
- 1 -

Optimality of Tomasulo’s Algorithm

Tian Sang and Lin Liao
Department of Computer Science and Engineering

University of Washington

Abstract
Little work has been done about the optimality of

Tomasulo’s algorithm, the most widely used dynamic
scheduling strategy. In this paper, we try to answer the
question whether Tomasulo’s algorithm is optimal. We
first present a reference model in order to define the
optimality. We have defined three kinds of optimality
by adding different constraints to the reference model.
Then we discuss the optimality of Tomasulo’s
algorithm with unlimited resources and limited
resources respectively.

1 Introduction

To increase the instruction-level parallelism,
dynamic scheduling algorithms are widely used to
support out-of-order execution. Tomasulo’s algorithm
is the most classical one among them. It was first
introduced in IBM 360 Model 91 in 1967 [13]. The
basic idea is using register renaming to eliminate name
dependencies and using Common Data Bus (CDB) to
broadcast results globally. Today, its variants are still
popular in modern high-performance microprocessors,
such as Intel’s Pentiums, AMD’s K7, IBM’s PowerPCs
and so on [12].

The correctness of Tomasulo’s algorithm has been
verified by various methods [1][9][10][12]. But little
work has been done to evaluate the optimality of
Tomasulo’s algorithm, although most people agree on
Tomasulo’s algorithm’s excellence for dynamic
scheduling. There are two possible reasons. First, the
concept of optimality is too vague to be evaluated.
Second, to determine the optimality of a scheduling
algorithm is often very hard, even for some very simple
cases.

In this paper, we try to tackle the optimality of
Tomasulo’s algorithm. Overall, the contributions of
this paper are:

• We present a reference model in order to give a
precise definition of optimality. By giving
different constraints to such a reference model,
we get the definitions of three kinds of
optimality.

• We discuss the optimality of Tomasulo’s
algorithm and the complexity to achieve the
optimality under different assumptions and

different definitions of optimality. Especially we
show that in most cases Tomasulo’s algorithm is
not optimal or it is NP-hard for it to achieve
optimal value.

The remainder of this paper continues with a brief
introduction of our model for Tomasulo’s processor1 in
section 2. Then in section 3, we discuss the optimality
with the assumption of infinite resources. We then
suppose only limited resources are available and
discuss the optimality in section 4. We extend our
model to include load/store buffers in section 5, and it
is followed by the related work in section 6 and the
conclusions in section 7.

2 Models

In this section we introduce the Tomasulo’s
processor model and present our basic assumptions.
Then we introduce the reference model, which will be
used to define optimality.

2.1 Tomasulo’s Processor Model
Figure 1 shows the model of Tomasulo’s processor.

Instructions are issued from the instruction buffer to
reservation stations. A register alias table (RAT)
maintains the identity of the latest pending instruction
writing a particular register. A scheduler controls the
movements of instructions through the pipeline. Such a
pipeline has three stages: decode & issue, execute and
write back. The scheduler uses three signals as issue,
dispatch and write_back to control the movement.
CDB is used to transfer the results from function units
to reservation stations, RAT and register file.
Throughout the paper, we suppose:
a) No branches, we only consider the scheduling in a

basic block;
b) Infinite instruction buffer and there are always

enough instructions in the buffer;
c) Multiple and out-of-order issue, but in one cycle

the window size and the issue number have fixed
upper bounds;

1 Tomasulo’s processor means the processor that
schedules instructions using Tomasulo’s algorithm.

- 2 -

Register
File

Register
Alias Table

Funtion Unit Funtion Unit....

CDB

Instruction Buffer

Reservation Stations

Scheduler

������

����	
��

�
�����	
��
Result Register Result Register....

Figure1: Tomasulo’s Processor Model

d) Instructions in the buffer can be decoded and
issued into reservation stations in one cycle.
Although this is often not realistic, we can use
pipelines to overlap decode and issue so that it will
not impact our discussion;

e) A central reservation station buffer with infinite
stations and all the instructions can be dispatched
into function units in one cycle. This means all the
function units share the same buffer and no stalls
are caused by lack of stations. The alternative is
each kind of function units has its own stations.

Since we suppose reservation station’s number is
infinite, this alternative will not affect our
discussion either. The reason we assume infinite
reservation stations is that our reference model
does not have to use reservation stations and it is
difficult to compare these two models.

f) We will suppose data transmission on CDB only
needs one cycle except that we explicitly indicate.

g) We won’t discuss load/store instructions until
section 5.

Register
File

Instruction Buffer

Scheduler

������

����	
��

�
�����	
��

����� �����
�	

Figure 2: Reference Model

- 3 -

2.2 Reference Model
The reference model is shown in figure 2. The

different kinds of optimality are based on different
constraints on this model. To be fair, we suppose the
reference processor is also pipelined into 3 stages and
each instruction stays at least one cycle in the
intermediate registers. We also suppose it has the same
types and numbers of function units as Tomasulo’s
processor. And it has the same issue width (the upper
bound) with Tomasulo’s processor. Since we want to
use such a model to define optimality, we suppose that
the reference model can use any structures to store
intermediate results and can always make optimal
schedules under the constraints.

3 Infinite Resources

In this section, we suppose there are infinite
resources, e.g. infinite function units and CDBs for the
Tomasulo’s processor and infinite function units in the
reference processor (since the reference model does not
have to use CDBs).

3.1 Global Optimality
We first give the definition of ideal reference

processor and global optimal value.
Ideal reference processor: if we don’t add any
additional constraints to our reference model, we get
ideal reference processor. Especially, the window size
of ideal reference processor is unlimited.
Global optimal value: given a set of instructions,
global optimal value is the minimum cycles needed for
the ideal reference processor to complete all the
instructions and guarantee the data dependencies2.

We use an example to illustrate our definitions.
Suppose there are four instructions in the instruction
buffer as follows3:

ADD R1, R2, R3
ADD R4, R1, R5
ADD R6, R1, R7
MUL R8, R9, R10

We can use a DAG (Directed Acyclic Graph) to
express the dependencies among instructions, as shown
in figure 3. In the figure, the arrows express the
dependencies among instructions and the number in
each node is the execution time plus one cycle for
writing back (we suppose addition needs 2 cycles and
multiplication needs 10 cycles through the paper).

2 In our discussion of the optimal value, we ignore the
first cycle to issue the first instruction. Such a
simplification will not affect our discussion at all.
3 The instruction format is: Opcode Dest, Src1, Src2

3

3 3 11

������������

�����	�����
 ������������
������������

Figure 3: DAG for global optimal value

In this example, the global optimal value is 11 even
if the issue width is only one, because the ideal
reference processor will issue the fourth instruction
first.
Proposition1: Tomasulo’s processor cannot
guarantee global optimality even though it has infinite
function units and CDBs.

The reason is that although we suppose Tomasulo’s
processor can issue multiple instructions out of order,
the window size has an upper bound k1 and the issue
number has an upper bound k2. Here k1 and k2 are
both constants and k2 ≤ k1. We prove Tomasulo’s
processor is not global optimal by giving a
counterexample.

As shown in the figure 4, there are 2*k1+1 addition
instructions. The first k1 is on the left and the last k1+1
is on the right. The arrows express the data
dependencies. Since the window size of our
Tomasulo’s processor is only k1, in the first cycle it
cannot issue instructions on the right side. So the
cycles needed will be greater than 3*(k1+1). But the
global optimal value is exactly 3*(k1+1), because the
ideal reference processor will issue the instructions on
the critical path first. Thus Tomasulo’s processor
cannot achieve global optimality in this case.

3

3

3

�

�

�

3

3

3

�

�

�

3

�� ����

Figure 4: DAG for counterexample

3.2 Constrained Optimality
The reason that Tomasulo’s processor cannot

achieve global optimality is that the ideal reference
model has an infinite window size. In fact, if we
suppose the window size of Tomasulo’s processor is
also unlimited, it can guarantee global optimality (we

- 4 -

don’t prove here). To be fair and to understand the
capability of Tomasulo’s processor better, we should
add some constraints to our reference model.
Constrained reference processor: If we
restrict our reference processor to issue the same
instructions with Tomasulo’s processor, we get the
constrained reference processor model.
Constrained optimal value: given a set of
instructions, constrained optimal value is the minimum
cycles needed for the constrained reference processor
to complete all the instructions and guarantee the data
dependencies.
Proposition2: If the Tomasulo’s processor has
infinite functional units and infinite CDBs, it can
achieve the constrained optimality.

Assume we have an instruction set S which
contains n instructions. There is a DAG representing
the dependencies in S. We’ll construct a sequence
S’0 ⊆ S’1 ⊆ …., and we’ll show such a sequence will
converge to S when all the instructions are completed.
We prove that for each instruction in Sk’, it can finish
on both processors at the same time. Then we conclude
all the instructions in S can be completed on both
processors at the same time.

According to our definition of constrained
reference processor, the constrained reference
processor and Tomasulo’s processor will always issue
the same instructions every cycle, so every instruction
is issued at the same time on both processors. We
construct the sequence as follows:
S’0 = Ф
Repeat
∆Sk =)}'S)x(predecssor('SxS��|x{ kk ⊆∧∉∧∈

S’k+1 = Sk’ U ∆Sk

until ∆Sk = Ф
Here, predecessor(x) means the set of all

predecessors of x in the DAG.
First, any Sk’ can be completed at the same time on

both processors. We prove this by mathematical
induction:
1) S’1 = {instructions in S that don’t have

predecessors}, all these instructions are issued at
the same time, thus be dispatched and completed
at the same time on both processors.

2) Suppose all instructions of Sk’ finish at the same
time on both processors, then for S’k+1, since all
the predecessors of instructions in ∆Sk are in Sk’
and they will finish at the same time, all
instructions in ∆Sk will be dispatched and finish at
the same time on both processors. Therefore, all
the instructions of Sk+1’ will finish at the same
time on both processors. Done.

Second, since in the DAG, there are no loops, so
∆Sk cannot be empty until all the instructions are
completed. And because S is limited, we have S’ = S
by at most |S| steps. Thus both processors can finish S
at the same time.

4 Limited Resources

In this section, we suppose the resources in
processors, e.g. function units or CDBs, may be
limited. Then there are potential structural hazards. We
first suppose function units are limited but the CDBs
are still infinite. Then we discuss the optimality when
CDBs are also limited.

4.1 Limited Function Units and Infinite
CDBs

In this section, we suppose there are only limited
functions units for Tomasulo’s processor and reference
processor. So there are potential structural conflicts
when dispatching. Since the number of CDBs is
unlimited, no CDB conflicts will happen (in fact it’s
enough for each function unit has its own CDB).

We first show that constrained optimality is not
always true if we only have limited function units.
Proposition3: The Tomasulo’s processor cannot
always achieve the constrained optimality if there are
only limited function units.

We prove this by showing a counterexample.
Suppose there are three instructions already issued to
the reservation stations, as shown in figure 5. At some
cycle, the first instruction completes and the next two
instructions are ready to dispatch. But there are only
one adder and one multiplier. So a structural hazard
happens and the scheduler has to decide which
instruction should be dispatched first.

3

3 3

������������

�����	�����
 ������������

����
����

Figure 5: Three Instructions with Function Unit
Conflict

Since Tomasulo’s scheduler has no idea about the
instructions in the instruction buffer, we will show that
no matter which instruction the scheduler dispatches
first, it may not be optimal.

Without loss of generality, we can suppose
instruction <1> is dispatched first. Then we can
construct such a case: the issue buffer has only one
instruction MUL R8, R6, R9. Thus the DAG is like
figure 6.

- 5 -

3

3 3

������������

�����	�����

������������

����
����

11
������������

����

Figure 6: DAG for the Four Instructions

The instruction <3> cannot start until both <1> and
<2> complete. That means the cycles for Tomasulo’s
processor to finish the instructions is 20. But the
constrained reference processor has the magic to know
what the not-issued instructions are. Thus in this case it
will dispatch instruction <2> first and complete all the
instructions in 17 cycles.

Again, this is a little unfair, because the practical
processor cannot schedule based on the instruction not
issued yet. We need to restrict the reference model.
Then we get the local reference processor.
Local reference processor: If we don’t allow the
constrained reference processor to schedule based on
the instructions not issued, we get the local reference
processor.
Local optimal value: minimum cycles needed for
the local reference processor to complete all the
instructions already issued and guarantee data
dependencies.

We will show that for a Tomasulo’s processor, the
complexity to achieve local optimality is NP-hard. We
present four problems and each is closer to the reality
than the previous one, then we show all the problems
are NP-hard.

The general problem is “Given a set of issued
instructions and their dependencies, find a scheduling
strategy that achieves local optimal value” and the
following problems have different assumptions.
(P1): Given k identical, empty function units and each
instruction only needs 1 cycle to execute, where k is an
integer variable greater than zero.
(P2): Same with (P1), except each instruction needs t
cycles and all the function units are pipelined into t
stages, where t is an integer variable greater than zero.
(P3): Same with (P2), except there are 2 kinds of
function units, adder and multiplier. Addition needs t1
cycles and multiplication needs t2 cycles, where t1 and
t2 are integer variable greater than zero.
(P4): Same with (P3), except some instructions may
be already in function units when scheduling.

Then we prove all the four problems are NP-hard.
Theorem1: (P1) is NP-hard

Ullman showed in [14] that an equivalent
scheduling problem is NP-hard using a polynomial
time reduction from 3SAT.4

Theorem2: (P2) is NP-hard
If we let t=1, (P2) is converted to (P1), we say that

(P2) is a generalization of (P1), which means (P1) is a
special instance of (P2). Since (P1) is NP-hard, we
know that (P2) is NP-hard.
Theorem3: (P3) is NP-hard

If the instruction set only contains addition,
scheduling those instructions in (P3) is the same with
scheduling them in (P2). So (P3) is also a
generalization of (P2) and we know (P3) is NP-hard.
Theorem4: (P4) is NP-hard

Obviously, (P4) is a generalization of (P3) because
we don’t rule out the possibility that all the function
units are empty. Therefore, (P4) is NP-hard.

We’ve shown that the local optimal problem of
scheduling under limited function units in Tomasulo’s
processor is NP-hard in general. So the space
complexity of such a general scheduler is at least
exponential of n, where n is roughly the number of
reservation stations. Because usually n is in the order
of hundred, it’s impractical to achieve local optimality
in Tomasulo’s processor.

4.2 Limited CDBs
How about only limited CDBs are available? We’ll

show that it cannot achieve local optimality, no matter
function units is limited or not.
Proposition4: The Tomasulo’s processor cannot
guarantee local optimality if the number of CDBs is
limited.

We show this by giving a counterexample. Since
the number of CDBs is limited, without loss of
generality, assume there is a CDB conflict executing
the following 3 instructions.

10

2 2

�������������	

�����	�����
 ������������

��	�� �����

Figure 7: Three Instructions with CDB Conflict

4 It’s a little tricky here. Ullman showed that (P1) is
NP-complete for a variable k and didn’t rule out the
possibility that for each fixed k there exists a
polynomial algorithm. In fact polynomial algorithms
have been found for k=1 or 2. And it’s still an open
question for any fixed k where k>=3.

- 6 -

The two additions depend on the multiplication, so
they will be dispatched and completed at the same
cycle. Suppose only one CDB is available, then there
will be a CDB conflict. No matter which addition
writes CDB first, the other will be delayed for 1 cycle
and it takes totally 15 cycles (execution: 10+2, writing
CDB 1+1+1) . However, the local reference processor
will use 14 cycles (execution: 10+2, writing registers
1+1) with Scoreboarding because no conflicts will
happen when writing back to registers.

If it needs more than one cycle to transmit data on
CDB, Tomasulo’s algorithm cannot achieve local
optimality, no matter whether there are CDB conflicts
or not. This is obvious, because local reference
processor can write results back to registers in one
cycle.

4.3 “Best” Scheduling under Limited
CDBs

From above, we know that the Tomasulo’s
processor with limited CDBs cannot guarantee the
local optimality because there might be a CDB conflict,
but can we find a best scheduling algorithm for it? The
“best” algorithm should not be worse than any other
algorithms for the Tomasulo’s processor scheduling
given limited CDBs, although it cannot reach the local
optimality.

Assume the numbers of function units and CDBs
are both limited, so there might be both function unit
conflicts and CDB conflicts.

Considering the simplest special case, there are k
identical function units using 1 cycle to finish and only
1 CDB. This is a typical UET-UCT (Unit Execution
Time and Unit Communication Time) scheduling
problem. From the previous papers, we know in most
cases UET-UCT problems are NP-hard [16][17]. Finta
and Liu thoroughly discussed UET-UCT scheduling in
single-bus multiprocessor systems [15], similar to the
Tomasulo’s processor, and they showed that finding a
best schedule for tasks with or without pre-allocation
(that is a task can only access a part of processors,
instead of all) are both NP-hard. Using their result, we
get the following theorems.
Theorem5: To find the best schedule for the
Tomasulo’s processor with limited identical functional
units and limited CDBs is NP-hard.

Tasks without pre-allocation in [15] can be reduced
to the special case of theorem5 directly: UET-UCT
tasks without pre-allocation → all instructions can only
be issued to any of the k identical function units, which
use 1 cycle to finish. Therefore theorem5 is NP-hard.
Theorem6: To find the best schedule for the
Tomasulo’s processor with limited different functional
units and limited CDBs is NP-hard.

Tasks with pre-allocation in [15] can be reduced to
the special case of theorem6: UET-UCT tasks without
pre-allocation → a kind of instructions can be issued to
that kind of functions, which use 1 cycle to finish. .
Therefore theorem6 is NP-hard.

4.3.1 Single CDB
Although in general scheduling with limited CDBs

is NP-hard, we are still interested in using an efficient
heuristic algorithm for the 1 CDB case. In the original
IBM 360, CDB conflicts were simply resolved by
assigning priorities to functional units. We show that
could be very bad by giving an example. Suppose all
the following instructions are in the reservation stations.

��

��

��

�
���

Figure 8: An example of resolving CDB conflicts

There are three level in the DAG, suppose 11 nodes
are in the second level, so there will be 11 CDB
conflicts at a time. If the priority increases from left to
right, resolving CDB conflicts by priority takes 35
cycles (execution: 10+2+10=22, writing CDB: 13).

What about resolving CDB conflicts by critical path?
The heuristic critical path approach is widely used in
the task graph scheduling [3][8][11]. When there is a
CDB conflict, first compute the critical paths of the
instructions issued, and then give the priority to the
node on a critical path. If more than one or none
conflicting nodes are on critical paths, choose one
arbitrarily. For this example it takes only 25 cycles
(execution: 22, writing CDB: 3) and it is in fact the
best.

In a DAG, to find all the critical paths, first add a
dummy entry node to all nodes without predecessors
and add a dummy exit node to all nodes without
successors, then apply a simple labeling algorithm
from the exit to the entry, and get all critical paths in
the graph. This algorithm can be done in time O(V+E),
where V is the number of nodes and E is the number of
edges, thus it is very time-efficient.

4.3.2 Resolving n-CDB conflicts
The critical path approach can be extended to

resolve n-CDB conflicts easily, just choose n
conflicting nodes in critical paths when there is a
conflict with n-CDBs (more than n nodes wanting to
write n CDBs). If more than n conflicting nodes in

- 7 -

critical paths, randomly choose n nodes from those
nodes; if less than n conflicting nodes on critical paths,
first choose those on critical paths, then randomly
choose the left nodes.

Although resolving CDB conflicts by critical path
sounds very good, it is not the “best” in all the cases,
because the general problem is NP-hard [18].

5 Load/Store Buffers

Now we want to add load/store buffers to our
processor model. The same with our assumption about
reservation stations, we also suppose the entries in
load/store buffers are infinite. So no resource hazards
happen due to the lack of entries in load/store buffers,
but the buses from the load/store buffers to the memory
are limited. Then we need to schedule when bus
accesses conflict.

It’s obvious that the schedule of load/store
instructions is dependent on other kinds of instructions.
For example, when two load instructions conflict, the
optimal schedule is also dependent on those addition or
multiplication instructions that use the data of the two
load instructions. So we have to regard the scheduling
of load/store instructions and other instructions as a
whole.

Since the reservation stations and load/store buffers
are all infinite, we can merge these buffers into one.
And from the perspective of the scheduler, it is
equivalent to that there are some load/store function
units and all the load/store instructions are executed in

them. Then we modify our Tomasulo’s processor
model based on this idea, as shown in figure 9.

This scheduling problem actually is an extension of
the problem we have discussed before. In those
problems, we suppose there are only two kinds of
function units, adder and multiplier. In fact all our
proofs on complexity do not rely on such an
assumption. Thus it is still NP-hard if we want to
achieve local optimality with more kinds of function
units. So we conclude the general scheduling problem
with load/store buffers is also NP-hard.

6 Related Work

In recent years, a lot of work has been done on the
verification of the correctness of Tomasulo’s algorithm
[1][9][10][12]. Although the methods of verifications
are totally different from our proof of optimality, they
provided some models for Tomasulo’s algorithm and
our model of Tomasulo’s processor comes from the
model used in [9].

Tomasulo’s algorithm is a scheduling problem per
se. A lot of research was done in 1970’s on the various
scheduling problems. Good surveys on these works can
be found in [6][7][2]. Although Tomasulo’s algorithm
was born in 1960’s, it was not discussed in these
papers. But these works did become the basis of our
analysis. In [14], it was proved that the problem of
single executing time scheduling is NP-Complete. This
conclusion makes some of our proofs on the
complexity of Tomasulo’s algorithm straightforward.

Register
File

Register
Alias Table

Funtion
Unit

CDB

Instruction Buffer
Reservation Stations
and Load/Store Buffer

Scheduler

������

����	
��

�
�����	
��

Funtion
Unit

Load
Unit

Store
Unit

Figure 9: Tomasulo’s Processor with Load/Store Buffer

- 8 -

Assumption Optimality
Function Unit CDB Global Constrained Local

Best

� � No Yes Yes N/A

K � No No NP-hard N/A

K N No No No NP-hard

Table 1: Our Conclusions

However, in [14] it didn’t take communication
delays into account. That’s not very realistic. In our
discussion of infinite CDBs, the 1 cycle CDB delay
can be included in the cycles of functional units. That
is reasonable because if there is no CDB conflict, we
can always treat a functional unit and a CDB as the
same block and bind them together. But when there
are limited CDBs, we can’t bind them together
anymore. If both CDB and function units are limited,
we must resolve both CDB and function unit
conflicts, which are related to each other. In
Tomasulo’s processor, the communication delay is a
fixed number, and then it becomes a UET-UCT
scheduling problem, [16][17][18][19]. In [15], they
proved scheduling in single-bus multiprocessor
systems is NP-hard, and that can be easily reduced to
our models.

Many papers discussed using heuristic algorithms
for scheduling problems, where the critical path
approach is widely used [3][8][11]. In fact, we can
resolve both CDB and function units conflicts by
critical path and get decent results.

Since the middle of 1980’s, a lot of research on
scheduling problems fall into the framework of
integer linear programming (ILP) [4][5]. ILP
provides a uniform format for scheduling problems.
Although we also formulize Tomasulo’s scheduling
using ILP, we have not found it helpful to investigate
this problem.

7 Conclusion

We conclude our results in table 1.

References
[1] T. Arons and A. Pnueli. Verifying Tomasulo’s

algorithm by refinement. Technical report,
Welzmann Institute, 1998.

[2] K.M. Baumgartner and B.W. Wah, First
Workshop on Parallel Processing, Taiwan. 1990

[3] Bjorn-Jorgensen, P. and Madsen, J. Critical path
driven cosynthesis for heterogeneous target
architectures. Proceedings of the 5th

International Workshop on Hardware/Software
Co-Design (Codes/CASHE '97)

[4] Samit Chaudhuri and Robert A. Walker, IPL-
based scheduling with time and resource
constraints in high level synthesis. Proceedings
of VLSI Design’94, pages 17-25, 1994

[5] Samit Chaudhuri, Robert A. Walker, and John E.
Mitchell. Analyzing and exploiting the structure
of he constraints in the ILP approach to the
scheduling problem. IEEE Transactions on Very
Large Scale Integration Systems, Vol. 2, No. 4.
December 1994

[6] M. J. Gonzalez, Jr. Deterministic Processor
Scheduling. Computing Surveys, Vol. 9, pages
173-204, September 1977.

[7] R.L. Graham, E.L. Lawler, J.K. Lenstra, and
A.H.G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and
scheduling. Annals of Discrete Mathematics 5,
pages 287-326, 1979

[8] C.V. Ramamoorthy, K.M.Chandy, and Marjo J.
Gonzalez, Optimal scheduling
strategies in a multiprocessor system. IEEE
Transactions on computers, VOL. C-21, NO.2,
Feb, 1972

[9] Ravi Hosabettu, Ganesh Gopalakrishnan, and
Mandayam Srivas. A Proof of Correctness of a
Processor Implementing Tomasulo’s Algorithm
Without a Reorder Buffer. In Advances in
Hardware Design and Verification: IFIP
WG10.5 International Conference on Correct
Hardware Design and Verification Methods
(CHARME ’99), volumn 1703 of LNCS, pages
8-22, Springer-Verlag, 1999.

[10] Ravi Hosabettu, Mandayam Srivas, and Ganesh
Gopalakrishnan. Decomposing the proof of
correctness of pipelined microprocessors. In
Computer-Aided Verification, CAV '98, pages
440-451, 1998.

[11] Hu, T. C. “Parrallel sequencing and assembly
line problems”, Operations Research 9,6 (1961),
841-848

- 9 -

[12] Daniel Kroening, Silvia M. Mueller, and
Wolfgang J. Paul. A Rigorous Correctness
Proof of a Tomasulo Scheduler Supporting
Precise Interrupts

[13] R.M. Tomasulo. An efficient algorithm for
exploiting multiple arithmetic units. In IBM
Journal of Research and Development, volumn
11 (1), page 22-33, 1967.

[14] J. D. Ullman. NP-complete scheduling
problems. Journal of Computer and System
schiences 10, pages 384-393, 1975

[15] L. Finta, Z. Liu, "Scheduling of Parallel
Programs in Single-Bus Multiprocessor
Systems", Rapport de Recherche INRIA, No.
2302, 1994

[16] Rayward-Smith, V.J. UET Scheduling with
Unit Interprocessor Communication Delays and

Unlimited Number of Processors. Discrete
Applied Mathematics. 18, pp. 55-71, 1987.

[17] Picouleau, C. Etude de Problems d’
Optimization dansles Systemes Distribues.
These, Universite Pierre et Marie Curie, 1992.

[18] Papadimitriou, C., and Yannakakis, M. Toward
an Architecture-Independent Analysis of
Parallel Algorithms. SIAM J. Comput. 19, pp.
322-328, 1990. Extended Abstract in
Proceedings STOC 1988.

[19] Andronikos, T., Koziris, N. Papakonstantinou,
G. and Tsanakas, P. Optimal Scheduling for
UET-UCT Generalized n-Dimensional Grid
Task Graphs, Proceedings of the 11 th IEEE
International Parallel Processing Symposium
(IPPS97), pp. 146-151, Geneva, Switzerland,
1997

