
Abstract 
Branch prediction has become a more important 
component of the modern processor, due to longer 
pipelines and the desire to exploit more instruction-
level parallelism.  Perceptrons, well-understood tools 
in machine learning, have recently been applied to 
this area of research with excellent results.  We use 
this investigation to show tracking local and global 
branch histories can improve perceptrons’ 
performance.  We also explore the effects of using 
various caching mechanisms to combat aliasing.  

1 Introduction 
Over the past few years, branch prediction has 
become an increasingly important feature in the 
modern microprocessor.  This is largely due to the 
ever-growing emphasis on processor speed: as 
pipeline lengths increase, more CPU time is wasted 
on a branch mispredict.  There is also the desire to 
exploit instruction-level parallelism: if a branch 
predictor can tell the CPU its confidence level for a 
particular prediction, the CPU can better decide if it 
should speculatively execute both branch outcomes 
(low confidence), or simply execute the predicted 
outcome, freeing functional units for use on other 
tasks. 
 
There are two main types of branch prediction.  Static 
prediction issues its decision based on some 
stationary set of criteria.  A particular instruction 
placed at a particular memory address will always 
generate the same guess under static prediction.  
Common examples are “always-taken” (all branches 
are assumed to be always taken), “backwards-taken” 
(backward-pointing branches are assumed to be 
always taken), and other strategies where some 
instructions are assumed always taken, and other 
instructions are assumed always not taken. 
 
Dynamic prediction often produces superior results to 
static prediction by using simple statistical methods 
to decide if a branch is likely to be taken.  Examples 
are “same-as-last” (branch is predicted taken if and 
only if it was taken last time), gshare and other SUD 
counter-based approaches, and perceptrons.  The 
improved performance over static prediction is due to 
this class’s ability to adapt to the particular quirks of 
the code that is being executed.  However, the 
increased performance also comes at a cost of 
hardware complexity. 

 
It has been recently shown that perceptrons can be 
applied to the branch prediction problem with 
excellent results.  In past reports, perceptrons had 
only been used with global history of branch 
outcomes.  In this investigation, we explore how 
perceptrons fare when taking both the global history 
as input, several bits of local history, and several bits 
of regional history.  We will also examine the 
possible performance improvement of perceptron 
branch predictors via several caching techniques.  
 

2 Background and Related Work 
This section provides a brief introduction to 
perceptrons.  For further details, we ask the read to 
consult [1] and [2].  A history of the application of 
perceptrons in branch predictors is also given. 
 
2.1 Perceptrons 
A perceptrons is a tool developed in Machine 
Learning as a simple model of a human neuron.  The 
perceptron receives a set of input signals x, and 
multiplies each of the signals according to the 
perceptron’s set of weights w.  It then adds the results 
together, and outputs 1 if the sum is ≥0, and –1 
otherwise.  More formally, given a vector of inputs 
and a vector of weights, the perceptron’s output is 
sgn(x•w).  In practice, an extra input is often added, 
with its value tied to 1.  This allows the perceptron to 
learn its activation threshold (i.e., how large the sum 
must be for it to “fire”, and output a 1).  For branch 
prediction, the input to the perceptron is usually the 
global history of branch outcomes, and semantically, 
the output is “taken” if the sum is ≥0, and “not taken” 
if the sum is <0.  A sample perceptron is presented in 
figure 1. 
 

Figure 1: A Perceptron. 
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Perceptrons are limited in what they can learn.  From 
their structure, it is trivial to see that they can only 
learn partitions of the form 

0   Zx   xB  xAx1 n210 =+…+⋅+⋅+⋅ .  In other 
words, given n input signals, perceptrons can only 
classify sets that can be separated by an n-
dimensional hyperplane.  Such sets are otherwise 
known as linearly separable sets.  Linear separability 
is illustrated above in figure 2.  The basic boolean 
functions, AND, OR, and NOT are linearly separable 
and can thus be learned by a perceptron.  A classic 
example of a linear inseparable function is XOR 
 
It is important to note that while this constrains what 
a perceptron can learn with 100% accuracy, a 
perceptron can perform reasonably well on linearly 
inseparable data as well.  For example, one could 
produce a line in figure 2 that would separate the 
second graph with the exception of a single data point 
- the weights the perceptron would learn for such an 
example would be correct for the vast majority of the 
examples it sees, assuming a uniform distribution of 
examples. 
 
The method for training a perceptron itself is 
inherently simple.  A perceptron’s weights are 
typically stored as floating point numbers, and are 
trained according to the training rule 

iii x)ot(ww ⋅−η+← , where η is the learning 
rate, t is the value the perceptron should have 
produced, and o is the value the perceptron actually 
produced [1].  For linearly inseparable functions, this 
method is guaranteed to approach an optimal weight 
vector in finite time given a small enough η.  In 
practice, this convergence often occurs quite rapidly. 
 
2.2  Previous Work 
The simplicity of a perceptron is exactly what makes 
it well suited to the branch prediction problem.  
Given the short clock cycles that permeate the current 
state-of-the-art processors, very little computation 
can be done in the time allotted for prediction.  The 

amount of specialized data (history, the states of 
counters, etc.) that can be accessed in this time is 
limited, too.  Because of this, heavier-weight 
machine learning techniques such as decision trees, 
back-propagation neural networks, and nearest-
neighbor are infeasible.  However, perceptrons can be 
trained with a simple update rule, and can render 
decisions in roughly the time required to perform a 
few additions.  They are also candidates for 
pipelining. 
 
Perceptrons were introduced to the branch prediction 
arena by Jiménez and Lin [2], where they found that 
perceptrons are often more effective than gshare, a 
respected branch predictor in use today.  They also 
produced a hybrid predictor that combined gshare 
and perceptrons, and often outperformed them both.  
Finally, they examined the effects of various history 
lengths, and found that perceptrons were able to 
gleam advantages from very long global histories, as 
apposed to gshare, which performs worse with longer 
histories. 
 
One of the major contributions of their work was 
designing a realistic hardware implementation for a 
perceptron branch predictor (which we will refer to 
as a PBP).  The greater computational demands of 
floating point arithmetic make the standard a training 
rule infeasible in a hardware implementation.  
Instead, Jiménez and Lin’s approach for branch 
prediction used a faster strategy for updates and 
predictions where all weights are stored as integers.  

The update rule becomes iii xtww ⋅+← , where t  

is the actual outcome (1 for “branch taken”, -1 for 
“branch not taken”).  The weights are also capped, 
such that the magnitude of any weight is not allowed 
to exceed a parameter θ.  It was found empirically in 
[2] that the optimal value to be  14h93.1 +=θ , 
where h is the length of the history list. 
 
Michaud and Seznec produced an internal publication 
[4] that evaluated the effectiveness of the perceptron 
branch predictor.  They found that including a few 
bits from the address of a branch as input to the 
perceptron showed an improvement, largely due to 
improving linear separability.  Their approach was 
also shown to be more cost-efficient than adding 
more entries in the table of perceptrons.  Similarly, 
the authors explored two-level predictors, where the 
output decision from one predictor is fed into the 
input of a perceptron, along with the global history.  
This also produces a more efficient predictor.  
Finally, they corroborated results from [2], finding 
that certain branches were better predicted by 
classical predictors than by perceptrons. 

Figure 2: Linear Separability.  The graph 
on the left is linearly separable by the 
indicated line.  The graph on the right is 
not linearly separable. 



 
Agrawal and Woo investigated perceptrons as part of 
a class project at CMU, [1].  Their contribution was a 
simple “patch” that on one benchmark provided a 
49% improvement over classical perceptron 
performance.  The patch consisted of tracking the 
number of branches executed in total, and the number 
of branches since the last misprediction.  On each 
misprediction, the number of branches executed and 
the number of branches since the last misprediction 
would be stored.  When it came time to predict an 
outcome, the perceptron would make its decision, and 
if the gap between this prediction and the last 
misprediction was the same as the last misprediction 
and the one before that, then the decision would be 
flipped.  They continue to say that this might just be a 
quirk of the particular benchmark.  They also 
observed that using a 2-bit saturating counter to 
control decision flips might improve performance. 
 

3 Implementation 
In this section, we explain our choice of 
implementing a PBP in the architecture simulator, 
sim-alpha.  This implementation is markedly 
different from previous work and has consequences 
on our experimental results. 
 
3.1 Previous Implementations 
It is important to note that the researchers in [2] and 
[1] did not actually run benchmarks with an inline 
perceptron branch predictor.  Instead, they did a 
program trace of their benchmarks, recording each 
branch and its associated outcome.  Once this data 
was collected, they ran their perceptrons on the 
ext racted branches and outcomes.  While this 
approach has the advantage of being faster than an 
architecture simulator, it fails to accurately portray 
the working environment of a predictor. 
 
When a branch prediction is made, it will be several 
cycles until it is know if the prediction was correct.  
During this interval, the CPU might come across 
another branch instruction.  Since stalling till the first 
prediction becomes known is unacceptable, a 
speculative prediction is made about this second 
branch.  While this is good in terms of promoting 
throughput, speculative prediction creates an 
interesting problem for stateful predictors (predictors 
that keep a history).  Speculative prediction will lead 
to mistakes in the history, effectively making it 
“garbage.” 
 
To understand this, consider the following scenario.  
A branch X is reached and is predicted as taken. 
Because it is dependent on a high-latency function 

(perhaps a floating-point multiply), the actual 
outcome will not be known for 40 cycles.  Along the 
way, Branch Y is encountered, predicted, and is 
determined to be not taken all within this 40 cycle 
period.  When the not taken outcome of Y becomes 
known, the global history is updated. This is the heart 
of the problem.  Assume X was supposed to be not 
taken.  Then, Y should never have been encountered 
and its history bit should not be in the register.  On 
the other hand, assume X is taken.  While Y will be 
encountered, X’s history bit should come before Y’s, 
but in reality, they will be reversed since Y’s 
outcome became known first.   
 
This situation is not reflected in the trace 
implementation of [1] and [2].  Because the 
perceptron is learning on-line, it will very likely 
make several bad predictions early on.  Each time a 
misprediction is made, the global history risks 
contamination by branches that were speculatively 
executed, but were flushed out of the pipeline later.  
This means that the previous studies only examined 
how well a PBP could learn how to predict branches 
by watching another predictor work, instead of how 
well a it could predict branches.  The noise created by 
these speculated branches and garbage history could 
perturb the results in either direction.  However at the 
quoted prediction rates (90-98%), even one 
percentage point would be a significant difference.   
 
3.2 Sim-alpha Implementation 
By implementing a PBP in sim-alpha, any 
performance data collected should reflect the effect 
of speculative predictions.  It is our belief that this 

Figure 3. A hardware model for a PBP, or 
perceptron branch predictor.  From [2]. 



will give a more accurate representation of the 
prediction accuracy. 
 
Sim-alpha also comes with several built-in branch 
predictors, including always-taken, gshare, and an 
approximation to the Alpha 21264 predictor.  
Without having to code on our own versions of these, 
we are provided with an easy means of doing a 
comparison evaluation among different providers. 
 
We have successfully implemented the perceptron 
branch predictor hardware model from [2] into sim-
alpha.  Within software, we simulate the following 
hardware actions (as seen in figure 3): 

1. Hash the branch address to get an index into 
a table of perceptrons. 

2. Fetch the appropriate perceptron. 
3. Compute the branch prediction. 
4. Act on the prediction (taken if >0). 
5. Train the given perceptron on the outcome. 
6. Write the trained perceptron back to table. 

In our simulation, the weights for all perceptrons are 
initially set to 0.  The only exception is the always 1 
input.  Its weight is set to 1 initially to bias the 
perceptron into always-taking the branch for at least 
the first time a perceptron is consulted.  Other 
approaches to setting this w0 weight can be 
considered, including 1 if the branch is backwards 
and 0 otherwise.  This is equivalent to the “always-
backward, never-forward” heuristic. 
 
All other extensions to the PBP presented in this 
paper have also been implemented into sim-alpha.  
Eventually, this code artifact will be made available 
to others for future research.  
 

3.3 Testing Approach 
To test the performance of our PBP’s, we chose four 
of the programs from the SPEC2000 benchmark 
suite: lucas from CFP2000 and gcc, twolf, and vpr 
from CINT2000.  These programs were chosen for 
their relatively fast runtimes.  Similarly, due to time 
constraints, we ran these programs using the test 
inputs, instead of the more research-oriented ref 
inputs. 
 
For comparison, we ran the same benchmarks on 
sim-alpha using five other predictors: 

1. Always-taken predictor 
2. Alpha 21264 predictor 
3. Gshare with history lengths of 8, 10, 

and 16 
 
The always-taken and Alpha 21264 predictors 
provided good lower and upper bounds on the 
prediction accuracy.  Our main goal was for the 
PBP’s to perform as well or better than the three 
gshare predictors.  Table 1 shows the performance of 
these five predictors on the four benchmarks.  

4 General Performance 
In this section, we discuss the general performance of 
the perceptron branch predictors compared to the 
other branch predictors.  We also consider the 
hardware cost of a PBP. 
 
4.1 Comparison of Performances 
Table 2 contains the performance of two PBP’s on 
the benchmarks.  Both use 20 bits global histories 
and a weight threshold of 52.  The only difference is 
the number of perceptrons, 512 versus 128.  It is 
difficult to make a direct comparison between our 
results and [2] do to the use of different benchmarks 
and history lengths.  However, it appears that our 
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Table 2. Effect of perceptron table size on 
prediction accuracy.   Each PBP uses a 20 
bit global history and a global weight 
threshold of 52. 
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Table 1. Performance of other predictors on the benchmarks.  



PBP’s fare significantly worse than those of Jiménez 
and Lin.  For example, on gcc, their predictors 
average about 92%.  This poorer performance is not 
surprising given our different implementation.  We 
believe that a majority of this degradation is due to 
the effects of speculative prediction. 
 
Comparing this table to Table 1 and 2 shows that our 
basic perceptron branch predictors are performing 
only moderately well.  On twolf and vpr, the PBP’s 
are performing the same as the gshare predictors.  On 
lucas and gcc, however, gshare is performing 
significantly better.   In later sections, we will show 
ways of significantly improving the performance of 
the PBP’s so that they perform comparably to gshare. 
 
4.2 Perceptron Table Size 
For many stateful branch predictors, one of the major 
sources for prediction inaccuracies is when two 
branches hash to the same predictor component (in 
our case, the same perceptron).  This effect, known as 
aliasing, can cause contradictory learning in the 
perceptrons.  One branch will say to increase a 
weight, while another one will say to decrease that 
same weight.  Another possibility is that one weight 
gets increased too much, causing erroneous 
predictions with seemingly high confidence. 
 
One solution to reduce aliasing is to reduce the 
number of collisions that occur in the hash table.  A 
simple approach entails just increasing the hash table 
size.  Table 2 shows the performance of two different 
PBP’s on the four benchmarks.  The first PBP uses 
512 perceptrons, while the second uses only 128 
perceptrons.  For three out of the four benchmarks, 
the 128 perceptrons performed slightly worse than its 
counterpart with 512 perceptrons.  The exception 
with the lucas benchmark is an interesting anomaly.  
Even though more aliasing is occurring due to the 
smaller table, the branches hashing to the same slot 
are not mutually destructive.  The training induced by 
one is beneficial to the other. 
Unfortunately, this is a unique situation.  Consistently 
across other configurations, larger table sizes give 
higher prediction rates for all four benchmarks.  
However, the overall loss in performance is usually 
less than 3%.    
 
Simply increasing the table size does not come 
without a price, though.  Unlike gshare and other 
predictors who use small saturating up-down 
counters, adding one perceptron requires a much 
larger amount of hardware.  In general, a PBP’s 
hardware cost is high; it requires storage for the 
weights of the perceptron and specialized functional 
units to perform the predictions and training.  With 

an attempt to balance the amount of hardware used 
between gshare and our PBP’s, we will only consider 
using a perceptron table of size 128 for the remainder 
of this paper. 

5 Local History 

Global history is limited in its ability to provide 
information about branching history.  For instance, 
consider a large loop.  If more branches occur within 
this loop than there are bits in the global history, each 
time the loop condition is reached, no information 
will exist explicitly about that particular branch.  To 
combat this situation, we propose keeping local 
branch histories to be used along with global history 
in branch prediction. 
 
5.1 The Idea of Local History 
Local history is a record of past outcomes for a 
particular branch.  This supplements global history in 
several ways.  One, it guarantees that there will 
always be some information about the branch’s 
history.  The global history might not contain any bits 
relevant to the branch in question, but the local 
history obviously will.  Two, local history is not a 
replacement to global history.  Consider a local 
history of 1111.  This will certainly weight the 
prediction towards taking the branch.  However, 
previous branches can also influence this decision.  It 
might very well be the case that if the global history 
is 10100 and the local history is 1111, the branch 
should not be taken, but should be taken any for any 
other global history.  The combination of these two 
histories allows for this finer-grain prediction. 
 
For each branch, we would ideally like to keep track 
of its last m outcomes.  This is impossible, though, 
since this would require memory for every possible 
instruction address.  As an alternative, we keep a 
local history for each perceptron.  This local history 
will not be unique to a particular branch, but will still 
represent a small subset of all the branches.  This will 
not be as fine-grain as we could hope for, but it is 
more feasible to realize in hardware. 
 
Adding local history does not come cheap, though.  
For each perceptron, we have to add a shift register.  
We also have to increase the number of weights.   
This can potentially slowdown the prediction and 
training calculations.  One has to carefully decide 
how much local history to add, but this hardware 
expense does pay off in terms of increased accuracy. 
 
5.2 Performance 
Before analyzing the performance gain of using local 
history, the issue of how to handle θ should be 



mentioned.  Originally, to accommodate local 
history, we extended the weight threshold formula to 

( ) 14hh93.1 GL ++=θ , where hL is the local 
history size and hG is the global history size.  
Surprisingly, this produced a noticeable drop in 
performance.   We then found that using two weight 
thresholds, one for local history inputs and one for 
global history inputs, performed significantly better.  
While a formula  cbhah GL ++=θ  would be 
interesting to find, such a task was beyond the scope 
of this project. 
 
Table 3 shows the prediction accuracy for several 
configurations that use local history (and the double 
threshold approach).  The second and third data sets 
are of particular interest.  Adding five global history 
bits only improves (from the first series) the accuracy 
by 0.22%, while adding five local history bits 
improves the accuracy by 5.24% .  Furthermore, with 
the addition of this small local history, we are not 
performing better than gshare on every benchmark 
except lucas.  In this exception, the difference in 
accuracy is only less than two percent. 
 
The last two data series, which use 10 and 20 bit 
local histories, reveal that throwing more local 
history at the predictor will not always dramatically 
improve performance.  It should be noted that 
without more data, it is difficult to fully describe the 
extent of these diminishing returns.  In particular, the 
accuracy for the lucas benchmark drops dramatically 
with 10 local history bits, but improves with 20 bits.   
 
This data clearly suggests that using local history will 
improve PBP performance.  A more thorough study 

for finding an optimal local history length is 
warranted, but beyond the scope of this project.  We 
believe that this value will be around 10 bits, and for 
the remainder of the data runs in this paper, we will 
use a local history of length 10 and a global history of 
length 20. 

6 Set Associative PBP’s 
Most table-based branch prediction schemes face the 
problem of aliasing when multiple branches in 
program memory are mapped to the same entry in the 
predictor table.  In these cases, training a predictor on 
the results of one branch will affect the performance 
of that predictor for each branch that is mapped to 
that predictor.  Direct-mapped memory caches 
exhibit a similar problem: multiple memory locations 
map to the same entry in the cache, and because only 
one word of memory can be present in a single entry 
at a time, extra cache misses result. 
 
Caches avoid this problem by exchanging the direct-
mapped format for an n-way set-associative format, 
where multiple memory locations map to a set of n 
entries in the cache, and the requested memory 
location can be in any of those n entries.  This 
approach has the advantage that if multiple memory 
locations mapping to the same entry are used heavily, 
more of these locations can be stored in the cache.  
There are a few disadvantages, including increased 
power consumption and larger area, and as always, 
these must be considered when examining trade-offs. 
 
We can extend the concept of set-associativity to the 
branch prediction domain.  Instead of using a hash 
function of the branch address to index into a direct-
mapped table of perceptrons, we can instead use the 
hash function to index into a 4-way set-associative 
table of perceptrons.  In this manner, if we have 
several branches mapping to the same entry in the 
table, we can store several in the table at once, and 
avoid “poisoning” the performance of one branch by 
training it with data from another branch. 
 
As with caching, the use of set-associativity in branch 
predictors has drawbacks: power consumption is still 
a concern, and many extra bits are needed for 
bookkeeping (Least-recently-used bits, address tags).  
To fully evaluate the trade-off, investigations must 
made to determine if the extra bits are better used for 
the aforementioned bookkeeping, or to increase the 
size of the table. 
 
We also note that this approach is not limited to 
perceptron predictors for any reason – set 
associativity can just as easily be applied to other 
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Table 3.  Effect of Local History.   
The numbers inside the parentheses represent the size 
of the local and global histories, respectively.  
Separate weight thresholds are used.  
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DIRECTMAP 81.33% 90.92% 82.29% 83.45%

NONE 77.46% 91.21% 77.10% 83.35%

ZERO 77.84% 90.94% 78.30% 83.63%

ZERONONE 77.60% 91.24% 79.02% 85.04%

COMMON 76.23% 91.00% 77.61% 81.33%
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Table 4.  Effects of set-associativity. 
All PBP’s used 128 perceptrons with a 10-bit local 
history and 20-bit global history.  The DIRECTMAP 
does not use set-associativity. 

table-based prediction schemes such as saturating up-
down counters, gshare, and hybrid predictors. 
 
6.1 Set Associativity in PBP’s 
Implementation-wise, this approach is nearly 
identical to that used in caches.  For all experiments 
conducted in this investigation, we used 4-way set-
associativity, and proportionately scaled down the 
size of the table to equalize the number of 
perceptrons (instead of a 128-perceptron direct-
mapped table, we now have a 32-set, 4-way set-
associative table).  Each entry in the table is now a 
set of 4 perceptrons, plus 2 bits of LRU data for each 
perceptron, as well as sufficient bits for storing the 
addresses of the branches that is predicted by each 
perceptron.  When it comes time to index into the 
table, we compute the hash, and use it to find the set 
of entries in which the branch may be.  We then 
compare the address of the current branch with the 
address tag of all the entries in the set.  If there is a 
match, then we use the matching perceptron to 
predict the branch, and later for training when the 
actual outcome of the branch is resolved. 
 
If there is no match within the set, then we must 
select an old perceptron to remove from the set, and 
load a “new” perceptron.  We use LRU replacement 
to identify the old perceptron.  Then, we have a 
choice of four strategies for how to initialize the new 
perceptron – we can set all the weights and local 
history to zero (which we refer to as ZERO 
replacement); set all the weights and local history to 
zero except for w0, which is set to one (ZEROONE 
replacement); or do nothing and simply leave the 
weights and local history from the old perceptron 
(NONE replacement); or load a “common” 
perceptron that represents a sort of average of the 
perceptrons predicting the branches in the set 
(COMMON replacement).  We discuss COMMON 
replacement in more detail later. 
 
There are arguments for each of these strategies.  
ZERO replacement may be effective because there is 
no way to predict if the weights of a perceptron will 
be positive or negative, and presetting them to zero 
leaves them at a middle ground.  ZEROONE 
replacement started off as a miscommunication 
within the team, however its results hint at a possible 
future replacement strategy, discussed later.    NONE 
replacement is the simplest to implement in 
hardware, and is the strategy employed in previous 
work. 
 
COMMON replacement is significantly more 
complex than the other strategies.  The idea is 
maintain a “common” perceptron that tries to give the 

new perceptron a head start in converging to its final 
weights.  To do this, we use 4-way set-associativity, 
but only use 3 entries in the set in the conventional 
manner.  The fourth entry in each set is dedicated to 
storing the common perceptron.  Any time a 
perceptron in a set is trained, we also train the 
common perceptron.  Thus, the common perceptron 
is never used for predictions, but will always have 
some information about all the branches that map to 
the set.  When it comes time to perform COMMON 
replacement, we simply copy the weights and local 
history from this perceptron into the destination entry 
in the set.  There is a considerable trade-off in using 
this approach – the number of perceptrons usable for 
branch prediction is cut by 25%.  While this means 
the likelihood of aliasing sharply increases when this 
strategy is used, the hope is that the “head-start” 
given by the common perceptron speeds convergence 
enough that this becomes less of an issue. 

6.2 Set Associativity Performance 
Set-associative branch prediction tables do not appear 
to gleam additional performance compared to direct-
mapped tables.  In fact, the prediction accuracies in 
Table 4 shows that this decreases performance almost 
across the board.  The only exception is a slight 
improvement for the lucas benchmark.  These results 
are somewhat surprising.  After all, caches must 
derive some benefit, otherwise set-associativity 
would not be as prevalent as it is today.  It is unclear 



why this does not hold in the perceptron branch 
prediction domain.  We theorize that the particular 
benchmarks we selected, or perhaps benchmarks in 
general, have unusually non-linearly-separable or 
non-uniform distributions of branch instructions 
throughout the table, with most branches mapping to 
the same set. Set-associativity can mitigate some 
non-uniformity, but it cannot stand against more 
severe distributions.   
 
There is also a significant difference in the 
performance of replacement strategies.  ZERO and 
ZEROONE perform the best.  This is most likely 
because the perceptron is reweighted back to zero, 
and it’s local history “cleared” (set to all not-taken), 
which allows the weights to quickly change between 
positive and negative values.  The slightly better 
performance from ZEROONE leads to a possible 
performance improvement we will discuss in Section 
8.3. 
 
NONE replacement performs moderately well. 
However, it appears to take extra time to overcome 
any “inertia” left fro m the previous perceptron in the 
same entry.  This causes a slowing of convergence 
and thus, performance is hindered.  COMMON 
replacement performs worse.  This is likely because 
we are devoting 25% of all perceptrons to the 
“common” perceptrons.  Also, because perceptrons 
only encode linearly separable functions, it is 
difficult for the common perceptrons to overcome the 
extra aliasing that occurs during their training. 

7 Victim Caching 
Victim caching is another technique originally 
developed for use in memory systems that is can be 
easily adapted for use in branch predictors. Instead of 
outright discarding an entry that is already in the 
cache but slated for replacement, the entry is placed 
in a small, fully-associative victim cache.  This 
effectively allows the cache system to dynamically 
allocate more entries in more frequently used sets.  
The victim cache is kept small enough to allow 
probes to be performed quickly and in parallel with 
the L1 cache look-up, and not increase L1 hit delays. 
 
Just like set-associativity, this approach is not limited 
to use in perceptron predictors, and may be useful in 
other predictors despite its greater hardware 
requirements. 
 
7.1 Victim Caching and PBP’s 
We implement Victim Caches much as they are 
implemented in memory systems.  The cache is 
placed just behind the main perceptron table.  All 
entries in the main perceptron table must be 

augmented with address bits (indicating the address 
of the branch instruction that is being modeled with 
that entry).  While this does not pose a problem for 
implementations that are already set-associative, this 
means using many extra bits to store address data in a 
direct-mapped table.  As always, there is a trade-off 
in whether or not the extra address bits needed in a 
direct-mapped, victim-cached implementation would 
be better spent as extra perceptrons in a slightly 
larger, but not victim-cached table. 
 
The cache comes into use when we index into the 
perceptron table and find that the requested 
perceptron is not there, determined by comparing the 
entry’s address bits with the branch instruction’s 
address.  Then we check the victim cache: if none of 
the perceptrons in the cache match the branch 
instruction’s address (a victim cache miss), then we 
identify the least-recently-used entry in the table, and 
save it into the least-recently-used entry in the victim 
cache.  We then execute one of the replacement 
strategies listed in section 6.1 to find an appropriate 
start perceptron, and store it in the table. 
 
If instead we find the branch instruction’s address in 
the victim cache (a victim cache hit), we can simply 
swap the victim cache’s copy of the requested 
perceptron with the least-recently-used entry in the 
table’s set.  This way, we load the requested 
perceptron, and store the old perceptron into the 
cache. 
 
This approach significantly increases the complexity 
of direct-mapped caches.  In addition to requiring the 
use of address bits for all entries, it also mandates the 
use of the replacement strategies described in section 
6.1 in the case that a perceptron is not found in either 
the table or the cache.  In this case, we can use the 
ZERO, ZEROONE, or NONE replacement strategies, 
but not the COMMON replacement strategies – there 
is no room for storing a common perceptron in the 
direct-mapped case, though one could use a 2-way 
set-associative table and COMMON replacement to 
get the same effect. 
 
7.2 Victim Cache Performance 
One of the most heartening aspects of implementing 
a victim cache is that (in theory) it always increases 
performance, as long is it doesn’t increase the amount 
of time a branch prediction will take.  Similarly, a 
large victim cache is (in theory) always better than a 
small one, given the same constraints.   
 
Table 5 illustrates the effects of victim caches on 
direct-mapped caches.  The replacement strategies 
have a significant effect on performance, and 



surprisingly, the best strategy is different for a direct-
mapped and a set-associative table.  For direct-
mapped perceptron tables, NONE replacement 

performs best.  We theorize this is because several 
branches map to the same entry, helping to prevent 
overtraining, and allowing the perceptron to encode 
some information about all of the branches at once.  
ZERO and ZEROONE replacement seems to work 
better for associative tables in the presence of a 
victim cache.  For these tables, using NONE 
replacement probably leads to overtraining, because 
while we have more branches mapped to the set as a 
whole, they are still spread out over the entire set.  
The inertia left by this overtraining slows 
convergence, so it is best to wipe it out entirely using 
ZERO or ZEROONE replacement.   
 
As before, it is difficult to say if table set-
associativity is useful in branch prediction.  The 
answer to this question does not become any clearer 
when victim caching is added. 
 
The LUCAS benchmark exhibits a couple of strange 
qualities: 5-entry victim caches do slightly better than 
their 10-entry counterparts, and the non-victim-
cached, direct-mapped table performs better than any 
other configuration.   It  is not clear why this would 
happen.  Executing a wider variety of benchmarks 
may provide some insight as to what it going on.  
Other than for this one benchmark, victim caches 
using the NONE replacement strategy appear to be a 
modest improvement for branch predictors. 
 
Table 6 depicts the victim cache hit rates, which 
provides another indication of how well the cache is 
performing.  Due to the wide variation in hit rates, it 
is very difficult to draw any useful conclusions from 
this data.  Clearly, more benchmarks must be run.  
However, one can see that for direct-mapped victim 
caches, the ZERO and ZEROONE replacement 
strategies yield a higher hit rate than NONE 
replacement. This is unexpected, as these 
configurations did not give better branch prediction 
performance compared to NONE.  The effects of 
speculation due to mispredicted branches could be 
one reason for this odd behavior. 
 

8 Future Work 
In the previous sections, we have occasionally noted 
possible directions for future research on perceptron 
branch predictors.  In this section, we will briefly 
describe these and other topics of interest. 
 
8.1 Further Empirical Testing 
Having considered only four of the SPEC2000 
benchmarks, we do not have a strong representation 
of all branches.  The data points that we have called 
odd might truly be odd, or they might actually occur 
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Table 5. Effects of victim-caching on direct-mapped PBP’s. 
The numbers in front of the different replacement strategies 
represents the size of the victim caches. 
 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

5-NONE 6.07% 78.24% 7.90% 17.57%

10-NONE 13.76% 78.77% 12.68% 31.99%

5-ZERO 6.80% 79.17% 9.40% 20.18%

10-ZERO 13.87% 79.62% 14.60% 35.88%

5-ZERONONE 6.87% 79.19% 9.40% 20.26%

10-
ZERONONE

13.76% 79.62% 14.61% 35.99%

TWOLF LUCAS GCC VPR

Table 6.  Victim Cache Hit-Rates for direct-mapped PBP’s. 
 



frequently.  Thus, running the PBP’s on other 
benchmarks (with possibly the ref inputs) seems 
prudent. 
 
Along the same lines, we would like to run many 
more configurations for our PBP’s.  We would like to 
determine empirically good local history lengths as 
well as determine good weight thresholds.  Along the 
same lines, more table sizes for direct-mapped and 
set-associative designs should be looked at.  The size 
of the victim cache should be explored in more detail. 
All of these will work towards defining a good PBP 
configuration. 
 
Finally, we note that when collecting data, we 
sometimes noticed eccentric behavior from sim-
alpha.  Sometimes, we were able to track this down 
to a bug in our code.  Other times, however, we were 
not able to identify the cause of these oddities.  While 
we are willing to admit that flaws might exist in our 
perceptron code, we do suspect that some bugs exist 
in sim-alpha.  Through further testing, we hope to the 
correct source of these errors. 
 
8.2 Further Caching Options 
We have already taken some ideas from caching and 
applied them to our PBP’s.  Another possible 
application of caching is to create an L2 cache of 
perceptrons.  Currently, our perceptron table is an L1 
cache.  Like with our set-associative example, we 
associate each perceptron with a particular branch.  
When a perceptron is removed from the cache, we 
could store it in an L2 cache.  If we encounter the 
branch again, we can load this perceptron from the 
L2 cache back into the L1 cache.   
 
In order to make this realistic, though, we cannot 
expect to load the perceptron from the L2 cache and 
use it to make a prediction within 2-3 cycles.  
Instead, we should use a common perceptron or some 
other means (perhaps always-take the branch) for the 
prediction.  The idea is that the perceptron will be 
available in the L1 cache for later predictions on the 
branch.   
 
Like with all our suggestions, a thorough study is 
needed to see if the hardware and power used by this 
L2 cache could be better used in making more 
perceptrons or adding more history bits.  
Furthermore, it is entirely possible that cache 
thrashing would often occur.  It is conceivable for a 
perceptron to constantly be shuffled between the two 
caches but never being used to make predictions. 
 

8.3 Tweaking the Perceptron 
Most of the ideas presented in this paper involve 
throwing more and more hardware into the problem.  
At no time have we attempted to improve the actual 
heart of the PBP—the perceptron.   
 
A simple consideration is to adjust the starting 
weights of the perceptron.  Through accidents with 
our code, we observed at times that starting with non-
zero weights appeared to slightly improve 
performance.  This effect is also seen in the different 
performances between the ZERO and ZEROONE 
replacement strategies.  In a sense, there might be an 
“average” weight vector that we should bias our 
initial weights towards.  To do this would require a 
deep understanding of the relationship between 
branch history and branch prediction. 
 
Another possibility is to change the learning rule 
used by the perceptron.  Consider a human manually 
adjusting the weights.  If a long stream of 
mispredictions is encountered, he or she might begin 
to cheat and change the weights by more than 1.  This 
could potentially improve the convergence of the 
perceptron.  Since every misprediction is a pipeline 
flush, we want to converge as quickly as possible. 
 
One approach to doing this in hardware is to 
associate a saturating counter with each perceptron.  
Whenever the perceptron predicts correctly, set it to 
0.  Otherwise, increment it.   When the counter is full, 
adjust the weights by some other amount, say 2.   
 
A second approach is to consider how inaccurate the 
perceptron actually was on a mispredict.  For 
example, a branch was supposed to be not taken, but 
the output was a large, positive value.  It will likely 
take a while before the perceptron’s output is lowered 
to below zero.  It follows then that if we are very far 
off, we should adjust the weights by a value larger 
than 1.  This value could change depending on how 
large the error is. 
 
These changes to the learning rule could improve the 
convergence rate of the perceptron and thus 
increasing prediction accuracy.  It could also hurt 
convergence by constantly oscillating between two 
bad weight vectors.  The nature of the program also 
matters.  These adjusted learning rules would be 
beneficial if we were in a tight loop, but troublesome 
otherwise.  Finally, this requires more hardware that 
could possibly be better utilized elsewhere. 



9 Conclusions 
In this paper, we discussed our implementation of the 
perceptron branch predictor work of Jiménez and Lin 
into the architecture simulator sim-alpha.  Due to 
speculative prediction, the accuracy of our predictor 
was lower than those in the original paper, [2].  As 
this reflects a more realistic performance, we 
proceeded to propose several extensions to enhance 
the accuracy of a PBP to the rates originally reported.  
 
The addition of a local his tory register to each 
perceptron was found to greatly benefit the prediction 
accuracy.  While it appears that more local history 
increases the accuracy, we noticed a diminishing 
returns effect.  Further study is warranted in deciding 
how to best balance the benefits of local history with 
the small additional hardware costs it requires. 
 
In an attempt to combat aliasing, concepts from 
memory caches were explored.  Treating the 
perceptron as a 4-way set-associative cache proved to 
perform poorly.  It is our intuition that the loss of 
performance was due to a very non-uniform 
distribution of branches throughout the table.   Larger 
tables would most likely fare better, although the 
additional hardware cost would probably be better 
used in a larger direct-mapped table with longer 
histories. 
 
Victim caching proved to be more successful.  
Although the effect on accuracy was mixed across 
the various benchmarks, considerable improvement 
was seen on a couple of these programs.  Although a 
victim cache requires somewhat complicated 
hardware, the slight performance increases we 
observed suggest further exploration of the use of 
these in not only PBP’s, but other branch predictors 
as well.   
 
Hardware costs will always have to be weighed 
against performance increase in designing branch 
predictors.  This challenge becomes even more 
difficult with perceptron branch predictors as they 
require extensive hardware even in the most basic 
implementation.  Regardless, the study of these 
predictors should be continued.  While they may 
never outperform other branch predictor schemes, the 
high accuracy rate of PBP’s suggests that branches 
are inherently linearly separable in terms of branch 
history.  Further study of how perceptrons do so well 
will reveal powerful insights that might be used to 
improve all branch predictors. 
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TWOLF Benchmark    

Predictor Direction Hits  Direction Misses Total Percentage Predicted 

Perceptron: 512,0,20,0,52 22142137 6674649 28816786 76.84% 

Perceptron: 512,5,20,52,52 23756633 5065043 28821676 82.43% 

Perceptron: 512,5,20,62,62 23753593 5068003 28821596 82.42% 

Perceptron: 512,0,25,0,62 22269653 6546963 28816616 77.28% 

Perceptron: 512,10,20,81,81 23923112 4623753 28546865 83.80% 

Perceptron: 128,0,20,0,52 21774636 7039083 28813719 75.57% 

Perceptron: 128,5,20,52,52 22970074 5845772 28815846 79.71% 

Perceptron: 12,5,20,62,62 22962573 5854140 28816713 79.68% 

Perceptron: 128,0,25,0,62 21838594 6977490 28816084 75.79% 

Perceptron: 128,10,20,81,81 23347979 5467511 28815490 81.03% 

Perceptron: 128,5,20,23,52 23286884 5531168 28818052 80.81% 

Perceptron: 128,10,20,33,52 23437470 5381102 28818572 81.33% 

Perceptron: 128,20,20,52,52 23497285 5322471 28819756 81.53% 

Plain Zero: 128,10,20,33,52 23383542 5442099 28825641 81.12% 

Plain One: 128,10,20,33,52 21906486 6907627 28814113 76.03% 

Assoc Nothing: 128,10,20,33,52 22318087 6493342 28811429 77.46% 

Assoc Zero: 128,10,20,33,52 22430951 6384629 28815580 77.84% 

Assoc One: 128,10,20,33,52 22358041 6455616 28813657 77.60% 

Assoc Common: 128,10,20,33,52 21965529 6848623 28814152 76.23% 

5-Victim Nothing: 128,10,20,33,52 22426098 6388061 28814159 77.83% 

5-Victim Zero: 128,10,20,33,52 22529353 6284614 28813967 78.19% 

5-Victim One: 128,10,20,33,52 22554085 6259536 28813621 78.28% 

5-Victim Common: 128,10,20,33,52 22002639 6811384 28814023 76.36% 

10-Victim Nothing: 128,10,20,33,52 22504855 6308805 28813660 78.10% 

10-Victim Zero: 128,10,20,33,52 22813155 6000519 28813674 79.17% 

10-Victim One: 128,10,20,33,52 22826069 5987690 28813759 79.22% 

10-Victim Common: 128,10,20,33,52 22039364 6774698 28814062 76.49% 

5-VO Zero: 128,10,20,33,52 22104871 6709062 28813933 76.72% 

5-VO One: 128,10,20,33,52 22108775 6705911 28814686 76.73% 

5-VO Nothing: 128,10,20,33,52 23760984 5059392 28820376 82.45% 

10-VO Zero: 128,10,20,33,52 22240345 6574247 28814592 77.18% 

10-VO One: 128,10,20,33,52 22240779 6574217 28814996 77.18% 

10-VO Nothing: 128,10,20,33,52 23673727 5147625 28821352 82.14% 

Gshare: 1,1024,10,1 22081639 6733710 28815349 76.63% 

Gshare: 1,1024,8,1 22637658 6173204 28810862 78.57% 

Gshare: 1,1024,16,1 22078294 6737307 28815601 76.62% 

Always Taken 17369415 11443470 28812885 60.28% 

21264 26005992 2814296 28820288 90.24% 

 

 

 

 

 

 

 

 

 

 

 

 



LUCAS Benchmark    

Predictor Direction Hits  Direction Misses Total Percentage Predicted 

Perceptron: 512,0,20,0,52 54427288 6275528 60702816 89.66% 

Perceptron: 512,5,20,52,52 56330667 4378034 60708701 92.79% 

Perceptron: 512,5,20,62,62 56303495 4403769 60707264 92.75% 

Perceptron: 512,0,25,0,62 54238404 6464393 60702797 89.35% 

Perceptron: 512,10,20,81,81 57969537 2733352 60702889 95.50% 

Perceptron: 128,0,20,0,52 54449625 4416050 58865675 92.50% 

Perceptron: 128,5,20,52,52 56305660 6267851 62573511 89.98% 

Perceptron: 12,5,20,62,62 56303209 4416050 60719259 92.73% 

Perceptron: 128,0,25,0,62 54259338 6458105 60717443 89.36% 

Perceptron: 128,10,20,81,81 57696697 3024724 60721421 95.02% 

Perceptron: 128,5,20,23,52 59072448 1659562 60732010 97.27% 

Perceptron: 128,10,20,33,52 55209938 5513784 60723722 90.92% 

Perceptron: 128,20,20,52,52 58139330 2595650 60734980 95.73% 

Plain Zero: 128,10,20,33,52 54813407 5921254 60734661 90.25% 

Plain One: 128,10,20,33,52 55149516 5576946 60726462 90.82% 

Assoc Nothing: 128,10,20,33,52 55366854 5336418 60703272 91.21% 

Assoc Zero: 128,10,20,33,52 55211853 5502773 60714626 90.94% 

Assoc One: 128,10,20,33,52 55384009 5318903 60702912 91.24% 

Assoc Common: 128,10,20,33,52 55248899 5467387 60716286 91.00% 

5-Victim Nothing: 128,10,20,33,52 55385990 5316908 60702898 91.24% 

5-Victim Zero: 128,10,20,33,52 55385990 5316908 60702898 91.24% 

5-Victim One: 128,10,20,33,52 55384165 5318674 60702839 91.24% 

5-Victim Common: 128,10,20,33,52 55285837 5430197 60716034 91.06% 

10-Victim Nothing: 128,10,20,33,52 54675138 6027975 60703113 90.07% 

10-Victim Zero: 128,10,20,33,52 55230967 5471931 60702898 90.99% 

10-Victim One: 128,10,20,33,52 55194805 5508026 60702831 90.93% 

10-Victim Common: 128,10,20,33,52 55331280 5384848 60716128 91.13% 

5-VO Zero: 128,10,20,33,52 49936727 10766214 60702941 82.26% 

5-VO One: 128,10,20,33,52 49936627 10766865 60703492 82.26% 

5-VO Nothing: 128,10,20,33,52 49955207 10748029 60703236 82.29% 

10-VO Zero: 128,10,20,33,52 49935670 10767299 60702969 82.26% 

10-VO One: 128,10,20,33,52 49936825 10766665 60703490 82.26% 

10-VO Nothing: 128,10,20,33,52 49953375 10749879 60703254 82.29% 

Gshare: 1,1024,10,1 60077585 638701 60716286 98.95% 

Gshare: 1,1024,8,1 60133831 569167 60702998 99.06% 

Gshare: 1,1024,16,1 60077585 638701 60716286 98.95% 

Always Taken 33329579 27373239 60702818 54.91% 

21264 60447939 442841 60890780 99.27% 

 

 

 

 

 

 

 

 

 

 

 

 



GCC Benchmark    

Predictor Direction Hits  Direction Misses Total Percentage Predicted 

Perceptron: 512,0,20,0,52 238195317 79164520 317359837 75.06% 

Perceptron: 512,5,20,52,52 265314537 52053250 317367787 83.60% 

Perceptron: 512,5,20,62,62 265157819 52207845 317365664 83.55% 

Perceptron: 512,0,25,0,62 238519623 78841970 317361593 75.16% 

Perceptron: 512,10,20,81,81 272613439 44760254 317373693 85.90% 

Perceptron: 128,0,20,0,52 232351139 85012059 317363198 73.21% 

Perceptron: 128,5,20,52,52 253213011 64152929 317365940 79.79% 

Perceptron: 12,5,20,62,62 253003396 64363919 317367315 79.72% 

Perceptron: 128,0,25,0,62 232594537 84767405 317361942 73.29% 

Perceptron: 128,10,20,81,81 258691841 58677654 317369495 81.51% 

Perceptron: 128,5,20,23,52 260719655 56651017 317370672 82.15% 

Perceptron: 128,10,20,33,52 261165473 56201465 317366938 82.29% 

Perceptron: 128,20,20,52,52 260614168 56749298 317363466 82.12% 

Plain Zero: 128,10,20,33,52 258291699 59080837 317372536 81.38% 

Plain One: 128,10,20,33,52 245873593 71490898 317364491 77.47% 

Assoc Nothing: 128,10,20,33,52 244688109 72688928 317377037 77.10% 

Assoc Zero: 128,10,20,33,52 248492746 68883451 317376197 78.30% 

Assoc One: 128,10,20,33,52 250778638 66588263 317366901 79.02% 

Assoc Common: 128,10,20,33,52 246293879 71074388 317368267 77.61% 

5-Victim Nothing: 128,10,20,33,52 249672760 67698661 317371421 78.67% 

5-Victim Zero: 128,10,20,33,52 252368338 64998798 317367136 79.52% 

5-Victim One: 128,10,20,33,52 252320332 65045601 317365933 79.50% 

5-Victim Common: 128,10,20,33,52 246869595 70502189 317371784 77.79% 

10-Victim Nothing: 128,10,20,33,52 250183437 67190085 317373522 78.83% 

10-Victim Zero: 128,10,20,33,52 253242957 64123171 317366128 79.80% 

10-Victim One: 128,10,20,33,52 253230693 64135558 317366251 79.79% 

10-Victim Common: 128,10,20,33,52 247315672 70052814 317368486 77.93% 

5-VO Zero: 128,10,20,33,52 249979714 67384951 317364665 78.77% 

5-VO One: 128,10,20,33,52 250004719 67360404 317365123 78.78% 

5-VO Nothing: 128,10,20,33,52 265116582 52254379 317370961 83.54% 

10-VO Zero: 128,10,20,33,52 251886812 65479417 317366229 79.37% 

10-VO One: 128,10,20,33,52 251922930 65442892 317365822 79.38% 

10-VO Nothing: 128,10,20,33,52 265126065 52242557 317368622 83.54% 

Gshare: 1,1024,10,1 256427183 60948583 317375766 80.80% 

Gshare: 1,1024,8,1 259465549 57910011 317375560 81.75% 

Gshare: 1,1024,16,1 256427183 60948583 317375766 80.80% 

Always Taken 193367708 123988295 317356003 60.93% 

21264 295950630 21422272 317372902 93.25% 

 

 

 

 

 

 

 

 

 

 

 

 



VPR Benchmark    

Predictor Direction Hits  Direction Misses Total Percentage Predicted 

Perceptron: 512,0,20,0,52 135736780 33568145 169304925 80.17% 

Perceptron: 512,5,20,52,52 144529426 24740611 169270037 85.38% 

Perceptron: 512,5,20,62,62 144419425 24850240 169269665 85.32% 

Perceptron: 512,0,25,0,62 138117729 31222795 169340524 81.56% 

Perceptron: 512,10,20,81,81 145989304 23271561 169260865 86.25% 

Perceptron: 128,0,20,0,52 132199263 37081921 169281184 78.09% 

Perceptron: 128,5,20,52,52 139721249 29568671 169289920 82.53% 

Perceptron: 12,5,20,62,62 139682496 29570126 169252622 82.53% 

Perceptron: 128,0,25,0,62 134569808 34729286 169299094 79.49% 

Perceptron: 128,10,20,81,81 140973906 28291892 169265798 83.29% 

Perceptron: 128,5,20,23,52 141215344 28053306 169268650 83.43% 

Perceptron: 128,10,20,33,52 141272244 28008585 169280829 83.45% 

Perceptron: 128,20,20,52,52 141271913 28014662 169286575 83.45% 

Plain Zero: 128,10,20,33,52 140216271 29063129 169279400 82.83% 

Plain One: 128,10,20,33,52 139320234 30013235 169333469 82.28% 

Assoc Nothing: 128,10,20,33,52 141090698 28191699 169282397 83.35% 

Assoc Zero: 128,10,20,33,52 141611133 27711779 169322912 83.63% 

Assoc One: 128,10,20,33,52 144057714 25337455 169395169 85.04% 

Assoc Common: 128,10,20,33,52 137728685 31606849 169335534 81.33% 

5-Victim Nothing: 128,10,20,33,52 143735446 25614187 169349633 84.87% 

5-Victim Zero: 128,10,20,33,52 145194615 24150821 169345436 85.74% 

5-Victim One: 128,10,20,33,52 145151029 24139892 169290921 85.74% 

5-Victim Common: 128,10,20,33,52 138788038 30543060 169331098 81.96% 

10-Victim Nothing: 128,10,20,33,52 145118312 24184612 169302924 85.72% 

10-Victim Zero: 128,10,20,33,52 145678373 23646043 169324416 86.04% 

10-Victim One: 128,10,20,33,52 145737172 23531448 169268620 86.10% 

10-Victim Common: 128,10,20,33,52 139520746 29805647 169326393 82.40% 

5-VO Zero: 128,10,20,33,52 141638339 27685224 169323563 83.65% 

5-VO One: 128,10,20,33,52 141743027 27580926 169323953 83.71% 

5-VO Nothing: 128,10,20,33,52 142911665 26420778 169332443 84.40% 

10-VO Zero: 128,10,20,33,52 142457910 26856688 169314598 84.14% 

10-VO One: 128,10,20,33,52 142552551 26763350 169315901 84.19% 

10-VO Nothing: 128,10,20,33,52 142657771 26746217 169403988 84.21% 

Gshare: 1,1024,10,1 130055454 39279074 169334528 76.80% 

Gshare: 1,1024,8,1 135305911 33985059 169290970 79.93% 

Gshare: 1,1024,16,1 130055454 39279074 169334528 76.80% 

Always Taken 111862451 57626273 169488724 66.00% 

21264 148976825 20293112 169269937 88.01% 

 


