
Abstract
Branch prediction has become a more important
component of the modern processor, due to longer
pipelines and the desire to exploit more instruction-
level parallelism. Perceptrons, well-understood tools
in machine learning, have recently been applied to
this area of research with excellent results. We use
this investigation to show tracking local and global
branch histories can improve perceptrons’
performance. We also explore the effects of using
various caching mechanisms to combat aliasing.

1 Introduction
Over the past few years, branch prediction has
become an increasingly important feature in the
modern microprocessor. This is largely due to the
ever-growing emphasis on processor speed: as
pipeline lengths increase, more CPU time is wasted
on a branch mispredict. There is also the desire to
exploit instruction-level parallelism: if a branch
predictor can tell the CPU its confidence level for a
particular prediction, the CPU can better decide if it
should speculatively execute both branch outcomes
(low confidence), or simply execute the predicted
outcome, freeing functional units for use on other
tasks.

There are two main types of branch prediction. Static
prediction issues its decision based on some
stationary set of criteria. A particular instruction
placed at a particular memory address will always
generate the same guess under static prediction.
Common examples are “always-taken” (all branches
are assumed to be always taken), “backwards-taken”
(backward-pointing branches are assumed to be
always taken), and other strategies where some
instructions are assumed always taken, and other
instructions are assumed always not taken.

Dynamic prediction often produces superior results to
static prediction by using simple statistical methods
to decide if a branch is likely to be taken. Examples
are “same-as-last” (branch is predicted taken if and
only if it was taken last time), gshare and other SUD
counter-based approaches, and perceptrons. The
improved performance over static prediction is due to
this class’s ability to adapt to the particular quirks of
the code that is being executed. However, the
increased performance also comes at a cost of
hardware complexity.

It has been recently shown that perceptrons can be
applied to the branch prediction problem with
excellent results. In past reports, perceptrons had
only been used with global history of branch
outcomes. In this investigation, we explore how
perceptrons fare when taking both the global history
as input, several bits of local history, and several bits
of regional history. We will also examine the
possible performance improvement of perceptron
branch predictors via several caching techniques.

2 Background and Related Work
This section provides a brief introduction to
perceptrons. For further details, we ask the read to
consult [1] and [2]. A history of the application of
perceptrons in branch predictors is also given.

2.1 Perceptrons
A perceptrons is a tool developed in Machine
Learning as a simple model of a human neuron. The
perceptron receives a set of input signals x, and
multiplies each of the signals according to the
perceptron’s set of weights w. It then adds the results
together, and outputs 1 if the sum is ≥0, and –1
otherwise. More formally, given a vector of inputs
and a vector of weights, the perceptron’s output is
sgn(x•w). In practice, an extra input is often added,
with its value tied to 1. This allows the perceptron to
learn its activation threshold (i.e., how large the sum
must be for it to “fire”, and output a 1). For branch
prediction, the input to the perceptron is usually the
global history of branch outcomes, and semantically,
the output is “taken” if the sum is ≥0, and “not taken”
if the sum is <0. A sample perceptron is presented in
figure 1.

Figure 1: A Perceptron.

Weights
History

Predictor
Prediction

1

Exploring Perceptrons in Branch Prediction

Nick Deibel Kevin Sikorski

Perceptrons are limited in what they can learn. From
their structure, it is trivial to see that they can only
learn partitions of the form

0 Zx xB xAx1 n210 =+…+⋅+⋅+⋅ . In other
words, given n input signals, perceptrons can only
classify sets that can be separated by an n-
dimensional hyperplane. Such sets are otherwise
known as linearly separable sets. Linear separability
is illustrated above in figure 2. The basic boolean
functions, AND, OR, and NOT are linearly separable
and can thus be learned by a perceptron. A classic
example of a linear inseparable function is XOR

It is important to note that while this constrains what
a perceptron can learn with 100% accuracy, a
perceptron can perform reasonably well on linearly
inseparable data as well. For example, one could
produce a line in figure 2 that would separate the
second graph with the exception of a single data point
- the weights the perceptron would learn for such an
example would be correct for the vast majority of the
examples it sees, assuming a uniform distribution of
examples.

The method for training a perceptron itself is
inherently simple. A perceptron’s weights are
typically stored as floating point numbers, and are
trained according to the training rule

iii x)ot(ww ⋅−η+← , where η is the learning
rate, t is the value the perceptron should have
produced, and o is the value the perceptron actually
produced [1]. For linearly inseparable functions, this
method is guaranteed to approach an optimal weight
vector in finite time given a small enough η. In
practice, this convergence often occurs quite rapidly.

2.2 Previous Work
The simplicity of a perceptron is exactly what makes
it well suited to the branch prediction problem.
Given the short clock cycles that permeate the current
state-of-the-art processors, very little computation
can be done in the time allotted for prediction. The

amount of specialized data (history, the states of
counters, etc.) that can be accessed in this time is
limited, too. Because of this, heavier-weight
machine learning techniques such as decision trees,
back-propagation neural networks, and nearest-
neighbor are infeasible. However, perceptrons can be
trained with a simple update rule, and can render
decisions in roughly the time required to perform a
few additions. They are also candidates for
pipelining.

Perceptrons were introduced to the branch prediction
arena by Jiménez and Lin [2], where they found that
perceptrons are often more effective than gshare, a
respected branch predictor in use today. They also
produced a hybrid predictor that combined gshare
and perceptrons, and often outperformed them both.
Finally, they examined the effects of various history
lengths, and found that perceptrons were able to
gleam advantages from very long global histories, as
apposed to gshare, which performs worse with longer
histories.

One of the major contributions of their work was
designing a realistic hardware implementation for a
perceptron branch predictor (which we will refer to
as a PBP). The greater computational demands of
floating point arithmetic make the standard a training
rule infeasible in a hardware implementation.
Instead, Jiménez and Lin’s approach for branch
prediction used a faster strategy for updates and
predictions where all weights are stored as integers.

The update rule becomes iii xtww ⋅+← , where t

is the actual outcome (1 for “branch taken”, -1 for
“branch not taken”). The weights are also capped,
such that the magnitude of any weight is not allowed
to exceed a parameter θ. It was found empirically in
[2] that the optimal value to be  14h93.1 +=θ ,
where h is the length of the history list.

Michaud and Seznec produced an internal publication
[4] that evaluated the effectiveness of the perceptron
branch predictor. They found that including a few
bits from the address of a branch as input to the
perceptron showed an improvement, largely due to
improving linear separability. Their approach was
also shown to be more cost-efficient than adding
more entries in the table of perceptrons. Similarly,
the authors explored two-level predictors, where the
output decision from one predictor is fed into the
input of a perceptron, along with the global history.
This also produces a more efficient predictor.
Finally, they corroborated results from [2], finding
that certain branches were better predicted by
classical predictors than by perceptrons.

Figure 2: Linear Separability. The graph
on the left is linearly separable by the
indicated line. The graph on the right is
not linearly separable.

Agrawal and Woo investigated perceptrons as part of
a class project at CMU, [1]. Their contribution was a
simple “patch” that on one benchmark provided a
49% improvement over classical perceptron
performance. The patch consisted of tracking the
number of branches executed in total, and the number
of branches since the last misprediction. On each
misprediction, the number of branches executed and
the number of branches since the last misprediction
would be stored. When it came time to predict an
outcome, the perceptron would make its decision, and
if the gap between this prediction and the last
misprediction was the same as the last misprediction
and the one before that, then the decision would be
flipped. They continue to say that this might just be a
quirk of the particular benchmark. They also
observed that using a 2-bit saturating counter to
control decision flips might improve performance.

3 Implementation
In this section, we explain our choice of
implementing a PBP in the architecture simulator,
sim-alpha. This implementation is markedly
different from previous work and has consequences
on our experimental results.

3.1 Previous Implementations
It is important to note that the researchers in [2] and
[1] did not actually run benchmarks with an inline
perceptron branch predictor. Instead, they did a
program trace of their benchmarks, recording each
branch and its associated outcome. Once this data
was collected, they ran their perceptrons on the
ext racted branches and outcomes. While this
approach has the advantage of being faster than an
architecture simulator, it fails to accurately portray
the working environment of a predictor.

When a branch prediction is made, it will be several
cycles until it is know if the prediction was correct.
During this interval, the CPU might come across
another branch instruction. Since stalling till the first
prediction becomes known is unacceptable, a
speculative prediction is made about this second
branch. While this is good in terms of promoting
throughput, speculative prediction creates an
interesting problem for stateful predictors (predictors
that keep a history). Speculative prediction will lead
to mistakes in the history, effectively making it
“garbage.”

To understand this, consider the following scenario.
A branch X is reached and is predicted as taken.
Because it is dependent on a high-latency function

(perhaps a floating-point multiply), the actual
outcome will not be known for 40 cycles. Along the
way, Branch Y is encountered, predicted, and is
determined to be not taken all within this 40 cycle
period. When the not taken outcome of Y becomes
known, the global history is updated. This is the heart
of the problem. Assume X was supposed to be not
taken. Then, Y should never have been encountered
and its history bit should not be in the register. On
the other hand, assume X is taken. While Y will be
encountered, X’s history bit should come before Y’s,
but in reality, they will be reversed since Y’s
outcome became known first.

This situation is not reflected in the trace
implementation of [1] and [2]. Because the
perceptron is learning on-line, it will very likely
make several bad predictions early on. Each time a
misprediction is made, the global history risks
contamination by branches that were speculatively
executed, but were flushed out of the pipeline later.
This means that the previous studies only examined
how well a PBP could learn how to predict branches
by watching another predictor work, instead of how
well a it could predict branches. The noise created by
these speculated branches and garbage history could
perturb the results in either direction. However at the
quoted prediction rates (90-98%), even one
percentage point would be a significant difference.

3.2 Sim-alpha Implementation
By implementing a PBP in sim-alpha, any
performance data collected should reflect the effect
of speculative predictions. It is our belief that this

Figure 3. A hardware model for a PBP, or
perceptron branch predictor. From [2].

will give a more accurate representation of the
prediction accuracy.

Sim-alpha also comes with several built-in branch
predictors, including always-taken, gshare, and an
approximation to the Alpha 21264 predictor.
Without having to code on our own versions of these,
we are provided with an easy means of doing a
comparison evaluation among different providers.

We have successfully implemented the perceptron
branch predictor hardware model from [2] into sim-
alpha. Within software, we simulate the following
hardware actions (as seen in figure 3):

1. Hash the branch address to get an index into
a table of perceptrons.

2. Fetch the appropriate perceptron.
3. Compute the branch prediction.
4. Act on the prediction (taken if >0).
5. Train the given perceptron on the outcome.
6. Write the trained perceptron back to table.

In our simulation, the weights for all perceptrons are
initially set to 0. The only exception is the always 1
input. Its weight is set to 1 initially to bias the
perceptron into always-taking the branch for at least
the first time a perceptron is consulted. Other
approaches to setting this w0 weight can be
considered, including 1 if the branch is backwards
and 0 otherwise. This is equivalent to the “always-
backward, never-forward” heuristic.

All other extensions to the PBP presented in this
paper have also been implemented into sim-alpha.
Eventually, this code artifact will be made available
to others for future research.

3.3 Testing Approach
To test the performance of our PBP’s, we chose four
of the programs from the SPEC2000 benchmark
suite: lucas from CFP2000 and gcc, twolf, and vpr
from CINT2000. These programs were chosen for
their relatively fast runtimes. Similarly, due to time
constraints, we ran these programs using the test
inputs, instead of the more research-oriented ref
inputs.

For comparison, we ran the same benchmarks on
sim-alpha using five other predictors:

1. Always-taken predictor
2. Alpha 21264 predictor
3. Gshare with history lengths of 8, 10,

and 16

The always-taken and Alpha 21264 predictors
provided good lower and upper bounds on the
prediction accuracy. Our main goal was for the
PBP’s to perform as well or better than the three
gshare predictors. Table 1 shows the performance of
these five predictors on the four benchmarks.

4 General Performance
In this section, we discuss the general performance of
the perceptron branch predictors compared to the
other branch predictors. We also consider the
hardware cost of a PBP.

4.1 Comparison of Performances
Table 2 contains the performance of two PBP’s on
the benchmarks. Both use 20 bits global histories
and a weight threshold of 52. The only difference is
the number of perceptrons, 512 versus 128. It is
difficult to make a direct comparison between our
results and [2] do to the use of different benchmarks
and history lengths. However, it appears that our

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

P
re

d
ic

ti
o

n
 R

at
e

512 76.84% 89.66% 75.06% 80.17%

128 75.57% 92.50% 73.21% 78.09%

TWOLF LUCAS GCC VPR

Table 2. Effect of perceptron table size on
prediction accuracy. Each PBP uses a 20
bit global history and a global weight
threshold of 52.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%
P

re
d

ic
ti

o
n

 A
cc

u
ra

cy

Always Taken 60.28% 54.91% 60.93% 66.00%

21264 90.24% 99.27% 93.25% 88.01%

Gshare (8) 76.63% 99.06% 81.75% 79.93%

Gshare (10) 76.63% 98.95% 80.80% 76.80%

Gshare (16) 78.57% 98.95% 80.80% 76.80%

TWOLF LUCAS GCC VPR

Table 1. Performance of other predictors on the benchmarks.

PBP’s fare significantly worse than those of Jiménez
and Lin. For example, on gcc, their predictors
average about 92%. This poorer performance is not
surprising given our different implementation. We
believe that a majority of this degradation is due to
the effects of speculative prediction.

Comparing this table to Table 1 and 2 shows that our
basic perceptron branch predictors are performing
only moderately well. On twolf and vpr, the PBP’s
are performing the same as the gshare predictors. On
lucas and gcc, however, gshare is performing
significantly better. In later sections, we will show
ways of significantly improving the performance of
the PBP’s so that they perform comparably to gshare.

4.2 Perceptron Table Size
For many stateful branch predictors, one of the major
sources for prediction inaccuracies is when two
branches hash to the same predictor component (in
our case, the same perceptron). This effect, known as
aliasing, can cause contradictory learning in the
perceptrons. One branch will say to increase a
weight, while another one will say to decrease that
same weight. Another possibility is that one weight
gets increased too much, causing erroneous
predictions with seemingly high confidence.

One solution to reduce aliasing is to reduce the
number of collisions that occur in the hash table. A
simple approach entails just increasing the hash table
size. Table 2 shows the performance of two different
PBP’s on the four benchmarks. The first PBP uses
512 perceptrons, while the second uses only 128
perceptrons. For three out of the four benchmarks,
the 128 perceptrons performed slightly worse than its
counterpart with 512 perceptrons. The exception
with the lucas benchmark is an interesting anomaly.
Even though more aliasing is occurring due to the
smaller table, the branches hashing to the same slot
are not mutually destructive. The training induced by
one is beneficial to the other.
Unfortunately, this is a unique situation. Consistently
across other configurations, larger table sizes give
higher prediction rates for all four benchmarks.
However, the overall loss in performance is usually
less than 3%.

Simply increasing the table size does not come
without a price, though. Unlike gshare and other
predictors who use small saturating up-down
counters, adding one perceptron requires a much
larger amount of hardware. In general, a PBP’s
hardware cost is high; it requires storage for the
weights of the perceptron and specialized functional
units to perform the predictions and training. With

an attempt to balance the amount of hardware used
between gshare and our PBP’s, we will only consider
using a perceptron table of size 128 for the remainder
of this paper.

5 Local History

Global history is limited in its ability to provide
information about branching history. For instance,
consider a large loop. If more branches occur within
this loop than there are bits in the global history, each
time the loop condition is reached, no information
will exist explicitly about that particular branch. To
combat this situation, we propose keeping local
branch histories to be used along with global history
in branch prediction.

5.1 The Idea of Local History
Local history is a record of past outcomes for a
particular branch. This supplements global history in
several ways. One, it guarantees that there will
always be some information about the branch’s
history. The global history might not contain any bits
relevant to the branch in question, but the local
history obviously will. Two, local history is not a
replacement to global history. Consider a local
history of 1111. This will certainly weight the
prediction towards taking the branch. However,
previous branches can also influence this decision. It
might very well be the case that if the global history
is 10100 and the local history is 1111, the branch
should not be taken, but should be taken any for any
other global history. The combination of these two
histories allows for this finer-grain prediction.

For each branch, we would ideally like to keep track
of its last m outcomes. This is impossible, though,
since this would require memory for every possible
instruction address. As an alternative, we keep a
local history for each perceptron. This local history
will not be unique to a particular branch, but will still
represent a small subset of all the branches. This will
not be as fine-grain as we could hope for, but it is
more feasible to realize in hardware.

Adding local history does not come cheap, though.
For each perceptron, we have to add a shift register.
We also have to increase the number of weights.
This can potentially slowdown the prediction and
training calculations. One has to carefully decide
how much local history to add, but this hardware
expense does pay off in terms of increased accuracy.

5.2 Performance
Before analyzing the performance gain of using local
history, the issue of how to handle θ should be

mentioned. Originally, to accommodate local
history, we extended the weight threshold formula to

() 14hh93.1 GL ++=θ , where hL is the local
history size and hG is the global history size.
Surprisingly, this produced a noticeable drop in
performance. We then found that using two weight
thresholds, one for local history inputs and one for
global history inputs, performed significantly better.
While a formula  cbhah GL ++=θ would be
interesting to find, such a task was beyond the scope
of this project.

Table 3 shows the prediction accuracy for several
configurations that use local history (and the double
threshold approach). The second and third data sets
are of particular interest. Adding five global history
bits only improves (from the first series) the accuracy
by 0.22%, while adding five local history bits
improves the accuracy by 5.24% . Furthermore, with
the addition of this small local history, we are not
performing better than gshare on every benchmark
except lucas. In this exception, the difference in
accuracy is only less than two percent.

The last two data series, which use 10 and 20 bit
local histories, reveal that throwing more local
history at the predictor will not always dramatically
improve performance. It should be noted that
without more data, it is difficult to fully describe the
extent of these diminishing returns. In particular, the
accuracy for the lucas benchmark drops dramatically
with 10 local history bits, but improves with 20 bits.

This data clearly suggests that using local history will
improve PBP performance. A more thorough study

for finding an optimal local history length is
warranted, but beyond the scope of this project. We
believe that this value will be around 10 bits, and for
the remainder of the data runs in this paper, we will
use a local history of length 10 and a global history of
length 20.

6 Set Associative PBP’s
Most table-based branch prediction schemes face the
problem of aliasing when multiple branches in
program memory are mapped to the same entry in the
predictor table. In these cases, training a predictor on
the results of one branch will affect the performance
of that predictor for each branch that is mapped to
that predictor. Direct-mapped memory caches
exhibit a similar problem: multiple memory locations
map to the same entry in the cache, and because only
one word of memory can be present in a single entry
at a time, extra cache misses result.

Caches avoid this problem by exchanging the direct-
mapped format for an n-way set-associative format,
where multiple memory locations map to a set of n
entries in the cache, and the requested memory
location can be in any of those n entries. This
approach has the advantage that if multiple memory
locations mapping to the same entry are used heavily,
more of these locations can be stored in the cache.
There are a few disadvantages, including increased
power consumption and larger area, and as always,
these must be considered when examining trade-offs.

We can extend the concept of set-associativity to the
branch prediction domain. Instead of using a hash
function of the branch address to index into a direct-
mapped table of perceptrons, we can instead use the
hash function to index into a 4-way set-associative
table of perceptrons. In this manner, if we have
several branches mapping to the same entry in the
table, we can store several in the table at once, and
avoid “poisoning” the performance of one branch by
training it with data from another branch.

As with caching, the use of set-associativity in branch
predictors has drawbacks: power consumption is still
a concern, and many extra bits are needed for
bookkeeping (Least-recently-used bits, address tags).
To fully evaluate the trade-off, investigations must
made to determine if the extra bits are better used for
the aforementioned bookkeeping, or to increase the
size of the table.

We also note that this approach is not limited to
perceptron predictors for any reason – set
associativity can just as easily be applied to other

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

(0, 20) 75.57% 92.50% 73.21% 78.09%

(0, 25) 75.79% 89.36% 73.29% 79.49%

(5, 20) 80.81% 97.27% 82.15% 83.43%

(10, 20) 81.33% 90.92% 82.29% 83.45%

(20, 20) 81.53% 95.73% 82.12% 83.45%

TWOLF LUCAS GCC VPR

Table 3. Effect of Local History.
The numbers inside the parentheses represent the size
of the local and global histories, respectively.
Separate weight thresholds are used.

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

DIRECTMAP 81.33% 90.92% 82.29% 83.45%

NONE 77.46% 91.21% 77.10% 83.35%

ZERO 77.84% 90.94% 78.30% 83.63%

ZERONONE 77.60% 91.24% 79.02% 85.04%

COMMON 76.23% 91.00% 77.61% 81.33%

TWOLF LUCAS GCC VPR

Table 4. Effects of set-associativity.
All PBP’s used 128 perceptrons with a 10-bit local
history and 20-bit global history. The DIRECTMAP
does not use set-associativity.

table-based prediction schemes such as saturating up-
down counters, gshare, and hybrid predictors.

6.1 Set Associativity in PBP’s
Implementation-wise, this approach is nearly
identical to that used in caches. For all experiments
conducted in this investigation, we used 4-way set-
associativity, and proportionately scaled down the
size of the table to equalize the number of
perceptrons (instead of a 128-perceptron direct-
mapped table, we now have a 32-set, 4-way set-
associative table). Each entry in the table is now a
set of 4 perceptrons, plus 2 bits of LRU data for each
perceptron, as well as sufficient bits for storing the
addresses of the branches that is predicted by each
perceptron. When it comes time to index into the
table, we compute the hash, and use it to find the set
of entries in which the branch may be. We then
compare the address of the current branch with the
address tag of all the entries in the set. If there is a
match, then we use the matching perceptron to
predict the branch, and later for training when the
actual outcome of the branch is resolved.

If there is no match within the set, then we must
select an old perceptron to remove from the set, and
load a “new” perceptron. We use LRU replacement
to identify the old perceptron. Then, we have a
choice of four strategies for how to initialize the new
perceptron – we can set all the weights and local
history to zero (which we refer to as ZERO
replacement); set all the weights and local history to
zero except for w0, which is set to one (ZEROONE
replacement); or do nothing and simply leave the
weights and local history from the old perceptron
(NONE replacement); or load a “common”
perceptron that represents a sort of average of the
perceptrons predicting the branches in the set
(COMMON replacement). We discuss COMMON
replacement in more detail later.

There are arguments for each of these strategies.
ZERO replacement may be effective because there is
no way to predict if the weights of a perceptron will
be positive or negative, and presetting them to zero
leaves them at a middle ground. ZEROONE
replacement started off as a miscommunication
within the team, however its results hint at a possible
future replacement strategy, discussed later. NONE
replacement is the simplest to implement in
hardware, and is the strategy employed in previous
work.

COMMON replacement is significantly more
complex than the other strategies. The idea is
maintain a “common” perceptron that tries to give the

new perceptron a head start in converging to its final
weights. To do this, we use 4-way set-associativity,
but only use 3 entries in the set in the conventional
manner. The fourth entry in each set is dedicated to
storing the common perceptron. Any time a
perceptron in a set is trained, we also train the
common perceptron. Thus, the common perceptron
is never used for predictions, but will always have
some information about all the branches that map to
the set. When it comes time to perform COMMON
replacement, we simply copy the weights and local
history from this perceptron into the destination entry
in the set. There is a considerable trade-off in using
this approach – the number of perceptrons usable for
branch prediction is cut by 25%. While this means
the likelihood of aliasing sharply increases when this
strategy is used, the hope is that the “head-start”
given by the common perceptron speeds convergence
enough that this becomes less of an issue.

6.2 Set Associativity Performance
Set-associative branch prediction tables do not appear
to gleam additional performance compared to direct-
mapped tables. In fact, the prediction accuracies in
Table 4 shows that this decreases performance almost
across the board. The only exception is a slight
improvement for the lucas benchmark. These results
are somewhat surprising. After all, caches must
derive some benefit, otherwise set-associativity
would not be as prevalent as it is today. It is unclear

why this does not hold in the perceptron branch
prediction domain. We theorize that the particular
benchmarks we selected, or perhaps benchmarks in
general, have unusually non-linearly-separable or
non-uniform distributions of branch instructions
throughout the table, with most branches mapping to
the same set. Set-associativity can mitigate some
non-uniformity, but it cannot stand against more
severe distributions.

There is also a significant difference in the
performance of replacement strategies. ZERO and
ZEROONE perform the best. This is most likely
because the perceptron is reweighted back to zero,
and it’s local history “cleared” (set to all not-taken),
which allows the weights to quickly change between
positive and negative values. The slightly better
performance from ZEROONE leads to a possible
performance improvement we will discuss in Section
8.3.

NONE replacement performs moderately well.
However, it appears to take extra time to overcome
any “inertia” left fro m the previous perceptron in the
same entry. This causes a slowing of convergence
and thus, performance is hindered. COMMON
replacement performs worse. This is likely because
we are devoting 25% of all perceptrons to the
“common” perceptrons. Also, because perceptrons
only encode linearly separable functions, it is
difficult for the common perceptrons to overcome the
extra aliasing that occurs during their training.

7 Victim Caching
Victim caching is another technique originally
developed for use in memory systems that is can be
easily adapted for use in branch predictors. Instead of
outright discarding an entry that is already in the
cache but slated for replacement, the entry is placed
in a small, fully-associative victim cache. This
effectively allows the cache system to dynamically
allocate more entries in more frequently used sets.
The victim cache is kept small enough to allow
probes to be performed quickly and in parallel with
the L1 cache look-up, and not increase L1 hit delays.

Just like set-associativity, this approach is not limited
to use in perceptron predictors, and may be useful in
other predictors despite its greater hardware
requirements.

7.1 Victim Caching and PBP’s
We implement Victim Caches much as they are
implemented in memory systems. The cache is
placed just behind the main perceptron table. All
entries in the main perceptron table must be

augmented with address bits (indicating the address
of the branch instruction that is being modeled with
that entry). While this does not pose a problem for
implementations that are already set-associative, this
means using many extra bits to store address data in a
direct-mapped table. As always, there is a trade-off
in whether or not the extra address bits needed in a
direct-mapped, victim-cached implementation would
be better spent as extra perceptrons in a slightly
larger, but not victim-cached table.

The cache comes into use when we index into the
perceptron table and find that the requested
perceptron is not there, determined by comparing the
entry’s address bits with the branch instruction’s
address. Then we check the victim cache: if none of
the perceptrons in the cache match the branch
instruction’s address (a victim cache miss), then we
identify the least-recently-used entry in the table, and
save it into the least-recently-used entry in the victim
cache. We then execute one of the replacement
strategies listed in section 6.1 to find an appropriate
start perceptron, and store it in the table.

If instead we find the branch instruction’s address in
the victim cache (a victim cache hit), we can simply
swap the victim cache’s copy of the requested
perceptron with the least-recently-used entry in the
table’s set. This way, we load the requested
perceptron, and store the old perceptron into the
cache.

This approach significantly increases the complexity
of direct-mapped caches. In addition to requiring the
use of address bits for all entries, it also mandates the
use of the replacement strategies described in section
6.1 in the case that a perceptron is not found in either
the table or the cache. In this case, we can use the
ZERO, ZEROONE, or NONE replacement strategies,
but not the COMMON replacement strategies – there
is no room for storing a common perceptron in the
direct-mapped case, though one could use a 2-way
set-associative table and COMMON replacement to
get the same effect.

7.2 Victim Cache Performance
One of the most heartening aspects of implementing
a victim cache is that (in theory) it always increases
performance, as long is it doesn’t increase the amount
of time a branch prediction will take. Similarly, a
large victim cache is (in theory) always better than a
small one, given the same constraints.

Table 5 illustrates the effects of victim caches on
direct-mapped caches. The replacement strategies
have a significant effect on performance, and

surprisingly, the best strategy is different for a direct-
mapped and a set-associative table. For direct-
mapped perceptron tables, NONE replacement

performs best. We theorize this is because several
branches map to the same entry, helping to prevent
overtraining, and allowing the perceptron to encode
some information about all of the branches at once.
ZERO and ZEROONE replacement seems to work
better for associative tables in the presence of a
victim cache. For these tables, using NONE
replacement probably leads to overtraining, because
while we have more branches mapped to the set as a
whole, they are still spread out over the entire set.
The inertia left by this overtraining slows
convergence, so it is best to wipe it out entirely using
ZERO or ZEROONE replacement.

As before, it is difficult to say if table set-
associativity is useful in branch prediction. The
answer to this question does not become any clearer
when victim caching is added.

The LUCAS benchmark exhibits a couple of strange
qualities: 5-entry victim caches do slightly better than
their 10-entry counterparts, and the non-victim-
cached, direct-mapped table performs better than any
other configuration. It is not clear why this would
happen. Executing a wider variety of benchmarks
may provide some insight as to what it going on.
Other than for this one benchmark, victim caches
using the NONE replacement strategy appear to be a
modest improvement for branch predictors.

Table 6 depicts the victim cache hit rates, which
provides another indication of how well the cache is
performing. Due to the wide variation in hit rates, it
is very difficult to draw any useful conclusions from
this data. Clearly, more benchmarks must be run.
However, one can see that for direct-mapped victim
caches, the ZERO and ZEROONE replacement
strategies yield a higher hit rate than NONE
replacement. This is unexpected, as these
configurations did not give better branch prediction
performance compared to NONE. The effects of
speculation due to mispredicted branches could be
one reason for this odd behavior.

8 Future Work
In the previous sections, we have occasionally noted
possible directions for future research on perceptron
branch predictors. In this section, we will briefly
describe these and other topics of interest.

8.1 Further Empirical Testing
Having considered only four of the SPEC2000
benchmarks, we do not have a strong representation
of all branches. The data points that we have called
odd might truly be odd, or they might actually occur

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%
P

re
di

ct
io

n
A

cc
ur

ac
ie

s

DIRECTMAP 81.33% 90.92% 82.29% 83.45%

5-NONE 82.45% 82.29% 83.54% 84.40%

10-NONE 82.14% 82.29% 83.54% 84.21%

5-ZERO 76.72% 82.26% 78.77% 83.65%

10-ZERO 77.18% 82.26% 79.37% 84.14%

5-ZERONONE 76.73% 82.26% 78.78% 83.71%

10-
ZERONONE

77.18% 82.26% 79.38% 84.19%

TWOLF LUCAS GCC VPR

Table 5. Effects of victim-caching on direct-mapped PBP’s.
The numbers in front of the different replacement strategies
represents the size of the victim caches.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

5-NONE 6.07% 78.24% 7.90% 17.57%

10-NONE 13.76% 78.77% 12.68% 31.99%

5-ZERO 6.80% 79.17% 9.40% 20.18%

10-ZERO 13.87% 79.62% 14.60% 35.88%

5-ZERONONE 6.87% 79.19% 9.40% 20.26%

10-
ZERONONE

13.76% 79.62% 14.61% 35.99%

TWOLF LUCAS GCC VPR

Table 6. Victim Cache Hit-Rates for direct-mapped PBP’s.

frequently. Thus, running the PBP’s on other
benchmarks (with possibly the ref inputs) seems
prudent.

Along the same lines, we would like to run many
more configurations for our PBP’s. We would like to
determine empirically good local history lengths as
well as determine good weight thresholds. Along the
same lines, more table sizes for direct-mapped and
set-associative designs should be looked at. The size
of the victim cache should be explored in more detail.
All of these will work towards defining a good PBP
configuration.

Finally, we note that when collecting data, we
sometimes noticed eccentric behavior from sim-
alpha. Sometimes, we were able to track this down
to a bug in our code. Other times, however, we were
not able to identify the cause of these oddities. While
we are willing to admit that flaws might exist in our
perceptron code, we do suspect that some bugs exist
in sim-alpha. Through further testing, we hope to the
correct source of these errors.

8.2 Further Caching Options
We have already taken some ideas from caching and
applied them to our PBP’s. Another possible
application of caching is to create an L2 cache of
perceptrons. Currently, our perceptron table is an L1
cache. Like with our set-associative example, we
associate each perceptron with a particular branch.
When a perceptron is removed from the cache, we
could store it in an L2 cache. If we encounter the
branch again, we can load this perceptron from the
L2 cache back into the L1 cache.

In order to make this realistic, though, we cannot
expect to load the perceptron from the L2 cache and
use it to make a prediction within 2-3 cycles.
Instead, we should use a common perceptron or some
other means (perhaps always-take the branch) for the
prediction. The idea is that the perceptron will be
available in the L1 cache for later predictions on the
branch.

Like with all our suggestions, a thorough study is
needed to see if the hardware and power used by this
L2 cache could be better used in making more
perceptrons or adding more history bits.
Furthermore, it is entirely possible that cache
thrashing would often occur. It is conceivable for a
perceptron to constantly be shuffled between the two
caches but never being used to make predictions.

8.3 Tweaking the Perceptron
Most of the ideas presented in this paper involve
throwing more and more hardware into the problem.
At no time have we attempted to improve the actual
heart of the PBP—the perceptron.

A simple consideration is to adjust the starting
weights of the perceptron. Through accidents with
our code, we observed at times that starting with non-
zero weights appeared to slightly improve
performance. This effect is also seen in the different
performances between the ZERO and ZEROONE
replacement strategies. In a sense, there might be an
“average” weight vector that we should bias our
initial weights towards. To do this would require a
deep understanding of the relationship between
branch history and branch prediction.

Another possibility is to change the learning rule
used by the perceptron. Consider a human manually
adjusting the weights. If a long stream of
mispredictions is encountered, he or she might begin
to cheat and change the weights by more than 1. This
could potentially improve the convergence of the
perceptron. Since every misprediction is a pipeline
flush, we want to converge as quickly as possible.

One approach to doing this in hardware is to
associate a saturating counter with each perceptron.
Whenever the perceptron predicts correctly, set it to
0. Otherwise, increment it. When the counter is full,
adjust the weights by some other amount, say 2.

A second approach is to consider how inaccurate the
perceptron actually was on a mispredict. For
example, a branch was supposed to be not taken, but
the output was a large, positive value. It will likely
take a while before the perceptron’s output is lowered
to below zero. It follows then that if we are very far
off, we should adjust the weights by a value larger
than 1. This value could change depending on how
large the error is.

These changes to the learning rule could improve the
convergence rate of the perceptron and thus
increasing prediction accuracy. It could also hurt
convergence by constantly oscillating between two
bad weight vectors. The nature of the program also
matters. These adjusted learning rules would be
beneficial if we were in a tight loop, but troublesome
otherwise. Finally, this requires more hardware that
could possibly be better utilized elsewhere.

9 Conclusions
In this paper, we discussed our implementation of the
perceptron branch predictor work of Jiménez and Lin
into the architecture simulator sim-alpha. Due to
speculative prediction, the accuracy of our predictor
was lower than those in the original paper, [2]. As
this reflects a more realistic performance, we
proceeded to propose several extensions to enhance
the accuracy of a PBP to the rates originally reported.

The addition of a local his tory register to each
perceptron was found to greatly benefit the prediction
accuracy. While it appears that more local history
increases the accuracy, we noticed a diminishing
returns effect. Further study is warranted in deciding
how to best balance the benefits of local history with
the small additional hardware costs it requires.

In an attempt to combat aliasing, concepts from
memory caches were explored. Treating the
perceptron as a 4-way set-associative cache proved to
perform poorly. It is our intuition that the loss of
performance was due to a very non-uniform
distribution of branches throughout the table. Larger
tables would most likely fare better, although the
additional hardware cost would probably be better
used in a larger direct-mapped table with longer
histories.

Victim caching proved to be more successful.
Although the effect on accuracy was mixed across
the various benchmarks, considerable improvement
was seen on a couple of these programs. Although a
victim cache requires somewhat complicated
hardware, the slight performance increases we
observed suggest further exploration of the use of
these in not only PBP’s, but other branch predictors
as well.

Hardware costs will always have to be weighed
against performance increase in designing branch
predictors. This challenge becomes even more
difficult with perceptron branch predictors as they
require extensive hardware even in the most basic
implementation. Regardless, the study of these
predictors should be continued. While they may
never outperform other branch predictor schemes, the
high accuracy rate of PBP’s suggests that branches
are inherently linearly separable in terms of branch
history. Further study of how perceptrons do so well
will reveal powerful insights that might be used to
improve all branch predictors.

Bibliography
[1] Agrawal and Woo. Improving Perceptrons for

Dynamic Branch Prediction. Class Project at
Carnegie Mellon University, 2001.

[2] Jiménez and Lin. Dynamic Branch Prediction

with Perceptrons. Proceedings of the 7th
International Symposium on High-Performance
Computer Architecture, Barcelona, Spain, 2001.

[3] Kessler. The Alpha 21264 Microprocessor.

IEEE, 1999.

[4] Michaud and Seznec. A Comprehensive Study

of Dynamic Global History Branch Prediction,
Internal Publication No. 1406, 2001.

[5] Mitchell. Machine Learning. McGraw-Hill,

1997.

[6] Russell and Norvig. Artificial Intelligence: A

Modern Approach, Prentice Hall Series in
Artificial Intelligence, 1995.

[7] Sim-alpha simulator.

http://www.simplescalar.org

[8] Smith. A Study of Branch Prediction Strategies.

IEEE, 1981.

TWOLF Benchmark

Predictor Direction Hits Direction Misses Total Percentage Predicted

Perceptron: 512,0,20,0,52 22142137 6674649 28816786 76.84%

Perceptron: 512,5,20,52,52 23756633 5065043 28821676 82.43%

Perceptron: 512,5,20,62,62 23753593 5068003 28821596 82.42%

Perceptron: 512,0,25,0,62 22269653 6546963 28816616 77.28%

Perceptron: 512,10,20,81,81 23923112 4623753 28546865 83.80%

Perceptron: 128,0,20,0,52 21774636 7039083 28813719 75.57%

Perceptron: 128,5,20,52,52 22970074 5845772 28815846 79.71%

Perceptron: 12,5,20,62,62 22962573 5854140 28816713 79.68%

Perceptron: 128,0,25,0,62 21838594 6977490 28816084 75.79%

Perceptron: 128,10,20,81,81 23347979 5467511 28815490 81.03%

Perceptron: 128,5,20,23,52 23286884 5531168 28818052 80.81%

Perceptron: 128,10,20,33,52 23437470 5381102 28818572 81.33%

Perceptron: 128,20,20,52,52 23497285 5322471 28819756 81.53%

Plain Zero: 128,10,20,33,52 23383542 5442099 28825641 81.12%

Plain One: 128,10,20,33,52 21906486 6907627 28814113 76.03%

Assoc Nothing: 128,10,20,33,52 22318087 6493342 28811429 77.46%

Assoc Zero: 128,10,20,33,52 22430951 6384629 28815580 77.84%

Assoc One: 128,10,20,33,52 22358041 6455616 28813657 77.60%

Assoc Common: 128,10,20,33,52 21965529 6848623 28814152 76.23%

5-Victim Nothing: 128,10,20,33,52 22426098 6388061 28814159 77.83%

5-Victim Zero: 128,10,20,33,52 22529353 6284614 28813967 78.19%

5-Victim One: 128,10,20,33,52 22554085 6259536 28813621 78.28%

5-Victim Common: 128,10,20,33,52 22002639 6811384 28814023 76.36%

10-Victim Nothing: 128,10,20,33,52 22504855 6308805 28813660 78.10%

10-Victim Zero: 128,10,20,33,52 22813155 6000519 28813674 79.17%

10-Victim One: 128,10,20,33,52 22826069 5987690 28813759 79.22%

10-Victim Common: 128,10,20,33,52 22039364 6774698 28814062 76.49%

5-VO Zero: 128,10,20,33,52 22104871 6709062 28813933 76.72%

5-VO One: 128,10,20,33,52 22108775 6705911 28814686 76.73%

5-VO Nothing: 128,10,20,33,52 23760984 5059392 28820376 82.45%

10-VO Zero: 128,10,20,33,52 22240345 6574247 28814592 77.18%

10-VO One: 128,10,20,33,52 22240779 6574217 28814996 77.18%

10-VO Nothing: 128,10,20,33,52 23673727 5147625 28821352 82.14%

Gshare: 1,1024,10,1 22081639 6733710 28815349 76.63%

Gshare: 1,1024,8,1 22637658 6173204 28810862 78.57%

Gshare: 1,1024,16,1 22078294 6737307 28815601 76.62%

Always Taken 17369415 11443470 28812885 60.28%

21264 26005992 2814296 28820288 90.24%

LUCAS Benchmark

Predictor Direction Hits Direction Misses Total Percentage Predicted

Perceptron: 512,0,20,0,52 54427288 6275528 60702816 89.66%

Perceptron: 512,5,20,52,52 56330667 4378034 60708701 92.79%

Perceptron: 512,5,20,62,62 56303495 4403769 60707264 92.75%

Perceptron: 512,0,25,0,62 54238404 6464393 60702797 89.35%

Perceptron: 512,10,20,81,81 57969537 2733352 60702889 95.50%

Perceptron: 128,0,20,0,52 54449625 4416050 58865675 92.50%

Perceptron: 128,5,20,52,52 56305660 6267851 62573511 89.98%

Perceptron: 12,5,20,62,62 56303209 4416050 60719259 92.73%

Perceptron: 128,0,25,0,62 54259338 6458105 60717443 89.36%

Perceptron: 128,10,20,81,81 57696697 3024724 60721421 95.02%

Perceptron: 128,5,20,23,52 59072448 1659562 60732010 97.27%

Perceptron: 128,10,20,33,52 55209938 5513784 60723722 90.92%

Perceptron: 128,20,20,52,52 58139330 2595650 60734980 95.73%

Plain Zero: 128,10,20,33,52 54813407 5921254 60734661 90.25%

Plain One: 128,10,20,33,52 55149516 5576946 60726462 90.82%

Assoc Nothing: 128,10,20,33,52 55366854 5336418 60703272 91.21%

Assoc Zero: 128,10,20,33,52 55211853 5502773 60714626 90.94%

Assoc One: 128,10,20,33,52 55384009 5318903 60702912 91.24%

Assoc Common: 128,10,20,33,52 55248899 5467387 60716286 91.00%

5-Victim Nothing: 128,10,20,33,52 55385990 5316908 60702898 91.24%

5-Victim Zero: 128,10,20,33,52 55385990 5316908 60702898 91.24%

5-Victim One: 128,10,20,33,52 55384165 5318674 60702839 91.24%

5-Victim Common: 128,10,20,33,52 55285837 5430197 60716034 91.06%

10-Victim Nothing: 128,10,20,33,52 54675138 6027975 60703113 90.07%

10-Victim Zero: 128,10,20,33,52 55230967 5471931 60702898 90.99%

10-Victim One: 128,10,20,33,52 55194805 5508026 60702831 90.93%

10-Victim Common: 128,10,20,33,52 55331280 5384848 60716128 91.13%

5-VO Zero: 128,10,20,33,52 49936727 10766214 60702941 82.26%

5-VO One: 128,10,20,33,52 49936627 10766865 60703492 82.26%

5-VO Nothing: 128,10,20,33,52 49955207 10748029 60703236 82.29%

10-VO Zero: 128,10,20,33,52 49935670 10767299 60702969 82.26%

10-VO One: 128,10,20,33,52 49936825 10766665 60703490 82.26%

10-VO Nothing: 128,10,20,33,52 49953375 10749879 60703254 82.29%

Gshare: 1,1024,10,1 60077585 638701 60716286 98.95%

Gshare: 1,1024,8,1 60133831 569167 60702998 99.06%

Gshare: 1,1024,16,1 60077585 638701 60716286 98.95%

Always Taken 33329579 27373239 60702818 54.91%

21264 60447939 442841 60890780 99.27%

GCC Benchmark

Predictor Direction Hits Direction Misses Total Percentage Predicted

Perceptron: 512,0,20,0,52 238195317 79164520 317359837 75.06%

Perceptron: 512,5,20,52,52 265314537 52053250 317367787 83.60%

Perceptron: 512,5,20,62,62 265157819 52207845 317365664 83.55%

Perceptron: 512,0,25,0,62 238519623 78841970 317361593 75.16%

Perceptron: 512,10,20,81,81 272613439 44760254 317373693 85.90%

Perceptron: 128,0,20,0,52 232351139 85012059 317363198 73.21%

Perceptron: 128,5,20,52,52 253213011 64152929 317365940 79.79%

Perceptron: 12,5,20,62,62 253003396 64363919 317367315 79.72%

Perceptron: 128,0,25,0,62 232594537 84767405 317361942 73.29%

Perceptron: 128,10,20,81,81 258691841 58677654 317369495 81.51%

Perceptron: 128,5,20,23,52 260719655 56651017 317370672 82.15%

Perceptron: 128,10,20,33,52 261165473 56201465 317366938 82.29%

Perceptron: 128,20,20,52,52 260614168 56749298 317363466 82.12%

Plain Zero: 128,10,20,33,52 258291699 59080837 317372536 81.38%

Plain One: 128,10,20,33,52 245873593 71490898 317364491 77.47%

Assoc Nothing: 128,10,20,33,52 244688109 72688928 317377037 77.10%

Assoc Zero: 128,10,20,33,52 248492746 68883451 317376197 78.30%

Assoc One: 128,10,20,33,52 250778638 66588263 317366901 79.02%

Assoc Common: 128,10,20,33,52 246293879 71074388 317368267 77.61%

5-Victim Nothing: 128,10,20,33,52 249672760 67698661 317371421 78.67%

5-Victim Zero: 128,10,20,33,52 252368338 64998798 317367136 79.52%

5-Victim One: 128,10,20,33,52 252320332 65045601 317365933 79.50%

5-Victim Common: 128,10,20,33,52 246869595 70502189 317371784 77.79%

10-Victim Nothing: 128,10,20,33,52 250183437 67190085 317373522 78.83%

10-Victim Zero: 128,10,20,33,52 253242957 64123171 317366128 79.80%

10-Victim One: 128,10,20,33,52 253230693 64135558 317366251 79.79%

10-Victim Common: 128,10,20,33,52 247315672 70052814 317368486 77.93%

5-VO Zero: 128,10,20,33,52 249979714 67384951 317364665 78.77%

5-VO One: 128,10,20,33,52 250004719 67360404 317365123 78.78%

5-VO Nothing: 128,10,20,33,52 265116582 52254379 317370961 83.54%

10-VO Zero: 128,10,20,33,52 251886812 65479417 317366229 79.37%

10-VO One: 128,10,20,33,52 251922930 65442892 317365822 79.38%

10-VO Nothing: 128,10,20,33,52 265126065 52242557 317368622 83.54%

Gshare: 1,1024,10,1 256427183 60948583 317375766 80.80%

Gshare: 1,1024,8,1 259465549 57910011 317375560 81.75%

Gshare: 1,1024,16,1 256427183 60948583 317375766 80.80%

Always Taken 193367708 123988295 317356003 60.93%

21264 295950630 21422272 317372902 93.25%

VPR Benchmark

Predictor Direction Hits Direction Misses Total Percentage Predicted

Perceptron: 512,0,20,0,52 135736780 33568145 169304925 80.17%

Perceptron: 512,5,20,52,52 144529426 24740611 169270037 85.38%

Perceptron: 512,5,20,62,62 144419425 24850240 169269665 85.32%

Perceptron: 512,0,25,0,62 138117729 31222795 169340524 81.56%

Perceptron: 512,10,20,81,81 145989304 23271561 169260865 86.25%

Perceptron: 128,0,20,0,52 132199263 37081921 169281184 78.09%

Perceptron: 128,5,20,52,52 139721249 29568671 169289920 82.53%

Perceptron: 12,5,20,62,62 139682496 29570126 169252622 82.53%

Perceptron: 128,0,25,0,62 134569808 34729286 169299094 79.49%

Perceptron: 128,10,20,81,81 140973906 28291892 169265798 83.29%

Perceptron: 128,5,20,23,52 141215344 28053306 169268650 83.43%

Perceptron: 128,10,20,33,52 141272244 28008585 169280829 83.45%

Perceptron: 128,20,20,52,52 141271913 28014662 169286575 83.45%

Plain Zero: 128,10,20,33,52 140216271 29063129 169279400 82.83%

Plain One: 128,10,20,33,52 139320234 30013235 169333469 82.28%

Assoc Nothing: 128,10,20,33,52 141090698 28191699 169282397 83.35%

Assoc Zero: 128,10,20,33,52 141611133 27711779 169322912 83.63%

Assoc One: 128,10,20,33,52 144057714 25337455 169395169 85.04%

Assoc Common: 128,10,20,33,52 137728685 31606849 169335534 81.33%

5-Victim Nothing: 128,10,20,33,52 143735446 25614187 169349633 84.87%

5-Victim Zero: 128,10,20,33,52 145194615 24150821 169345436 85.74%

5-Victim One: 128,10,20,33,52 145151029 24139892 169290921 85.74%

5-Victim Common: 128,10,20,33,52 138788038 30543060 169331098 81.96%

10-Victim Nothing: 128,10,20,33,52 145118312 24184612 169302924 85.72%

10-Victim Zero: 128,10,20,33,52 145678373 23646043 169324416 86.04%

10-Victim One: 128,10,20,33,52 145737172 23531448 169268620 86.10%

10-Victim Common: 128,10,20,33,52 139520746 29805647 169326393 82.40%

5-VO Zero: 128,10,20,33,52 141638339 27685224 169323563 83.65%

5-VO One: 128,10,20,33,52 141743027 27580926 169323953 83.71%

5-VO Nothing: 128,10,20,33,52 142911665 26420778 169332443 84.40%

10-VO Zero: 128,10,20,33,52 142457910 26856688 169314598 84.14%

10-VO One: 128,10,20,33,52 142552551 26763350 169315901 84.19%

10-VO Nothing: 128,10,20,33,52 142657771 26746217 169403988 84.21%

Gshare: 1,1024,10,1 130055454 39279074 169334528 76.80%

Gshare: 1,1024,8,1 135305911 33985059 169290970 79.93%

Gshare: 1,1024,16,1 130055454 39279074 169334528 76.80%

Always Taken 111862451 57626273 169488724 66.00%

21264 148976825 20293112 169269937 88.01%

