the mechanism similar to RS.

1.1 Related Work

As the need for advanced validation techniques develops, a lot of efforts are made on proving the
correctness of Tomasulo’s Algorithm. Among them, [2,3] base their formal correctness proof on
refinement. Recent papers [4,5,6,7] use model-checking to verify the algorithm mechanically with the
help of verifiers. Our mathematical models are inspired by [2]. This paper introduces an intermediate
model, which in later work is regarded as redundant and can be simplified. However, it is just this
model that forms the reference system in our optimality proof. We base our work on the models in [2]
and add time recording variables to make comparison between the time needed to execute the same
program in either system.

2

Compared to formal validations of Tomasulo’s Algorithm, there has been relatively little theoretical
analysis of its performance in the literature to date. [8] examines different scheduling techniques,
most of which are implementation of Tomasulo’s Algorithm. [9] checks the impact brought by different
ways to organize reservation station buffers. However, both of the papers focus on the
implementation details of the algorithm without saying anything about its own effectiveness. Also,
they both make investigations by simulation. On the contrary, we based our proof and analysis on
mathematical models. At the end of the report, we made a conclusion at a generic level.

1.2 Paper Organization

This report is structured as following. Before the discussion, we first clarify some assumptions for all
models. We make ideal assumptions and builds up a model under these unrealistic assumptions in
section 2. After that, two of the assumptions are removed one by one to make the model more down-
to-earth. Formal proofs of optimality are given for each of the models. In section 6, the critical
assumption of unlimited hardware resources are taken off and counter-examples are given to show
Tomasulo’s Algorithm is not optimal in reality. An improved algorithm is introduced in the next
section. The effectiveness and cost of the new algorithm are addressed. In section 8 we extend the
discussion to the cases when Load/Store instructions are taken into consideration. And finally,
Section 9 draws together the study and considers its implications for architectural directions.

2. Assumptions
To prove or disprove the optimality of Tomasulo’s Algorithm, we compare it with other hardware
scheduling algorithms. If none of them can produce wiser execution streams, which consume less
clock cycles, Tomasulo’s algorithm is the winner. Thus, each of our models is composed of two
independent parts. One is a model for a refined system implementing Tomasulo’s Algorithm, the
object of our optimality proof. The other model, called DATA-DRIVEN, specifies a category
containing all dynamic scheduling mechanisms, also including Tomasulo’s Algorithm. It captures all
the possible behaviors as long as the data dependences are not violated. The input of each model is
a program and an initial register file. The output is the time needed to finish the program correctly.
The input and output can be modeled as below:

This model declares the main types and variables, which will be used throughout all models
discussed in this paper. It takes R as a parameter which is a positive integer specifying the number of
registers. The program can be abstracted as prog, a stream of instructions of length N. Each
instruction is made up of an opcode op, a target target, and 2 sources src. Operations range over
floating-point addition, subtraction, multiplication, division and fixed-point function. Targets and

 R/R_PROGRAM (, :)

 [1..];
 ;
 array[1..2] of ;
 {fpadd, fpsub, fpmlt, fpdiv, intFunc};
 [: , : , :];

package R N is
types

REG_ID R
TARGET REG_ID
SRC REG_ID
OP_TYPE
INST op OP_TYPE target TARGET src SRC

vari

+

=
=

=
=

=

`

 : array[1..] of ;
 :

if 0 then 0
 lastWriter (:[0..], :[1..]): [0..] else if []. then

else lastWriter(-1,)

ables
prog N INST
finishTime

definitions
i

i N r R N prog i target r i
i r

end package

+

=
= =

`

3

sources are described by register indices. The time needed to finish this program is given by a
positive integer finishTime. The function lw(i,r) helps to find out the last instruction which writes
register r preceding instruction i. It gets the result in a recursive way.

Before looking at the formal proof/disproof, it is helpful to make explicit some of the assumptions
underlying all models.

To start with, we are assuming that register renaming is performed in both systems. Renaming
eliminates both antidependence, i.e. WAR hazards, and output dependence, i.e. WAW hazards. This
basically means all the operands can be got immediately after they are calculated without waiting for
its being written back to the register file. Later, we’ll consider the case where communication
accounts for inneglectable delay.

Another key assumption is that the branch prediction can always give wise results. In other words,
both of the systems can take benefits by exploiting ILP across multiple basic blocks without worrying
about the penalties brought by branch misprediction. This assumption helps us divide the
responsibility between dynamic scheduling and branch prediction.

We also separate instruction and data cache. We assume our caches have so good performance
that instruction misses happen very rarely and can be fully hidden. As a result, all instructions are fully
pipelined as long as the program hasn’t been finished. However, there may still be data cache
misses and they form a great impact on the performance of Load/Store.

In addition, we suppose we have separated functional units for FP instructions and integer
instructions. However, as there are no critical differences between them, we just regard integer
functional units as units with less execution cycles. They share the same register files and compete
for the same resources with FP functional units. In our models, we have three types of functional
units: floating-point adder, floating-point multiplier and fixed-point unit.

Finally, we assume we have an acceptable compiler. It may not be smart enough to do favor of the
hardware by avoiding most of the data dependences. But at least it can make reasonable
assignments of registers so that we don’t need to worry about running out of registers.

3. The Initial Model
As an initial model, we will consider a case that is as simple as can be. We have infinite hardware.
Both functional units and data bus are always ready. Infinite instruction window size and infinite
reservation stations are available. Also, we have fast hardware. Any overhead and communication
delay can be ignored. Instructions can be issued and executed immediately after it appears in the
instruction cache. And operands can be got as soon as they are worked out. This thoroughly
unrealistic protocol, to which we give the nickname “utopia”, is shown below.

4

3.1 Model for a generic data-driven system

ModelInil_1 The definition of DATA-DRIVEN system:

In this model, to keep track of the finish time of each instruction, we use two state arrays: Completed
and time, where the boolean array Completed identifies the completed instructions, and the non-
negative integer array time represents their finishing time denoted by clock cycles. We don’t model
the values in the register file, as the things in which we are interested here are the dependence
relationship and the execution time instead of the result of the program.

Besides declaration of variables, the model contains the definitions of two auxiliary functions which
are used to simplify the following statements. For instruction i, the boolean function ready(i,j) is
defined to be true if and only if its operand j has been computed. This is the case when the instruction
supposed to compute the operand, given by lastWrite(i-1, prog[i].src[j]), has already been completed.
Similarly, function getTime(i,j) fetches the time when operand j is ready. This should be the time
when the instruction lastWrite(i-1, prog[i].src[j]), which is responsible for it, is finished. Note that in the
special case that lastWrite(i-1, prog[i].src[j]) = 0, which means that no previous instruction has
assigned a value to the register, ready(i,j) = completed[0] = true and getTime(i,j) = time[0] =0.

We also use a non-deterministic selection operator choose in this model. This operator assigns to x
any index I in the range [1..N] which satisfies the requirement

[] ready[,1] ready[,2]Completed i i i¬ ∧ ∧ . It basically means to non-deterministically choose an
instruction whose both operands are already ready. If no such instruction exists, x is assigned an
arbitrary value in the specified range. That’s why even after the selection, it’s necessary to test
whether x satisfies the specified requirement. Choose is also used to assign a non-negative integer
to waitTime. That’s because even if there are a bunch of ready instructions, functional units can
choose to stay idle and just let the instructions wait. This sounds like a waste of resources, but as
we’ll show later, sometimes it can lead to wiser arrangements and thus better performance. As a
result, each instruction can be executed immediately after it is ready, where waitTime=0, or wait for
some time before it is executed, where waitTime is a positive integer. It is these two operations that

+

 DATA-DRIVEN (, :)
 R/R_PROGRAM(,)

 : array[0..] of boolean, init { [0] true, [i] false, 1 };
 : array[0..] of {0} , init

System R N is
import R N
variables

Completed N Completed Completed i N
time N

+

= = ≤ ≤

∪

`

`

+

0;

 ready (:[1..], :[1,2]): boolean [lastWriter (-1, []. [])];
 getTime(:[1..], :[1,2]): {0} [lastWriter (-1, []. [])];
 x choose [1..] s.

definitions
i N j Completed i prog i src j

i N j time i prog i src j
i N

=

∪ =
= ∈

`

+

t. [] ready[,1] ready[,2];
 waitTime choose {0} ;

 if [x] ready(x ,1) ready(x ,2) then
 [x] : max[getTime(x ,1), getTime(x ,2)] waitTime duration (

Completed i i i
t

behavior
Completed

time pro

¬ ∧ ∧
= ∈ ∪

¬ ∧ ∧
= + +

`

1

1

[x].);
 [x] : true;
 end if

 if [] then

 : max [];

 endif

N

i
N

i

g op
Completed

Completed i

finishTime time i

end system

=

=

=

∧

=

5

introduce the high non-determinism of this system and help us simulate all possible behaviors of all
possible algorithms.

As there is not any limitation from hardware, all of the limitation comes from dependence relationship
decided by the program. We can use a topological diagram to describe the dependence relationship
and the time needed to execute an instruction. To simulate this, the system selects an instruction x
which is already ready but has not been completed, completes it and sets its completed time time[x]
as the sum of the time when its sources are both ready, its waiting time, and the calculation time
which is given by the generic function duration. When all of the instructions are completed, the
largest finish time is returned as the time needed for the whole program. Figure 1.

Figure 1

3.2 Model for Tomasulo’s Algorithm

ModelInit_2 presents the formal definition of system TOMASULO, which represents a possible
implementation of the Tomasulo’s Algorithm. Unlike the DATA-DRIVEN system, this system is
divided into several subsystems based on distinct parts of the hardware.

We use type PRODUCER, which is a tuple of function index and RS index, to denote tags. We
assume the same type of functional units share a single reservation station pool. As analyzed in [],
RS pooling can give better performance than organizing a RS group for each functional unit. So we
just examine the former case.

6

ModelInit_2 The definition of TOMASULO system

The system has 4 parts of hardware. The instruction window, denoted by instruWin, is composed by
several window items. Each window item includes the fields of busy, a boolean describing whether it
is occupied by some instruction in the program, prog, the index of the instruction in the program, and
instru, the decoding instruction recording the operation code, the target register and the two source
registers. CDB and register file both contain infinite items of the same type R_TYPE. This type gives
us information on whether it is busy, described by busy, when the data are got, described by time,
and which RS item is in charge of its value, described by tag. The difference between CDB and
register file is that register file can control its own conduct while CDB is controlled by RS. That’s why
we have a separate subsystem for register file but not for CDB. For reservation station items, we
record more things. Fields included are whether it’s occupied, busy, whether the result has already
been calculated and ready to transmit, ready, when the calculation is finished, time, which instruction
is stored in it, prog, and the opcode, target and two sources in the instruction. Before the program is
executed, all items of windows, CDB, registers and RSs are empty.

Like the system DATA-DRIVEN, we define the arrays of Completed and time to keep track of
whether and when an instruction is completed. Also, we use the pointer top to keep the instruction
index that is going to be fetched from the instruction cache.

In the system, distinct hardware works parallelly. Instruction window gets instructions from the cache
whenever there are some empty slots. RS gets instructions from the window, gets operands from
CDB or registers files, sends instructions to functional units immediately after they are ready, and
broadcasts the results on CDB as soon as they are available. At the same time, registers get the

 TOMASULO (, :)
 R/R_PROGRAM(,)

 [:[1..3], :[1..]]
 [:boolean, : , :{0}];
 array[1..2] of ;

 [:

System R N is
import R N
type
PRODUCER f s
R_TYPE busy tag PRODUCER time
SRC_TYPE R_TYPE
RS_TYPE

busy

+

+

= ∞

= ∪
=

=

`

`

boolean, : boolean, :{0} , :[0..], : , : , : _];
 _ [: boolean, :[0..], :];

 : array[1..] of _ ,init <false, 0,<

ready time prog N op OP_TYPE target TARGET src SRC TYPE
WIN TYPE busy prog N instru INST

variables
instruWin WIN TYPE

+∪
=

∞

`

0,0,0>>;
 : array[1..3, 1..] of ,
 init false,false,0,0,0,0, false, 0,0 ,0 , false, 0,0 ,0 ;
 : array[1..] of , init false, 0,0 ,0 ;
 : array[1..] of

RS RS_TYPE

regFile R R_TYPE
CDB R_TYPE

∞
< < < > > < < > >>

< < > >
∞

+

, init false, 0,0 ,0 ;
 : array[0..] of boolean, init { [0] true, [i] false, 1 };
 : array[0..] of {0} , init 0;
 :[1.. 1], init 1;

 FETCH
FU

Completed N Completed Completed i N
time N
top N

behavior

=

< < > >
= = ≤ ≤

∪
+

`

& &
3

1 1

1

1

FUNC() WRITERESULT() ;

 if [] then

 : max [];

 endif

R

r

N

i
N

i

FU r

Completed i

finishTime time i

end system

=

=

=

∧

=

& &

7

 ISSUE[:[1..3], :]

 src(: , :[1..2]) : _
 = if [[]. . []].
 then < , 0,0 , [[]. . []]. >

System FU S is
definitions

i j R TYPE
regFile instruWin i instru src j busy

false regFile instruWin i instru src j time

+

+

¬
< >

`

`

1

 else [[]. . []];

 winHead:{0} min{ []. };

 issueReady:boolean winHead 0 [winHead]. [winHead]. . operatio
win

regFile instruWin i instru src j

instruWin win busy

instruWin busy instruWin instru op

∞
+

=
∪ =

= ≠ ∧ ∧ ∈

`

n()

 if [,]. issueReady then
 [,] : , ,0, [winHead]. ,
 [winHead]. . , [winHe

FU
behavior

RS FU S busy
RS FU S true false instruWin prog

instruWin instru op instruWin

¬ ∧
=<

ad]. . ,
 src(winHead ,1),src(winHead ,2)>;
 regFile[[nextWin].] : , , ,0 ;
 end if

instru target

instruWin target true FU S

end system

=< < > >

 FETCH

 winTail = getAvailableWin;

 if winTail 1 then
 [winTail]. true;
 [winTail]. ;
 [winTail].

System is
definitions

behavior
top N

instruWin busy
instruWin prog top
instruWin in

≤ ∧ ≠ −
=
=

[];
 : 1;
 end if

stru prog top
top top

end system

=
= +

matched value from CDB whenever it’s ready. This process repeats itself until at some point all of the
instructions are finished. Then the longest time to finish an instruction is returned as the program’s
finish time.

ModelInit_2_1 The definition of FETCH system

ModelInit_2_1 described the first step to handle with an instruction, to fetch it from the instruction
cache and put it into the window. Using the function getAvailableWin can help us maintain the
instruction queue in the window and get an available window item. As the window size is infinite in
the initial model, getAvailableWin can return a usable window with no exception.

ModelInit_2_2 The definition of FUNC system:

Reservation Station is the central part of Tomasulo’s Algorithm. RS by itself has four subsystems:
ISSUE, SNOOPER, EXEC and BROADCAST.

 ModelInit_2_2_1 The definition of ISSUE system:

=1 =1 =1
ISSUE[] SNOOPER[] BROADCAST[]

 FUNC(:[1..3])

 EXEC[] ;

S S S

FU,S FU,S FU,S

System FU is
behavior

FU

end system

∞ ∞ ∞

& & && & &

8

2

1

 EXEC(:[1..3])

 enabled(:[1..3], :) : boolean

 = [,]. [,]. []. ;

 e choose : s.t. enabled(,);

 maxtime(:[1..3], :) : int ma

j

System FU is
definitions

f s

RS f s busy RS f s source j busy

k FU k

f s

+

=

+

+

∧ ∧ ¬

=

=

`

`

`
2

1
x [,]. []. ;

 if enabled(,e) then
 [,e]. : maxtime(,e) duration([,e].);
 [,e]. : true;
 endif

j
RS f s src j time

behavior
FU

RS FU time FU RS FU op
RS FU ready

end system

=

= +
=

2

1 1

 SNOOPER(:[1..3], :)

 if [,]. [,]. []. [].

 [,]. []. []. then

j bus

System FU S is
behavior

RS FU S busy RS FU S source j busy CDB bus busy

RS FU S source j tag CDB bus tag

+

∞

= =
∧ ∧

∧ =

`

& &

 [,]. []. : []. ;
 [,]. []. : false;
 endif

RS FU S source j time CDB bus time
RS FU S source j busy

end system

=
=

In the ISSUE subsystem described by ModelInit_2_2_1, when there is an empty slot in the RS pool
for a certain functional unit and the instruction window is not empty, the type of the oldest unissued
instruction in the window will be compared with the functional unit type. If they match well, the
instruction will be fetched and records for both RS and its target register are updated. If its operand is
already ready when issuing, the time field is filled according to the same field of the register. If not, the
busy field is set to true, and the tag field is copied from the register file.

ModelInit_2_2_2 The definition of SNOOPER system:

While issuing instructions, RS also keeps an eye on whether there are some operands ready in CDB
by comparing the tags. If so, it will get the value and the available time from CDB and set it to be not
busy.

When an instruction has been finished and the operands are ready, RS will send it to an empty
functional unit. After that, the ready field is set to true, indicating the result is ready to put on the CDB.
As functional units are infinite, an instruction can begin to be calculated as soon as both of its
operands are ready. As a result, the time when the result is available is the time when both of its
operands are ready plus the time needed for the particular operation.

ModelInit_2_2_3 The definition of EXEC system

Finally, RS is in charge of sending the calculated result from the functional unit to an inactive bus,
which will broadcast it to all items in register file and RS. In this model, function getAvailableBus is
used to find an inactive bus. Again, as we have unlimited bandwidth, and transmission delay can be
ignored, the result can be instantly broadcast and got by other hardware. Therefore, no extra time is
needed for this step and the finish time of the instruction is just the time when the calculation is
completed. After broadcast, the resources used for this instruction in window buffer and RS are

9

 BROADCAST(:[1..3], :)

 bus : getAvailableBus;

 if [,]. [bus]. then
 [bus] : true;
 [bus]. : , ;

System FU S is
definitions

behavior
RS FU S ready CDB busy

CDB .busy
CDB tag FU S

+

+ =

∧ ¬
=

=< >

`

`

 [bus] : [,]. ;
 [[,e].] : [,]. ;
 [[,e].] : true;
 []. : false;
 [,]. : f

CDB .time RS FU S time
time RS FU prog RS FU S time
Completed RS FU prog
RS FU,S ready
RS FU S busy

=
=

=
=

=

1

alse;

 if []. [,]. the

 []. false;
 endif
 endif

win
instruWin win prog RS FU S prog

instruWin win busy

end system

∞

=
=

=

&

released. As there is infinite bandwidth and functional units, our model doesn’t reset them to be idle
and this will not affect the system.

ModelInit_2_2_4 The definition of BROADCAST system:

In the subsystem WRITERESUTL, which presents the conduction of register file, each register
compares the tag of an active bus with its own tag and updates its value when they match.

ModelInit_2_3 The definition of WRITERESULT system

3.3 Proof

To prove Tomasulo’s Algorithm is optimal, we need to show that all of the other instruction execution
order cannot give better performance than that produced by Tomasulo’s Algorithm, which means,
finishTime in system DATA-DRIVEN is no less than finishTime in system TOMASULO. Actually, we
can prove a stronger conclusion: the finish time of each instruction in the former system is no less
than that in the latter system.

In system DATA-DRIVEN, the finish time of an instruction is given by the equation:

=1

 WRITERESULT(:)

 if []. []. []. [

 []. : []. ;
 []. : fals

bus

System r is
behavior

CDB bus busy regFile r busy regFile r tag CDB bu

regFile r time CDB bus time
regFile r busy

+

∞
∧ ∧ =

=
=

`

&

e;
 end if
end system

10

2

1

[x] max[getTime(x ,1), getTime(x ,2)] waitTime duration ([x].)

 max [lastWriter(x -1, [x]. [j])] waitTime duration ([x].)

D

Dj

time prog op

time prog src prog op
=

= + +

= + +

As functional units are infinite, any instruction can be executed as soon as its operands are ready. It
is not necessary to wait. So we have:

2

1

2

1

[x] max [lastWriter(x -1, [x]. [j])] waitTime duration ([x].)

 max [lastWriter(x -1, [x]. [j])] duration ([x].)

D Dj

Dj

time time prog src prog op

time prog src prog op

=

=

= + +

≥ +

On the other hand, in the system TOMASULO, we can get the finish time of an instruction from the
description in the model. Before doing it, we first prove an obvious but important fact:

Suppose x = [,e].
[,e]. [winHead]. .

 (where [winHead]. [,e]. x)
 [x].
For the same reason:

[,e].

RS FU prog
RS FU op instruWin instru op

instruWin prog RS FU prog
prog op

RS FU tar

=
= =

=

[x].get prog target=

Thus the finish time of an instruction depends on the time its two operands are ready and its own
execution time.

2

1

[x] [,e].
 maxtime(,e) duration([,e].)

 max [,e]. []. duration([x].)

T

j

time RS FU time
FU RS FU op

RS FU src j time prog op
=

=
= +

= +

By tracing the flow of data and instruction, we can find that there are two sources for the available
time of an instruction’s operand. One comes from the register. It happens if the operand has already
been ready in the register file when the instruction is issued. Thus we have:

 [, e]. [].
[[]. . []].

 (where []. [,e]. x)
[[x]. []].
0 no previous instructions write back the instruction

[].

RS FU src j time
regFile instruWin i instru src j time

instruWin i prog RS FU prog
regFile prog src j time

CDB bus

=
= =

=

=
once exsits , []. [[x]. []].)

 [',]. (where ', []. [[x]. []].)
 [[',].]T

time bus CDB bus tag regFile prog src j tag
RS FU S time FU S CDB bus tag regFile prog src j tag
time RS FU S prog

 =

= < >= =
=

For the other possibility, that the source is not available at issue point, RS gets the time directly from
the CDB after the source value has been figured out.

11

 [, e]. [].
[].

 (where []. [, e]. []. [[x]. []].)
[',]. (where ', []. [[x]. []].)

[[',].T

RS FU src j time
CDB bus time

CDB bus tag RS FU src j tag regFile prog src j tag
RS FU S time FU S CDB bus tag regFile prog src j tag
time RS FU S p

=
= =

= < >= =
=]rog

Thus, as long as there are some former instructions that write back the source register, the available
time for the source equals the time the source is broadcast, and in turn equals the time the source is
calculated. Also, we can prove:

By induction, we assume that for all the instructions with the index less than n, it can be finished in
TOMASULO system no later than in DATA-DRIVEN system. Thus for instruction n, we have

2

D D1

2

T1

T

[] max [lastWriter(1, []. [])] duration([].)

 max [lastWriter(1, []. [])] duration([].)

 = []

j

j

time n time n prog n src j prog n op

time n prog n src j prog n op

time n

=

=

≥ − +

≥ − +

Also, due to initialization, D T[0]= [0] 0time time = , so we have that for all instructions, TOMASULO
system can finish them no later than DATA-DRIVEN system. In conclusion, Tomasulo’s Algorithm is
optimal.

4. The Bus Model
Before tackling the general case, let us first drop an unrealistic but not critical restriction used in the
utopia model, which says that data can be transmitted throughout the algorithm with no delay. This
assumption is not only made by our initial model, but also by Tomasulo’s Algorithm itself. However, it
is currently not valid, and as the computer architectures are getting more and more complex, less
and less can we expect it to be so.

The long round-trip time can lead to longer completion time. To make things easier and cleaner, we
just examine the on-chip wire delay after an operation has been performed. Other kinds of
transmission can be coped with in exactly the same way. In this more realistic model, we still
suppose we have infinite bandwidth. However, a certain amount of extra cycles are needed to
transmit data around the chip, and the transmission time is unique. To make it fare, this is applicable
to both systems. The adjustment is only needed to be made to Model_1 and Model_2_2_4

After the modification, transmission delay is added to the finish time of an instruction in both systems.
Also, in system TOMASULO, the available time for the data broadcast on CDB is increased by the
transmission time. Other conductions of the model are just the same.

Model 1_bus0 The definition of DATA-DRIVEN system:

2

T T1

', [[x]. []].
[x]. [] [',]. [[',].].

[',]. lastWriter(x 1, [x]. [])

[x] max [lastWriter(x 1, [x]. [])] dur
j

FU S regFile prog src j tag
prog src j RS FU S target prog RS FU S prog target
RS FU S prog prog src j

time time prog src j
=

< >=
∴ = =
∴ = −

∴ = − +

∵

ation([x].)prog op

12

1

 BROADCAST(:[1..3], :) is
 ...

 if [,]. [bus]. then

 ...
 [bus] : [,]. ;transmitTim

e
 [

S

System FU S

behavior

RS FU S ready CDB busy

CDB .time RS FU S time
time R

+

∞

=
∧ ¬

= +

`

&

[,e].] : [,]. ;
 ...
 endif

transmitTimeS FU prog RS FU S time

end system

= +

Model 2.2.4_bus0 The definition of BROADCAST system:

In the new model, the optimality of Tomasulo still stands. We can prove in the same way that

2

D D1

2

T1

T

[x] max [lastWrite(x 1, [x]. [])] duration([x].) transmitTime

 max [lastWrite(x 1, [x]. [])] duration([x].) transmitTime

 [x]

j

j

time time prog src j prog op

time prog src j prog op

time

=

=

≥ − + +

≥ − + +

=
However, our assumption that the two systems have the same transmission delay may not be true in
two cases.

• One case happens when forwarding is used inside functional units. In such a way, a result
coming from a functional unit can be used directly by the following depending instruction
without waiting for the bus transmission. Furthermore, some optimization can be done by
redundant execution of an instruction.

A simple example is shown in Figure 2. Suppose we have 2 adders. Addition can be done
in 1 cycle and every bus transmission counts for 1 cycle. With data forwarding, several
cycles can be saved on transmission and the system can finish the program block in 5
cycles. However, if the system is smarter and duplicates the first instruction in both of the
adders, another cycle is saved in transmission.

No matter which algorithm the system uses, Tomasulo’s algorithm is left behind as it has to
pay for the transmission delay.

 DATA-DRIVEN (, :)

 if [x] ready[x ,1] ready[x ,2] then
 [x] : max[getTime(x ,1), getTime(x ,2)] waitTime dura transmition ([x tTime].) ;

System R N is

behavior
Completed

time prog op +

+

¬ ∧ ∧
= + +

`
…

 [x] : true;
 end if

Completed

end system

=

…

13

Figure 2

• The other case is data-flow system. In such system there may or may not be transmission
delay between two instructions in the same data stream. And the transmission delay is not
fixed. Due to its complexity and unpopularity, discussion of this problem is beyond our range.

5. Finite Instruction Window

In the previous models, we have infinite hardware resources thus any instructions can be fetched,
issued, executed and transmitted without any necessary wait. This assumption is clearly unrealistic.
As Tomasulo’s Algorithm uses in-order issue and out-of-order execution, hardware can be divided
into two categories. One includes the window buffer, which is basically a queue. The other includes
reservation stations, functional units, and CDB, where instructions can be moved in and out in any
arbitrary order.

In this section, we discuss the first category. We’ll show that the limitation on the window size will not
influence the algorithm’s optimality. The main reason is that the issue order is determined by the
program itself with no way to use dynamic execution information. Both systems have to fetch
instructions from the window in the same mechanism, indicating the same fetching order.

This model set evolves from the second model. It characterizes the effect of importing finite
instruction window. All of the other assumptions are kept except that instruction window size alters
from infinite to a positive number.

1) ADD R1, R2, R3
2) ADD R4, R5, R1
3) ADD R6, R7, R1
4) ADD R8, R4, R6
5) ADD R9, R10, R6

 waiting for transmission

 idle

14

ModelWin_1 The definition of DATA-DRIVEN system

In the DATA-DRIVEN system, as now not all of the instructions can be issued in the beginning, it’s
possible that for some of the instructions, although both of its operands are already ready, it’s still
waiting for window buffer and thus cannot be executed immediately. Consequently, we need to find
the maximum of its ready time and its fetching time. It is at this point that the instruction is sent to the
execution unit and the calculation begins.

Two auxiliary functions are added to justify whether an instruction has already been in the window
and what’s the exact time of its being sent to the window. The first function is based on the
observation that when the ith instruction has been put into the window, all of its previous instructions
are either finished or in the window. As unfinished instructions are no more than the window size, the
number of the completed previous instructions is at least i-I. Also, we know that for each instruction
with an index larger than I, the earliest time it is sent to the window is exactly the time when i-I
instructions in total have been finished. Another auxiliary function replacedInstru is used to find the
last finished instruction among those i-I instructions. Its finish time is the time when the ith instruction
gets the window item.

In the Tomasulo’s Algorithm, we add a new item to WIN_TYPE to keep records of when the specific
window buffer is idle and can be assigned to a new instruction.

ModelWin_2 The definition of TOMASULO system

When issuing, this time is copied to the time field in RS for comparison later with the instruction’s
ready time.

 inWindow(:[1.

 DATA-DRIVE

.]) :

N (, :)

boolean { 1 []}

 replacedInstru(:[1..]) :[1..]

...

 s.t. [] { [1..] []

 ...

i N j j i Completed j I

i N N j

Completed j k

System R N is

definitions

k N Completed k time

+

= ≤ ≤ ∧ ¬ ≤

=

∧ ∈ ∧ ∧

`

+

[] []}

 inWinTime(:[1..]) :{0}
 if then 0
 else [replacedInstru()]

inWindow[x] if [x] ready(x ,1) ready(x ,2) then
 [x] : max[

k time j i I

i N
i I

time i
behavior

Completed
time

¬ ∧ ∧

≤ = −

∪
= ≤

∧
=

`

getTime(x ,1), getTime(x ,2)] waitTime duration ([x].);

inW
 [x] : true;

 en

inTime(x),

d if
 ...

prog op
Completed

end system

+ +
=

 TOMASULO (, :)
 R/R_PROGRAM(,)

 _ [: boolean, :[0..], :];

 : array[1..] of _ ,init <false, 0,<0,0,0>>;

:{0} ,

0
.

,
..

System R N is
import R N
type
WIN TYPE busy prog N instru INST

variables
instruWin WIN T

t e

YPE

im +

+

∪=

∞

`

`

 end system

15

 ISSUE[:[1..3], :]
 ...

 if [,]. issueReady then
 [winHead]. [,] : , , , [winHead]. ,

System FU S is

behavior
RS FU S busy
R instS FU S true false instruWin progruWin time

+

¬ ∧
=<

`

 [winHead]. . , [winHead]. . ,
 src(winHead ,1),src(winHead ,2)>;
 regFile[[nextWin].] : , ,

instruWin instru op instruWin instru target

instruWin target true FU S=< < ,0 ;
 end if
end system

> >

1

 BROADCAST(:[1..3], :)
 ...

 if []. [,]. then

 []. false

;
 [].

win

System FU S is

instruWin win prog RS FU S prog

instruWin win
instruWin w

b
i

us
n time

y

+

∞

=
=

=

`

&

 endif
 en

[,

dif

]. ;RS FU S time transmitTim

end s em

e

yst

= +

 ModelWin_2_2_1 The definition of ISSUE system:

ModelWin_2_2_3 The definition of EXEC system

Finally, when an instruction is finished and its window item is released, its finish time is noted down
and that’s the fetch time for the next instruction

ModelWin_2_2_4 The definition of BROADCAST system:

Using the results in 3.1, we can easily get the finish time of each instruction in DATA-DRIVEN
system:

[]D D D

D D

[x] max [lastWriter(x -1, [x]. [1])], [lastWriter(x -1, [x]. [2])],inWinTime(x)
 duration ([x].) transmitTime

0 x
inWinTime(x)

[] (where { [1..] [

time time prog src time prog src
prog op

I
time j k k N time

≥
+ +

≤
=

∈ ∧ D] []})k time j i I x I

 ≤ = − >

By tracing we get the finish time in TOMASULO system as:

2

1

 EXEC(:[1..3])

 ...

 maxtime(:[1..3], :) : max [,]. []. ;

 ...

max , [,].
j

System FU is
definitions

f s RS f s src j RStime

end syst

f s time

em

+ +

=

 =
` `

16

[]T T T

T

[x] max [lastWriter(x -1, [x]. [1])], [lastWriter(x -1, [x]. [2])], [, e].
 duration ([x].) transmitTime
 max [lastWriter(x -1, [x]. [

time time prog src time prog src RS FU time
prog op

time prog src

=
+ +

= []T1])], [lastWriter(x -1, [x]. [2])], [].
 duration ([x].) transmitTime (where []. [,]. x)

0 x
[].

[,].

time prog src instruWin w time
prog op instruWin w prog RS f s prog

I
instruWin i time

RS f s time x I

+ + = =
≤

= >
[]T (where []. ' [,].)time j instruWin w prog RS f s prog j= = =

Again, according to the window handling mechanism and the behavior of function getAvailableWin
in the TOMASULO system, we have

T T{ [1..] [] []}k k N time k time j i I∈ ∧ ≤ = −

It is easy to understand that the indices of all the instructions that are finished before fetching
instruction n is less than n. Thus, it holds that T D[] []time k time k≤ , that is instruWin[i].time in
TOMASULO system is less than or equal to inWinTime(x) in DATA-DRIVEN system. So once more
TOMASULO system can finish each instruction in shortest time.

6. The Limited Resource Model
While limitation to the first category hardware cannot shake the optimality, that to the second
category can bring disasters to the algorithm. They can have important implications for the execution
order of instructions and in turn for the optimality of the algorithm.

In this model, neither functional units nor bus bandwidth is infinite. When these restrictions are
brought in, a lot of changes are needed to be made. The most significant difference is, as a result,
sometimes it is inevitable for an instruction to wait for resources.

6.1 Counterexample for Tomasulo’s Algorithm

In face of resources shortage, TOMASULO system uses a greedy algorithm. That is, the ready
instructions are issued, executed and broadcast whenever they find some available resources. On
the other hand, DATA-DRIVEN system may be patient enough to wait for some time, which can lead
to a wiser choice. Tomasulo’s Algorithm is not optimal any more.

We can find similar counterexamples to disprove the optimality of Tomasulo’s Algorithm at each
level, including issuing, executing and writing back. Here we use the choice made on instruction
execution as an example.

The first counterexample shows why the greedy algorithm cannot win. In order to simplify, we don’t
consider transmission delay and in-window-time in this example. Figure 3.

17

Figure 3

In this example, suppose we have only one adder and one multiplier. Also, we assume addition can
be finished in 2 cycles while multiplication needs 20 cycles. At first only instruction 1 and 2 are ready.
If we follow Tomasulo’s Algorithm, we’ll execute them parellelly. Instruction 3 are ready at the 3rd
clock cycle but have to wait until the 20th cycle when instruction 2 is finished. As instruction 4 and 5
are both dependent on instruction 3, they can’t begin until the 42nd cycle. The whole process finishes
in the 44th cycle.

However, if the system is patient and smart enough, it may delay the execution of instruction 2. Then
at the 3rd clock cycle, both the 2nd and the 3rd instructions are ready and it once again wisely chooses
instruction 3 to execute. As a result, instruction 4 and 5 can be executed parallely with instruction 2
after instruction 3 is finished. The whole process lasts for 42 cycles and 2 clock cycles are saved.

The second case is about an implementation detail. Suppose two instructions are ready at the same
time. Decision is needed to be made on which instruction is to be executed next. Tomasulo’s
Algorithm doesn’t explicitly state how to make this kind of choices. This example demonstrates that
different choices can lead to different finish time. Figure 4.

Figure 4

In this example, the first two instructions are ready at the same time. However, there is another
instruction dependent on the 2nd instruction. If we simply give priority to older instructions, then the 1st
instruction will be chosen and both instruction 2 and instruction 3 have to wait. On the contrary, if the
resources are assigned to the more urgent instruction, instruction 2 in this example, the block can be
finished in 22 cycles instead of 24 cycles.

Actually, when we have infinite resources, scheduling is rather a mapping problem than a scheduling
problem. The key point here is to map computation tasks into infinite computation resources.
Tomasulo always maps “maximal” tasks, as there is no wait and thus no waste. When resources are
limited, some trade-off must be made. Now the problem becomes how to use the resources in a
delicate and smart way. Temporary waiting, which seems to be a waste at the first glance, may bring
wiser decision and better performance. Lacking the mechanism of waiting and comparing is the
reason why Tomasulo’s algorithm loss.

6.2 Model for Tomasulo’s Algorithm under restricted resources

Although in this section we don’t need to use formal models for proof, we’d like to give out the model
for Tomasulo’s algorithm, as they will act as the basis in describing our improvement method in the
next section.

1) ADD R1, R2, R3
2) MUL R7, R8, R9
3) MUL R4, R5, R1
4) ADD R10, R11, R4
5) ADD R12, R13, R4

MULTIPLEXER
ADDER

MULTIPLEXER
ADDER

1) ADD R1, R2, R3
2) ADD R4, R5, R6
3) MUL R7, R8, R4

MULTIPLEXER
ADDER

MULTIPLEXER
ADDER

18

2

1
[,].

 freeFunc choose [1.. []

 EXEC(:{0} , :[1..3])

 enabled(:) : boolean

] . .

 = [,]. [,]. []. ;
j

System t FU is
definitions

s

RS FU s busy RS FU s RS FU s exeu

j FUNL FU s t fu

source

ncUni

j busy

+

+

=

∪

∧ ∧ ∧ ¬

= ∈ ¬

¬

`

"
`

[,]. ;

[, freeFunc].
 [, freeFunc]. : true;

 [, freeFunc]. : ,e ;
 [, freeFun

 i

c]. : ;

f enabled(e) then

t FU j busy

funcUnit FU busy
funcUnit FU busy
funcUnit FU tag FU
funcUnit FU ti

behavi

meStamp

o

t

r
∧ ¬

=
=< >

=
 [, e]. : tr
 endif

ue;

RS

end

FU exeu

system

=

Resource limitation brings a surgery to our model from parallel system to sequential simulation
system. This is done by using a variable t to indicate the current clock cycle. The reason is that it is
easier to catch the resource waiting by simulating using a time description variable.

As functional units are limited, we add the array funcUnit to describe whether the resources are busy,
whether the calculation has been finished, when they begin to be occupied and which RS item
occupies them. In the RS_TYPE, we add a new field to keep track of whether it has been sent to
functional units. We also add another sub-system to describe the conduction of the CDB when a
transmission has ended.
ModelRes_2 The definition of TOMASULO system

ModelRes_2_2_3 The definition of EXEC system

 TOMASULO (, , : ,)
 R/R_PROGRAM(,)

 ...

_ [...

, : array [1..2] of

 : ;
 _ [: boolean, : boolean; : , :{0}]

]

;

K U FUNL

exeu boolean
FUN TYPE busy ready tag PRODU

System R N is
import R N
type

RS TYPE
CER timeStamp

va

+

+ +

=

= ∪

`

`

`

3

1

1

3

1

 : array[1..3, 1..max []] of _ init <false,false,<0,0>,0>;

 : {0} init 0;

 : 0;

 while [] do

 FETCH() FUNC(,

)

j

N

i

FU

funcUnit FUNL j FUN TYPE

t

riables

beha
t

Completed i

vi

t t FU

or

=

+

=

=

∪

=

∨ ¬

`

& &

"

1 1
DEACTIVATE(,) WRITERESULT() ;

 : 1;
 end while
 return ;

K R

bus r
t bus r

t t

t
end system

= =

= +

& & & &

19

 BROADCAST(:[1..3],)

:{0} , :[1.. []]

 freeBus choose [1..] . . []. ;

 if [,]. [,]. duration() then

t u FUNC FU

j K s t CDB j busy

funcUnit FU u busy funcUnit FU u timeStamp

System FU is
definiti

FU

ons

behav
t

ior

+∪

= ∈ ¬

∧ + =

`

 [,]. : true;
 endif
 if [,]. [freeBus].

[bus] : true;
 [b

 then

us]. :

[,] ;
 [

.
transmbu is] :

C

funcUnit FU u ready

funcUnit FU u ready CDB busy

funcUnit FU
DB .busy

CDB tag
CDB .time

u tag
t

=

+=

¬
=

∧

=
tTime

[,] : false;
[,] : fal

;

 [,]. : false;
 end

se

i

;

f

funcUnit FU u .busy
funcU

RS FU S bu
nit FU u .re

sy

en

ady

d system

=

=
=

 DEACTIVATE(:{0} , :[1..])

 if []. [] then
 [[[].].] : ;
 [[[].].] : true;

System t bus K is
behavior

t CDB bus time CDB bus .busy
time RS CDB bus tag prog t
Completed RS CDB bus tag prog

+∪

= ∧
=

=

`

1

 [] : false;

 if []. [[].]. then

 []. false;
 endif
 end

win

CDB bus .busy

instruWin win prog RS CDB bus tag prog

instruWin win busy

∞

=

=

=

=

&

if
 end system

In the execution subsystem, an idle functional unit is selected when an instruction has got both of its
operands. If such an idle unit exists, it is initialized and the execution begins. Or else the instruction
has to wait.

When the execution is finished, the ready field of the functional unit is set to true to indicate that it can
be put on the CDB. After it gets an idle bus, the data is put there; the RS item and the functional unit
are released. Again, to consider transmission delay, the available time of the data on CDB is the
current time plus transmission time.

ModelRes_2_2_4 The definition of BROADCAST system:

Subsystem DEACTIVATE is added to deactivate a bus when the transmission is finished. This is
also the time when the instruction is completed. The instruction is set to be completed and the finish
time is recorded. Also, the instruction window and CDB are released.

ModelRes_2_4 The definition of DEACTIVATE system:

20

6.3 Optimality under limitation of instruction issue

The final assumptions we want to drop are those related to instruction issue. In all of the previous
models, we assume we can issue as many instructions as we can. However, this is definitely not
true. The first constraint comes from the restriction of reservation stations. The number of issued
instructions can by no means exceed the number of RS items. Another constraint is also caused by
hardware capacity. As a lot of work needs to be done at issue point, there is an upper bound of how
many instructions the processor can issue even in multiple issue architectures.

Issue capability decides how much we can look ahead when scheduling. While best choice depends
on a global view, the system suffers from the local view brought about by issue limitation. Our first
example in section 6.1, again, can serve as a good example here. Figure 5.

Figure 5

In this example it is supposed that we can only issue one instruction per cycle. Even using our
improved algorithm, we’ll choose the 2nd instruction to execute first. That’s because when this
decision is made, in the 2nd cycle, the 3rd instruction has not entered RS so the system doesn’t know
its existence at all!

Unlike those problems stated above, there seems no way to enhance the algorithm optimality under
this situation. Nonetheless, in state-of-art architectures, issue speed outstrips the dispatch speed and
the beast is usually fed up quite well. Thus the issue limitation cannot influence the performance too
much.

7. Improvement

7.1 The NP-Completeness of the underlying problem

The underlying problem which Tomasulo’s algorithm tries to solve is basically a scheduling problem.
We have known that scheduling is a difficult problem. Various special cases have been proved to be
NP hard or NP complete. Most of the complexity of scheduling can be assigned to the conjunction of
two types of constraints.

• Dependence constraints, which express the fact that some computations must be executed in a
specified order if the meaning of the original program is to be preserved. This kind of constraints
are usually expressed as a dependence graph (DG).

(1) ADD A1, A2, A3 1 cycles

(2) MUL A7, A8, A9 10 cycles

(3) MUL A4, A5, A1 10 cycles

(4) ADD A10, A11, A4 1 cycles

(5) ADD A12, A13, A4 1 cycles

 Tomasulo

Better way

21 22 23

MULTIPY
ADD

MULTIPLY
ADD

MULTIPLY
ADD

Single Issue

21

• Resource constraints, which express the fact that the number of simultaneous operation at any
given time is limited by the available resources in the target computer

While either of the two constraints can be tackled easily, the combination brings the difficulty.
Instruction scheduling for a single-issue processor is NP-complete if there is no fixed bound on the
maximum latency [10]. Optimal scheduling of a job system which has two functional units, each of
which specializes a disjoint subset of the instruction set, was proved to be NP-complete even if the
precedence graph is a forest [11]. These scheduling problems are essentially similar to the job-shop
scheduling problem. The generalization of the classical scheduling problem, in which there are more
than 2 functional units, has also been shown to belong to the class of NP hard optimization problems.
[12][13][14]. A summary of the complexity and optimization of scheduling problems can be found in
[23][15][16][17][18][19].

In conclusion, given arbitrary functional units and arbitrary instructions, the problem of finding the
optimal execution order and functional units assignment is NP-Complete. Therefore, it is unlikely that
there exits a polynomial time algorithm which gives an optimal solution to the general problem. This
leads to the belief that we should take a heuristic or approximation algorithm approach, rather than to
find an optimal scheduling.

7.2 The improved schedule algorithm

However, the impossibility of finding an optimal algorithm does not imply that Tomasulo’s Algorithm is
the best way. Tomasulo’s Algorithm uses a greedy algorithm to give an approximate answer. One of
its obvious defects is that it only uses previous dependence information in its greedy function, leaving
the subsequent dependence information ignored. Actually, it is exactly the afterward information that
helps decide how urgent the instruction is and whether it should be given higher priority. This
indicates there is still a room for improvement. And the breakthrough can lies in how to wisely use the
afterward information. Such information includes chain length, dependants number, etc. [8] Here we
present an improvement which exploits the information to a great extend. The algorithm is oriented to
limited functional units. The same improvement can be made to CDB.

In our improvement, we still use greedy algorithm, as it is the most practical algorithm to hardware.
We base our decision on the function defining the least penalty. When a functional unit becomes
available, the instruction leading to highest penalty will win it. It’s even possible to leave the unit idle
and wait for an instruction with larger penalty, instead of executing a ready low-penalty instruction.

Two values for each instruction are used to calculate the least penalty. They are earliest and latest,
denoting the earliest time the instruction may be finished and the latest time the instruction should be
finished without prolonging the program’s execution. Both of them are adjusted dynamically
according to the current execution stream as well as the backward and forward dependence
relationship. In turn, the penalty function is also a snapshot of the current state. This is inspired by the
idea of critical path in topological sort: the delay of instructions in the critical path is liable to cause
higher penalties. [20]
ModelResImprove_2 The definition of TOMASULO system

+ [..., :{0} , :{0} , :{0} ,

 TOMASULO (, , , : , : array [1..3] of)
 R/R_PROGRAM(,)

 : boolean

 . .

,

.
RS_TYPE

System R N K U FUNL is
import

sonNum earliest latest
needChangeE

R N
type

+ +

+ += ∪ ∪ ∪

`

`

`

` `
: boolean];

 : array[1..3, 1..] of init ...,0,0,0, false,false ;
 : {0} ini

 ..
t 0;

.

needChangeL

RS U RS_TYPE
m

variables

end system

axTime +

< >
∪

"

`

22

[]+

+

 findEarliestTime(): max src(winHead,1). , src(winHead

 ISSUE(:{0} , :[1..3], :)

,2). , [winHead].

 ...

 dur
time time

system t FU S is
definitio

instruWin tim

ns

e

+∪

=
+

`

` `

[]+

ation([winHead]. .) transmitTime ;
 findLatestTime(): max fi

if [,]. issueReady then
 [,] : , , [

ndEarliestTime()

w

, ;

i

n

instruWin instru op
maxTime

behavior
RS FU S busy

RS FU S true false instruWin
¬ ∧

=<

+

=`

Head]. , [winHead]. ,
 [winHead]. . , [winHead]. . ,
 src(winHead ,1),src(winHead ,

time instruWin prog
instruWin instru op instruWin instru target

2

1

2) >;
 regFi

,0,findEarliestTime(),findLatestTime(),flase,false
()

 if [,]. []. then

le[[nextWin].] : ,

, , ;

j

instruWin target findEarliestTime

RS FU s src j busy

true FU S

=

=< < > >

&

[] [,]. []. . ;
 end if
 end if
end system

RS RS FU s src j tag sonNum + +

In the RS_TYPE, we also add two fields, needChangeE and needChangeL, to notify when the
earliest and latest fields should be updated. This is set by its predecessors and descendants.
Besides, a field sonNum is used to record how many instructions are depended on this instruction.
Finally, we use a global variable, maxTime, to store the predicted least finish time. At the end of the
program execution, the predicted time equals the actual execution time.
ModelResImprove_2_2_1 The definition of ISSUE subsystem

At the issue point, those new fields will be initialized. Two auxiliary functions are used to calculate the
expected earliest time and latest time. The earliest finish time is to be predicted as the earliest
predicted ready time plus the time needed to do the calculation and transmission. Actually, it is
computed along the data flow in the topological sort graph. On the other hand, the latest finish time is
computed opposite to the data flow direction. An instruction’s latest finish time is the minimum of
each descendant’s finish time minus the same descendant’s operation time. As an instruction doesn’t
have any descendents at the issue point, its latest finish time is simply decided by the maximum of its
own earliest time and the expected earliest program finish time. Meanwhile, the field of sonNum of its
depended instruction is incremented by one. And its target register file item also writes down the
predicted earliest time for its descendents.

Besides issuing, there is a particular subsystem to update the earliest and latest field for each
instruction. In four conditions we need to do modification. Two of them are triggered by the field
needChangeL and needChangeE. The third happens when an instruction’s latest field is increased
so much that it is larger than the global variable, maxTime. Then not only maxTime but also all those
instructions whose latest fields used to be equal to maxTime need to change following maxTime.
Finally, if an instruction has already been ready but isn’t executed, its earliest finish time will be put off
in every cycle. The two prediction values are changed whenever under the above four situations.
After their own changes, they will go on to trigger their precedents or decedents.

23

{ }

{ }

{ }
[]

1

 earliestReadyTime(:[1..]): 0 [,]. duration([,].) transmitTime;

 nextFuncTime: 0 mi

 EXEC(: 0 , :[1..3])

n

...

[,].
FUNC FU

u

s U RS FU s earliest RS FU s op

funcUnit F

System t FU is
definitio

u i

ns

U t m

+

+

=

+

= − −

∪ =

∪

∪

`

`

` { }

[]()
1

duration() ;

earliestReadyTime() nextFuncTime

 max [,]. ,nextFunTime duration() [,]. * [,].
 appropriate(:[1..]):boolean=

 max [,]. ,ne

U

s

eStamp FU

s

RS FU s earliest FU RS FU e latest RS FU e sonNum
e U

RS FU e earliest=

+

<

+ −
∧

∧ > []()
[]()

xtFunTime duration() [,]. * [,]. 0

max [,]. ,nextFunTime dura

 if enabled(e

tion() [,]. 0

appropriate(e))

FU RS FU s latest RS FU s sonNum

RS FU e earliest FU

behavi

R

or
funcUni

S FU s latest

 + − >
 ∨ + − <

∧¬∧ [,freeFunc]. then
 ...
 end f

i

t FU busy

end system

ModelResImprove_2_2_5 The definition of UPDATEPREDICTION subsystem

ModelResImprove_2_2_3 The definition of EXEC subsystem

[]

+ UPDATEPREDICTION (:{0} , :[1..3], :)

 if [,]. then
 [,]. : false;

[,]. [1]. . durat
 [,]. : max

System t FU s is
Behavior

RS FU s needChangeE
RS FU s needChangeE

RS RS FU s src tag earliest
RS FU s earliest

+∪

=

+
=

` `

[]
[] []

1 1

3 2

1 1 1 1
1 1 1

ion([,]. [1]. .) transmitTime,
;

[,]. [2]. . duration([,]. [2]. .) transmitTime

 if [,]. []. [,]. []
U

FU s j

RS RS FU s src tag op

RS RS FU s src tag earliest RS RS FU s src tag op

RS FU s src j busy RS FU s src j
= = =

 +

+ +

∧& & &

1 1

. , then

 [,]. : true;
 end if
 end if
 if [,]. then
 [,]. : false;

 [,

tag FU s

RS FU s needChangeE

RS FU s needChangeL
RS FU s needChangeL

RS FU

=< >

=

=

1 1 1 1

2

1 1 1 1 1 11

2

1

[,]. duration([,].) transmitTime
]. : min ;

1 3 1 [,]. [,]. []. ,

 if [,]. [].

j

j

RS FU s latest RS FU s op
s latest

FU s U RS FU s busy RS FU s src j tag FU s

RS FU s src j busy

=

=

− −
 = ≤ ≤ ∧ ≤ ≤ ∧ ∧ ∨ =< >

&

[] [,]. []. . : true;
 end if
 end if
 if enabled() [,]. then
 [,]. : [,]. 1;
 [,]. : max[[,].

RS RS FU s src j tag needChangeL

FU,s RS FU s exec
RS FU s earliest RS FU s earliest
RS FU s latest RS FU s ear

=

∧ ¬
= +

=

1 1

3 2

1 1 1 1
1 1 1

1 1

, [,].];

 if [,]. []. [,]. []. , then

 [,]. : true;
 end if

U

FU s j

liest RS FU s latest

RS FU s src j busy RS FU s src j tag FU s

RS FU s needChangeE
= = =

∧ =< >

=

& & &

1 1

3

1 1 1 1
1 1

1 1

 end if
 if [,]. then

 if [,]. [,]. then

 [,]. : true;
 end if

U

FU s

RS FU s latest maxTime

RS FU s busy RS FU s latest maxTime

RS FU s needChangeL
= =

>

∧ =

=

& &

 : [,]. ;
 end if

maxTime RS FU s latest

end system

=

24

The information in earliest, latest and sonNum is used in deciding whether to execute an ready
instruction, say e, when an idle functional unit is available. It firstly figures out when the next functional
unit is available, and then finds out all of the instructions which will be ready before that. After that it
computes how much the cost is to each of those functions if e is executed and the instructions need
to wait. Also, it computes the cost to e itself if it waits and leaves the chance to those functions. For
each instruction which cannot be executed instantly after ready, the penalty is at least the time it
needs to wait times the number of its direct decedents. We use multiplication here because the delay
to an instruction will in turn brings delay to each of its decedents.
Finally, we rewrite FUNC system after adding the new subsystem UPDATEPREDICT.
ModelResImprove_2_2 The definition of FUNC system:

The improvement takes advantage of the afterward dependence information. In a lot of cases, it can
make wise choices. Using the first example in 3.1.1, we can show how well it works. At the beginning
of the execution, the earliest and latest fields of each instruction are computed and can be shown as
Figure 6. The 2nd instruction is ready, but if it is executed, the next available time for a multiplier is
cycle 20. Before that the 3rd instruction will also be ready. If we choose to execute instruction 2, then
according to the EXEC subsystem model, the penalty to instruction 3 is (20+20-22)*2=36. If we
choose to wait and execute instruction 3, then the penalty to instruction 2 is (22+20-24)*1=18. Thus
we’ll intelligently choose to wait for 2 cycles and save the functional unit for instruction 3.

Figure 6

However, as task assignment is a NP-Complete problem, the improved algorithm also cannot always
produce the best execution stream. We use least penalty for comparison. When the information
cheats the system on what the penalty really is, the algorithm fails. What’s more, the improved
algorithm introduces great complexity and huge overhead in predicting and deciding. As stated in [],
due to the limited parallelism in programs, scheduling discipline cannot largely impact performance.
With the development of superscalar and SMT technology, there may be more parallelism to be
exploited. A good judgment on the value of this improved algorithm can be made in two steps. The
first is to test benchmarks and see whether the improvement can reduce clock cycles to a great
extent; the second step is to take overheads into consideration and see whether we can really buy
better performance.

8. Improved Tomasulo’s Algorithm with Load/Store.

From the discussion in last two sections, we see that hardware resources play a critical role on
deciding how wise the algorithm is. Besides this, there is another factor ruining its optimality –
Load/Store instructions. When load and store are involved, things become more complex. We need
to face up great changes both in underlying architecture and in execution time hypothesis. One
concern is that the instruction execution time becomes unpredictable because of data cache misses.

{ }

=1 =1 1 1= =

0 ,

ISSUE[,] SNOOPER[,] BROADCAST[, UPDATEPREDICT[,]]

 FUNC(: :[1..3])

 EXEC[,] ;

U

S

U U U

S S S
tt FU,S t FU,S t F FUU ,S S,

System t FU is
behavior

t FU

end system

+∪

`

& & & && & & &

25

Another is that WAW and WAR data hazards, which are successfully removed by register renaming,
show up again in memory accesses.

There are three types of data dependence when accessing the same address:
• All loads are dependent on the previous store.
• A store is dependent on the previous store.
• A store is dependent on all loads between it and the previous store.

The only part that could be executed out of order is those load instructions between two stores
surrounding them. As a result, before a load goes into the load buffer, it must check the store buffer
to make sure that no active store instructions share the same address. More strictly, before a store
goes into the store buffer, it must scan both store buffer and load buffer to check name dependence.
If some name dependence is detected, the load or store instruction will be held in the instruction
window, until the dependence was resolved and all of the previous conflicting memory accesses
were moved out of the load/store buffer.

If the reason for the failure of Tomasulo’s Algorithm in face of resources shortage is its impatience
and dullness, then here it comes from its conservation. In the above pattern, a stalled memory
access instruction will greatly damage efficiency. Due to the in-order issue principle, all of the
subsequent instructions have to wait even though they are not dependent on the stalled load/store
instruction.

Figure 7 shows a counterexample. Assume a cache miss happens and the store takes 50 cycles.
Unfortunately, the following load instruction happens to use the same address thus has to be
blocked. Consequently, the MUL instruction is also blocked although it has no dependence
relationship with the previous two instructions. If it can be issued without waiting, it will be executed
parallely with store instruction and the whole program can be finished in 52 cycles, saving 20 cycles.

Figure 7

To solve this problem, we learn from RS scheme and add new fields to load and store buffers to
record data dependence information. Also, we use instruction index number in the program to decide
the order and dependence. In the improved algorithm, before a load is dispatched, all store buffers
with lower instruction index are scanned to ensure no address confliction. For store instructions, the
same examinations should cover both load buffer and store buffer. In this method, load and store
instructions would not block the whole instruction window. Figure 8 is an example to show the
contents in the load and store buffers after issuing a series of memory access instructions.

(1) Store R1, (A1); 50 cycles(cache miss)
…
(n) Load R1, (A1); 2 cycles
(n+1) Mult R3, R2, R4; 20 cycles

RAW
dependence
here,

(1) Store R1, (A1); 50 cycles(cache miss)
…
(n) Load R1, (A1); 2 cycles
(n+1) Mult R3, R2, R4; 20 cycles

RAW
dependence
here,

MEM BUS
MULTIPLY

MEM BUS
MULTIPLY

Our improvement

Tomasulo

52 70

26

Again, before giving the formal description of our improvement, we first build up the model for original
Tomasulo’s Algorithm. To concentrate on the impact of the Load/Store mechanism itself, this model
is based on the initial model. Also, we assume the resources for memory accesses are infinite:
infinite load and store buffer, infinite memory bus and infinite ports of main memory. It allows to
simultaneously execute arbitrary number of memory access instructions and avoids the problems
brought by competition for limited resources. Furthermore, to simplify our discussion, we presuppose
that memory address can always be decided in decoding stage. This assumption can be removed

simply by changing the scan and check method.

Figure 8

In the top level model, we introduce two variables, LoadBuffer and StoreBuffer for Load/Store
instructions. Besides, we add a subsystem MEMACCESS to work independently with other
subsystems and imitate memory access processes. The subsystem itself is made up of four
components, LOADISSUE, STOREISSUE, LOADBROADCAST and STORESNOOP. The first two
are used to issue Load/Store instructions. The third part reads memory and broadcasts it on the
CDB. The fourth one writes memory after resolving data dependence.

 ModelLS_2 The definition of TOMASULO system:

 = [: boolean, :{0} , :[0..], :{0} , :];
 = [: boolean, :{0

 TOMAS

} ,

ULO (, , , :)
 R/R_PROGR

:[0.

AM(

.

,)

 ...

],
LB_TYPE busy time prog N address target TARGET
SB_TYPE busy ti

System R N L S is
import

me pro

R N

N

type

g

+ +

+

+

∪ ∪
∪

`

` `
` :{0} , : , :];

 : array[1..] of

 ...
 :[1.. 1], ini

 init {false, 0,0,0,0};
 : array[1..] of init {false, 0,0,0,0

t 1;

address target TARGET src R_TYPE

LoadBuffer LS_TYPE
StoreBuffe

vari

r LS

ables

top N

_TYPE

+

+

∪

∞
∞

`

1 1
 FETCH

, false, 0,0 ,0 };

MEMACFUNC() WRITERESULT() ;

 ..

S

.

CE S
FU r

behavior

FU r

end system

∞ ∞

= =

< < > >

& & && &

Store R1, (A1);
…
Load R3, (A2);
…
Store R1, (A3);
…
Store R1, (A4);
…
Load R3, (A1);

No
No
Yes

Ready

No
Yes

Ready

 No 3
102 R[R3] R Yes 2
101 MULADD1 Yes 1
99 R [R1] R Yes0

Index Qk Qj Vk Vj Busy ID
Store Buffer

 No 2
103 ADD2 Yes 1
100 R [A2] Yes 0

Index Qj Vj Busy ID
Load Buffer

27

1

 LO AD ISSU E[:]

 issueR eadyLoad [w inH ead]. [w inH ead]. . " load"

 ([]. valueof(
s

system l is
definitions

instruW in busy instruW in instru op

StoreBuffer s address instruW i

+

∞

=

= ∧ =

∧ ∧ ≠

`

[w inH ead]. . [1]));

 if []. issueR eadyLoad then
 []=<true,
 [lastM emW riter [w inH ead]. 1, valueo

n instru src

behavior
LoadBuffer l busy

LoadBuffer l
tim e instruW in prog

¬ ∧

−()f([w inH ead]. . [1]) ,
 [w inH ead]. ,
 valueof([w inH ead]. . [1])

instruW in instru src
instruW in prog

instruW in instru src
 [w inH ead].

 [[w inH ead].] : , 0, , 0 ;
 end if

instruW in target
regFile instruW in target true l

end system

>
=< < > >

ModelLS_2_5 The definition of MEMACCESS system:

ModelLS_2_5_1 The definition of LOADISSUE system:

The LOADISSUE works in the same way as ISSUE subsystem. It finds the earliest unissued
instruction. If that’s a Load instruction and doesn’t have any memory conflicts with early Store
instructions, it is put into the load buffer and the target register item is updated. The STOREISSUE
works in the same way. The only difference is that before issuing a Store instruction, both the load
buffer and store buffer need to be examined to avoid memory dependences. Here we use three
assisting functions which are not a part of the TOMASULO system. One is valueof, which can
calculate the address before issue stage. Another two are lastMemWriter and lastMemReader,
which tells us the accurate time of the last write or read process of the same memory. If there is no
previous Load/Store, then the function returns 0.

=1 =1 =1 =1
LOADISSUE[] STOREISSUE[] STORESNOOPER[] LOADBROADCAST[]

 MEMACCESS

 ;

l s s l

l s s l

System is
behavior

end system

∞ ∞ ∞ ∞

& & & & && &

28

1

 ST OR EISSU E[:]

 issueReadyStore [w inHead]. [w inHead]. . "store"

 ([]. valueof(
s

system s is
definitions

instruW in busy instruW in instru op

StoreBuffer s address instr

+

∞

=

= ∧ =

∧ ∧ ≠

`

1

[w inHead]. . [1]));

 ([]. valueof([w inHead]. . [1]));

 if []. issueReadyStore then

s

uW in instru src

LoadBuffer s address instruW in instru src

behavior
StoreBuffer s busy

∞

=
∧ ∧ ≠

¬ ∧

()
 []=<true,

[lastM emW riter [w inH ead]. 1, valueof([w inHead]. . [1]) ,
 m ax

[lastM emR eader [w inHead]. 1, val

StoreBuffer s

time instruW in prog instruW in instru src

time instruW in prog

−

−()ueof([w inHead]. . [1])

 [w inH ead]. ,
 valueof([w inHead]. . [1])

instruW in instru src

instruW in prog
instruW in instru src

 src(w inH ead, 2)
 end if
end system

>

1 1

 STORESNOOPER(:)

 if []. []. . [].

 []. . []. then

S

s bus

System s is
behavior

StoreBuffer s busy StoreBuffer s src busy CDB bus busy

StoreBuffer s src tag CDB bus tag

+

∞

= =
∧ ∧

∧ =

`

& &

 []. . : []. ;
 []. . : false;
 end if
 if []. . then
 [[].] : max

StoreBuffer s src time CDB bus time
StoreBuffer s src busy

StoreBuffer s src busy
time StoreBuffer s prog Stor

=
=

¬
= [][]. , []. . memAccessTime;

 [[]].] : true;
 []. : false;
 endif

eBuffer s time StoreBuffer s src time
Completed StoreBuffer s prog
StoreBuffer s busy

end system

+
=

=

ModelLS_2_5_2 The definition of STOREISSUE system:

ModelLS_2_5_4 The definition of STORESNOOPER system:

STORESNOOPER has the same mechanism with the SNOOPER subsystem of RS. It monitors
CDB and gets the data with the same tag as its source tag. After that the data is transmitted to the
memory and the instruction finishes. The finish time of a Store instruction should be the time when it
has been issued and also gets the operand, plus the time needed to access memory. Due to the
possibility of cache miss and page fault, the access time is not fixed and we just use an oracle
function memAccessTime to describe it.

29

1

 LOADBROADCAST(:) is

 if []. [bus]. then

 [bus] : ;
 [bus]. : 0, ;
 [bus]

bus

System l
behavior

LoadBuffer l busy CDB busy

CDB .busy true
CDB tag l
CDB .time

+

∞

=
∧ ¬

=
=< >

`

&

: []. memAccessTime;
 [[].] : []. memAccessTime;
 [[].] : true;
 []. : f

LoadBuffer l time
time LoadBuffer l prog LoadBuffer l time
Completed LoadBuffer l prog
LoadBuffer l busy

= +
= +

=
= alse;

 end if
 end system

 LO AD ISSU E[:]

 issueReadyLoad [w inH ead]. [w inH ead].
 ...

instruW in busy instruW in instr

system l is
definiti

u
ons

end system

+

= ∧

`

 ST OR EISSUE[:]

 ...
 issueReadyStore [w inHead]. [w inH ead]. .instruW in busy instruW in instr

system s is
definitions

end system

u o

+

= ∧

`

ModelLS_2_5_4 The definition of LOADBROADCAST system:

For the Load instruction, as memory address is known at the issue point, it can be executed as soon
as it is issued. Then the received data is broadcast by CDB and the instruction is marked as finished.
Here, the finish time is simply the issue time plus the memory access time.

Finally, we give the improved algorithm based on the above model. One modification is made in
ISSUE systems. A Load/Store instruction is issued without checking dependences. However, before
it is dispatched and the memory is accessed, name dependence must be checked first to guarantee
right results. This is achieved by comparison with the memory addresses of all those load and store
buffers having lower instruction indices.

ModelLSImproved_2_5_1 The definition of LOADISSUE system:

ModelLSImproved_2_5_2 The definition of STOREISSUE system:

30

()
1

 []. []

 STORESNOOPER(:)

 ...
 if

. []. [].

[]. .

ps

p

S

StoreBuffer ps prog StoreBuffer s prog StoreBuffer ps addre

ystem s is
behavior

StoreBuff

ss StoreBuffer s add

er s

ress

src busy
∞

+

=
∧ ∧ < ∧ ≠

¬

∧ ∧

`

()
1

[]. [].

[]. [

 ...
 end

]. t

if

he

n
s

LoadBuffer ps prog StoreBuffer s prog LoadBuffer ps address StoreBuffer s addres

end s tem

s

ys

∞

=
< ∧ ≠

1

1

 LOADBROADCAST(:) is

 if []. [bus].

 []. []. []. [].

bus

ps
LoadBuffer ps prog LoadBuffer s p

Syste

rog LoadBuffer ps address LoadBuffer s addre

m l
behavior

LoadBuffer l ready CDB busy

ss
∞

+

∞

=

=

∧ ∧ < ∧ ≠

∧ ¬

`

&

then

 ...
 if

end
end system

ModelLSImproved_2_5_3 The definition of STORESNOOPER system:

ModelLSImproved_2_5_4 The definition of LOADBROADCAST system:

Because different memory access orders may result in different cache misses, so it’s not meaningful
to discuss algorithm optimality here. However, intuitively our improvement can generally beat the
original algorithm as it removes unnecessary stalls and tries to exploit parallelism to the greatest
extend. A more aggressive improvement can be made by adding data forwarding between loads and
stores.[21,22] Due to its complexity, we don’t discuss the details here.

9. Conclusion

This report examines whether Tomasulo’s algorithm is optimal in a formal way. Mathematical models
are built up for the behavior of Tomasulo’s algorithm as well as a general data-driven system which
describes the conduct of all kinds of dynamic scheduling mechanisms.

We give the formal proof that under certain assumptions, including that we have infinite functional
units, infinite bandwidth and all of the instructions can be issued instantly after they enter the
instruction window, no other dynamic scheduling algorithms can give a better performance than
Tomasulo’s algorithm. The main reason is that when we have boundless resources, the key problem
is to keep the resources as busy as possible. The transmission delay doesn’t imperil its optimality.
Even when the instruction window buffer size is limited, Tomasulo’s algorithm works well because
window buffer is essentially a queue and no tricky choices can be made when fetching and replacing
instructions.

Nonetheless, Tomasulo’s Algorithm does not win in face of realistic hardware restrictions. In this
condition, dynamic scheduling is fundamentally a task arrangement problem which is NP-hard. So it’s

31

impossible to find out a hardware algorithm to solve it in polynomial time. Tomasulo’s algorithm uses
greedy mechanism to give an approximate solution. However, as it doesn’t consider afterward
dependences, which can be important information in scheduling decision, it is not the best algorithm
and can be improved.

Moreover, when we take Load/Store instructions and issue delays into consideration, the algorithm is
not optimal, either. The reason for the first case is its conservation and can be improved by making it
more aggressive. In the second case, as the algorithm is constrained by a local view, there is no
room for improvement except boosting instructions issue speed.

Besides giving out counter-examples, we also present two improved algorithms under limited
resources and Load/Store instructions respectively. The former algorithm is much more complex and
cannot improve performance dramatically given realistic programs. The latter one is reasonable,
although still means more overhead and complexity.

As a conclusion, future work should be focused on choosing parameters that work well together, not
in inventing new techniques. Architects hit the target by careful, quantitative analysis. Questions that
need to be answered include: how large RS should be, how many functional units should be used,
how to enhance CDB bandwidth, how to issue maximum instructions in one cycle, and how to
reduce transmission delay by directly forwarding results inside functional units. While new techniques
such as SMT bring more instruction level parallelism, how to exploit the parallelism will continue to be
a hot topic in future microarchitecture. However, as the problem itself is NP-hard, there is little chance
that the milestone lies in finding an optimal algorithm.

Reference

[1] R.M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM J. of Research and
Development, 11(1):25-33,1967

[2] W. Damm and A. Pnueli. Verifying Out-of-Order Executions. CHARME’97:23-47, Chapman&Hall, 1997
[3] T. Arons and A. Pnueli. Verifying Tomasulo’s Algorithm by Refinement. Technical report, Dept. of Comp.

Sci., Weizmann Institute, Oct 1998
[4] K.L. McMillan. Verification of an Implementation of Tomasulo's Algorithm by Compositional Model

Checking. CAV’98:110-121,1998
[5] J.U. Skakkebæk, R.B. Jones, and D.L. Dill. Formal Verification of Out-of-Order Execution Using

Incremental Flushing. CAV’98:98-110,1998
[6] R. Hosabettu, G. Gopalakrishnan, and M. Srivas. A Proof of Correctness of a Processor Implementing

Tomasulo’s Algorithm without a Reorder Buffer, CHARME, 1999.
[7] R.M. Hosabettu. Systematic Verification of Pipelined Microprocessors. Ph.D. dissertation.
[8] M. Butler and Y. Patt. An Investigation of the Performance of Various Dynamic Scheduling Techniques,

Proc.ISCA-92:1-9.
[9] W.K. Norton, Pooling resources in Tomasulo algorithm http://citeseer.nj.nec.com/165782.html.
[10] V. Van Dongen, G.R. Gao, and Q. Ning. A polynomial time method for optimal software pipelining. Proc. of

the Conference on Vector and Parallel Processing, CONPAR-92:613-624, Sept 1992. Also in LNCS-634.
[11] D. Bernstein, M. Rodeh, I. Gertner. On the Complexity of Scheduling Problems for Parallel/Pipelined

Machines. IEEE Trans. on computers,38(9),1989
[12] J. Blazewicz, J.K. Lenstra and A.H.G. Rinnoy Kan. Scheduling subject to resource constraints: classification

and complexity, Discrete Applied Mathematics,5:11-24, 1983.
[13] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and approximation in

deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5:287--326, 1979.
[14] U. Feige and C. Scheideler Improved Bounds for Acyclic Job Shop Scheduling. May,1998
[15] W. Zuckerman. NP-complete problems have a version that's hard to approximate. Proc. Eight Ann. Structure

in Complexity Theory Conf., IEEE Computer Society:305-312, 1993.

32

[16] D. Bernstein, M. Rodeh, and I. Gertner. Approximation algorithms for scheduling arithmetic expressions on
pipelined machines. J. Algorithms 10:120-139, 1989.

[17] S. Rao, and A.W. Richa. New approximation techniques for some ordering problems. Proc. 9th Ann. ACM-
SIAM Symp. on Discrete Algorithms, ACM-SIAM:211-218, 1998.

[18] M.X. Goemans, M. Queyranne, A.S. Schulz, M. Skutella, and Y. Wang. Single machine scheduling with
release dates. Unpublished manuscript, 1998

[19] M. Skutella. Approximation algorithms for the discrete time-cost tradeoff problem. Proc. 8th Ann. ACM-
SIAM Symp. on Discrete Algorithms, ACM-SIAM:501-508, 1997.

[20] M.A. Weiss. Data Structures & algorithm Analysis in C++ (2nd edition). Addison-Wesley:330-332, 1999.
[21] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker and P. Roussel. The Microarchitecture of

the Pentium 4 Processor.
[22] R.E. Kessler. The ALPHA21264 Microprocessor. 24-36, 1999.
[23] http://www.nada.kth.se/~viggo/problemlist/compendium.html

