
1

A Framework and Analysis of Modern Graphics Architectures
for General Purpose Programming

Chris Thompson Sahngyun Hahn
University of Washington

Abstract

Modern graphics hardware has become so powerful that raw
performance enhancements are increasingly unnecessary. As such,
recent graphics hardware architectures have begun to de-emphasize
performance enhancements in favor of versatility, offering rich
ways of programmatically reconfiguring the graphics pipeline. A
side effect of this versatility is that new, powerful general purpose
constructs similar to vector processors are appearing in commodity
hardware. In this paper, we explore whether current graphics
architectures could be used to accelerate domains where vector
processors would traditionally be used. We develop a programming
framework that allows us to solve computational problems using
graphics hardware, and we apply it to various problems. We
compare the speed of our graphics card implementations to
standard CPU implementations and demonstrate startling
performance improvements in some cases, as well as room for
improvement in others. We analyze the bottlenecks and propose
minor architectural extensions to current graphics architectures
which would improve their effectiveness for solving general
purpose problems.

1 Introduction

Modern graphics hardware has reached a turning point where
performance enhancements are becoming less and less necessary.
As McCool observes, performance levels of “cheap” video-game
hardware are sufficient to overwrite every single pixel of a 640x480
display with its own transformed, lit, and textured polygon more
than 50 times every 30th of a second [9]. As such, recent graphics
hardware—in both research and commercial designs—has begun to
de-emphasize performance enhancements in favor of versatility,
offering rich ways of programmatically reconfiguring the graphics
pipeline [[8], [9], [13]]. A side effect of this versatility is that new,
powerful general purpose constructs similar to vector processors
are appearing in commodity PC hardware, thanks to their graphics
chips. The power of these “graphics” processors should not be
underestimated; for example, the NVIDIA GeForce3 chip contains
more transistors than the Intel Pentium IV, and its successor the
GeForce4 can perform more than 1.2 trillion operations per second.
Most of the time, however, this power is going unused because it is
only being exploited by graphics applications.

We believe that current graphics architectures, with minor
evolutionary changes, could be used to accelerate other domains
where vector processors might traditionally be used. We believe
that this approach is important because, due to economic and other
factors, it is unlikely that dedicated vector processors will ever
become commonplace on the desktop, whereas powerful graphics
chips are already widely available. In this research, we investigate
the programming, performance, and limitations of a recent graphics
architecture on a pair of non-graphics problems, and we propose
ways in which future iterations of the architecture could be
improved to make it more suitable for such applications.

We begin by describing a programming framework we have
devised that allows us to conveniently solve computational
problems using graphics hardware. Our system includes a simulator
for the graphics interface that can run on computers without special
hardware. We implement a number of toy algorithms with our
framework, and we also apply the framework to a real problem: 3-

satisfiability, solved using a genetic algorithm approach. We then
compare the speed of our graphics card implementations to CPU
implementations. In some cases, the results are startlingly
impressive, yet there is also significant room for improvement. We
analyze the bottlenecks and propose minor architectural extensions
to current graphics architectures which would improve their
effectiveness and efficiency for solving general purpose problems.
We conclude with a discussion of avenues for future work,
including some which draw inspiration from earlier research in
VLIW processors.

2 Prior work

While the last decade was dominated by fixed function non-
programmable graphics architectures, some programmable graphics
architectures were also explored. Some early systems, such as
Pixar’s CHAP [7] and the commercially available Ikonas platform
[2], had user microcodable SIMD processors that could process
vertex and pixel data in parallel. Programmable MIMD machines
that could process triangles in parallel, such as the Pixel-Planes [3]
and the SGI InfiniteReality, became popular for a short time, but
their low-level custom microcodes were complex and rarely used
by commercial developers.

As transistor costs decreased, CPU vendors began to introduce
graphics-oriented SIMD processor extensions into general purpose
CPU designs. Examples of these extensions include Intel’s
MMX/SSE instructions, AMD’s 3DNow architecture, and
Motorola’s AltiVec technology. While such extensions can
accelerate a variety of graphics operations, they fall far short of the
functionality of even a basic graphics chipset; for instance, none
offer high level support for a rendering pipeline. For this reason, it
is likely that all modern computer architectures for the foreseeable
future will include sophisticated graphics coprocessors, motivating
the work in this paper. Following industry conventions, we refer to
graphics coprocessors as GPUs [Graphics Processing Units].

More recently, Sony developed a custom dual-processor SIMD
architecture for graphics called the Emotion Engine [5]. This design
is fully programmable. The first of the two processors is interfaced
to the main CPU as a coprocessor, running instructions from the
application’s instruction stream, much like MMX or AltiVec. The
second processor executes custom assembly subroutines for
graphics or sound [8]. While the Emotion Engine is powerful, its
extremely high level of programmability has also earned it a
reputation for being difficult to program, since application writers
must pay careful attention to very low-level details such as pipeline
latency, hazards, and stalls throughout the rendering process.

Most new graphics architectures strike a balance between
programmability and manageability by exposing only part of the
rendering process to programmers. NVIDIA’s GeForce3 and ATI’s
Radeon grant full programmatic control over the process through
which individual vertices are transformed from modeling space to
world space. All attributes (position, color, normal vector, etc.) of
each vertex may be programmatically altered via vertex programs
written in a custom assembly language. Later in the rendering
process, as new pixels are composited with old pixels on the screen,
the compositing process can be fully controlled through assembly
language pixel programs. Each programming model is designed to
limit implementation complexity. For instance, every assembly

2

instruction has the same latency, memory accesses are only allowed
to registers and the maximum number of different registers
accessed by each instruction is capped so that the register files only
need a small number of ports, and precisely one instruction is
issued per clock. None of these programming models was designed
with general purpose non-graphics programming in mind, but as we
demonstrate in this paper, they have the potential to evolve in this
direction.

The work of Proudfoot et. al. [14] is closest in spirit to our own. In
that work, the authors describe a language for developing
arbitrarily complicated graphical shaders and a compiler for that
language that generates code targeted to modern graphics
architectures. The authors propose an innovative abstraction called
computation frequencies that allows them to combine vertex
programs and pixel programs under one high-level umbrella, and
their compiler is intelligent enough to virtualize hardware resources
that may not exist on a given hardware target. However, because
their work is oriented towards graphical shaders, it does not offer
any support for branches, labels, or main memory access, making it
unsuitable for the kind of general purpose programming explored in
this paper.

3 Vertex and Pixel Programs

3.1 The Graphics Pipeline

Traditionally, graphics hardware follows a fixed series of steps
called the graphics pipeline to render an image. These steps are
illustrated below:

Generate geometry

Transform geometry

Clip to viewport

Perform lighting

Rasterize geometry

Apply textures

Draw pixels

Figure 1 The traditional graphics pipeline.

Initially, a user application supplies the graphics hardware with raw
geometry data (typically in the form of four-component
homogenous vectors1) specified in some local coordinate system.
The hardware transforms this geometry into world space, then clips
away parts of the transformed geometry not contained within the
user’s viewport. The hardware then performs lighting and color
calculations. Next, the geometry is converted from pure vectors to a
pixel-based raster representation. Textures are applied, and then the
raster version of the geometry is composited onto the screen.

Most contemporary programmable architectures, including
architectures designed to conform to the modern DirectX 8
standard interface [1], revise the standard pipeline as shown in
Figure 2.

1 Homogenous quad-vectors are popular in graphics because they
allow perspective transformations to be represented as matrix
multiplication. In this notation, (x, y, z, w) corresponds to the
location (x/w, y/w, z/w) in Cartesian space.

Generate geometry

Transform geometry

Clip to viewport

Perform lighting

Rasterize geometry

Apply textures

Draw pixels

Vertex programs

Pixel programs

Figure 2 A programmable graphics pipeline.

The transform and lighting steps collapse together into one step in
which the position, color, and lighting of geometry are determined
by vertex programs written in a custom assembly language.
Similarly, the texturing and pixel compositing stages are collapsed
into a single stage where the output pixels are determined by pixel
programs written in assembly language.

For the remainder of this paper, we concentrate on a specific target,
the NVIDIA GeForce4 chipset [[8], [12]]. This chipset is
representative of modern graphics architectures. Its programming
interface is identical to the interface for NVIDIA’s earlier GeForce3
chipset, as well as for the chipset in Microsoft’s Xbox game
console. It conforms fully to the DirectX 8 interface and can also be
accessed using a more basic application programming interface
called OpenGL.

3.2 Vertex Programs

In this section, we describe the GeForce3’s instruction set
architecture for vertex programming. All registers in this
architecture hold quad-valued floating point values. If the user tries
to load a register with a scalar or integer value, the value is
automatically converted to floating point and mirrored into each of
the four vector slots.

Essentially, vertex programs compute functions. Each program
takes its input from a series of read-only source attribute registers,
and places its results into a series of write-only output attribute
registers. Temporary values may be stored in temporary registers
which are both readable and writeable. Vertex programs cannot
access main memory directly, but they may read values from a
block of 96 constant registers, which can be used to pass
information into vertex programs. The constant register file may
also be accessed indirectly, through a special register called the
address register (used as an index into the register file).

Each time the hardware receives a new geometry vertex, the
hardware loads the 16 quad-float source attribute registers with
attributes, such as position, normal vector, and color, describing
that vertex. The hardware also initializes the 16 temporary registers
to (0,0,0,0). It then invokes whatever vertex program is currently
active.

Register name Meaning

v[OPOS] Object position

v[WGHT] Vertex weight

v[NRML] Normal vector

v[COL0] Primary color

v[COL1] Secondary color

v[FOGC] Fog coordinate

v[6]-v[7] Unused

3

v[TEX0]-v[TEX7] Texture coordinates

Table 1 The source attribute registers.

To limit the number of ports required of the register file and ensure
that one instruction can complete per clock, each individual
assembly instruction may only read from a single source attribute
register (e.g. ADD R0, v[OPOS], v[WGHT] would be invalid).
Similarly, each instruction can only access a single constant
register.

After computing its results, the program updates the relevant 15
output attribute registers. This information is tagged to the current
vertex, and then the vertex is then passed on to the next stage of the
graphics pipeline.

Register name Meaning

o[HPOS] Clip space object position

o[COL0] Primary color (front)

o[COL1] Secondary color (front)

o[BFC0] Primary color (back)

o[BFC1] Secondary color (back)

o[FOGC] Fog coordinate

o[PSIZ] Point size

o[TEX0]-o[TEX7] Texture coordinates

Table 2 The output attribute registers.

There are 17 instructions that can be used in vertex programs. Each
generates a single result and places it in a destination register. The
instructions are summarized below:

Opcode Inputs Output Description

ARL S Index Address register load

MOV V V Move

MUL VV V Multiply

ADD VV V Add

MAD VVV V Multiply and add

RCP S SSSS Reciprocal

RSQ S SSSS Reciprocal square root

DP3 VV SSSS 3-component dot product

DP4 VV SSSS 4-component dot product

DST VV V Distance vector

MIN VV V Minimum

MAX VV V Maximum

SLT VV V Set on less than

SGE VV V Set greater/equal than

EXP S V Exponential base 2

LOG S V Logarithm base 2

LIT V V Light coefficient formula

Table 3 The vertex program instruction set. “S” indicates a scalar and “V”
indicates a vector.

3.3 Pixel Programs

Since vertex programs replace fixed-function hardware that
performs computations (transformation, lighting) in geometric
space, vertex programs operate on floating point numbers. In
contrast, pixel programs are intended to replace pixel-level
operations such as transparency and compositing. Pixel programs
thus operate on the quad-byte vectors that hold red, green, blue, and
alpha (transparency) color information.

Pixel programs share the same programming interface and register
model as vertex programs, but the specific set of source and output
attribute registers, as well as the specific opcodes, reflect quantities
and functions relevant to pixel composition. For instance, the add
and dot product opcodes are still present, but there are is also a new
opcode for linear interpolation as well as a custom opcode that
performs bump mapping computations. Somewhat surprisingly, no
opcodes exist for logical operations (AND, XOR, etc.). In many
cases, these operations can be simulated using other opcodes. Since
logical operations are important in image processing, future
architectures will almost certainly include logical opcodes.

In developing our programming framework, we decided not to
explore the use of pixel programs. Though such an investigation
would be interesting, we felt that our efforts would be more
fruitfully applied to other areas, for two reasons. First, the bytes
that pixel programs manipulate are inherently lower precision than
the single precision floating point numbers that vertex programs
manipulate. Second, the lack of logical operations means that pixel
programs would not provide significantly more power or
convenience to the programmer.

4 A New Programming Model

4.1 Overview

The cornerstone of this work is a simple C++ framework we have
developed for writing general-purpose programs with vector
operations. This framework stays fairly close to the underlying
hardware; we do not develop an intricate abstraction designed to
hide the hardware. Nevertheless, the framework does important
things: it presents vectors as a C++ data type, mostly hides the fact
that the hardware is designed to operate at quad-float granularity
rather than on vectors of single floats, and takes care of interfacing
with the underlying hardware, hiding the necessary bookkeeping
data and operations from the programmer.

We would have liked to completely shield the programmer from the
quad-float register concept, but because the hardware is
fundamentally designed this way, and because opcodes do not all
behave consistently (some operate on all four vector components
simultaneously, while some operate on scalars and distribute their
results unevenly into the components of target registers), we would
have had to create a new, higher-level assembly language to
completely hide the quad-float registers from the user. In practice,
this is only an issue with peculiar opcodes like LOG and EXP, and
it does not affect most example programs discussed in this paper.

4.2 Components

4.2.1 DProgram

The DProgram class encapsulates the instructions of an assembly
language program meant for the graphics hardware. The framework
provides a function for converting an array of strings specifying an
assembly language program into a DProgram. When this
conversion occurs, the framework adds three things transparently to
the user: a prologue and epilogue mandated by the programming
interface, as well as a MOV instruction to transfer v[OPOS] into

4

o[HPOS] so that the output stream of vertices will be ordered
identically to the input vertices. When a DProgram is created, the
framework also parses the program text and converts it to an
internal representation that our simulator can understand. Finally,
the DProgram class maintains two other important pieces of
information: a unique program ID (useful for managing multiple
programs loaded into the graphics hardware) and a Boolean flag
indicating whether the program is currently loaded into the
hardware.

4.2.2 DChunk

Each instance of the DChunk class represents a “chunk” of floating
point data. Internally, DChunk is implemented using the C++
vector<float> class, and the interface of DChunk follows vector
semantics, so DChunk might have reasonably been called DVector.
(We decided against this name in order to avoid confusion about
what might be stored in a DChunk. One could, for instance, store a
matrix in a DChunk.) For convenience, we provide helper functions
to generate large vectors of various sizes and types, including
random vectors and integer ranges. Apart from the underlying
vector<float>, no other data is stored in the DChunk class.

4.2.3 DBlock

The DBlock class, so named because of its similarity to a basic
block in a regular programming language, encapsulates three
things:

• a DProgram,
• a choice of functional semantics for the DProgram, and
• bindings for the constant registers.

Our framework supports four kinds of functional semantics: unary,
binary, and ternary functions from vector(s) to a vector, and a cross
product function that takes two vectors as input and returns a
matrix (a DChunk whose size is the square of the size of the input
DChunk). The specific functional semantics of a DBlock determine
the calling conventions that the DProgram must follow. Each type
of DBlock has an execute() function which takes an appropriate
number of DChunks as input and returns a single DChunk. For
instance, a binary vector->vector function takes two DChunks as
input. For this binary function, the framework breaks the input
DChunks into a series of quad-floats, pairs of which are placed in
registers v[1] and v[2]. The binary DProgram is expected to read its
input from these two registers and store its results in register o[1].

4.2.4 Example

The code fragment shown in Figure 3 uses our framework to
compute the factorial function for a vector of single-digit integers.
The assembly fragment uses two techniques to avoid branching:
conditional set opcodes are used to select vector elements that need
to be affected by subsequent operations, and the main loop has been
manually unrolled 7 dimes (enough to compute the factorial of any
single-digit integer). While both these techniques potentially
perform a lot of unnecessary computation for some input elements,
the vector processing engine is fast enough to compensate for this
extra work, as we demonstrate later in this paper. Naturally, such
techniques are not sufficient to always avoid branching. To
implement a branch, the programmer would create two DBlocks,
one for the code before the branch, and one for the subsequent
code. To decide whether to branch, the programmer would examine
the DChunk output from the first DBlock with the main CPU with
standard C++ code. There is no way with our current framework to
branch in different directions for each individual element of a
vector.

 DChunk inputChunk;

 DChunk outputChunk;

// Prepare a test vector.
 inputChunk.setSize(5);

inputChunk.getDataRef()[0] = 6;

inputChunk.getDataRef()[0] = 2;

inputChunk.getDataRef()[0] = 3;

inputChunk.getDataRef()[0] = 1;

inputChunk.getDataRef()[0] = 4;

 char* program[] = {

// The result will be stored in R1.

 // We use R2 to count down by 1 each time.

 "MOV R1, v[11]",

 "MOV R2, v[11]",

 // If R2>=2 decrement R2.

 // If R2< 2 leave unchanged.

 "SGE R3, R2, c[12]",

 "SLT R4, R2, c[12]",

 "MUL R5, R3, -c[11]",

 "ADD R2, R2, R5",

 // Multiply the updated values into R1.

 "MUL R6, R3, R2",

 "MUL R7, R1, R6",

 "MUL R8, R1, R4",

 "ADD R1, R7, R8",

 // Unroll once.

 "SGE R3, R2, c[12]",

 "SLT R4, R2, c[12]",

 "MUL R5, R3, -c[11]",

 "ADD R2, R2, R5",

 "MUL R6, R3, R2",

 "MUL R7, R1, R6",

 "MUL R8, R1, R4",

 "ADD R1, R7, R8",

 ...

 // Unroll five more times.

 ...

 // Store the result in the output register.

 "MOV o[1], R1",

 0 };

 DBlockUnary programBlock(makeProgram(program));

 programBlock.setConstant(11, 1);

 programBlock.setConstant(12, 2);

 outputChunk = programBlock.execute(inputChunk);

Figure 3 A vector implementation of the single-digit factorial function.

4.3 Implementation Notes

To facilitate experimentation and also to make it possible to run and
debug programs on a computer without a programmable GPU, our
framework includes a simulated implementation of the vertex
engine. This simulator is only functionally identical to the graphics
card; we did not have enough information about the low-level
hardware architecture of the GeForce4 to attempt a hardware
simulation or to get details such as timing correct. Our work on the
simulator proved to be helpful for debugging our assembly
routines. We did not, however, have a chance to modify the
simulator to experiment with architectural enhancements.

Another important implementation detail was our method of
retrieving output data from the graphics card for storage in the
output DChunk. Unfortunately in OpenGL there is no mechanism
for redirecting vertex program output to a buffer in memory.

5

Individual vertex program results can be queried, one by one, after
each vertex is sent through the graphics card, but we felt that
retrieving results this way would be much too slow. It would also
inhibit the card’s ability to process vertex data asynchronously
(calculating even as the CPU is working to send the card more
data). Hence, we were forced to direct the outputs of the vertex
program onto the screen, then grab the resulting chunk of pixels.
While OpenGL supports retrieving a chunk of pixels as floating
point numbers, the results are only as accurate as the underlying 8-
bit pixel representation! This means that the results returned by our
framework, even though they were computed internally at single
precision, suffer a significant loss of precision when retrieved from
the graphics card. Such a situation is clearly suboptimal, but it was
the best we could do. Clearly there is a need to enhance OpenGL to
allow rendering of vertex program output to a memory buffer.
DirectX 8.1 has such a feature, but it always uses a software-based
emulation of a GPU even if a graphics card is available (this
unusual behavior is documented in the DirectX SDK [1] but the
reasons for it are not given).

5 Results

5.1 Overview

To judge the effectiveness of our framework for solving general-
purpose programming problems, we obtained a GeForce4 Ti4600,
the fastest consumer GPU manufactured by NVIDIA at the time of
writing. Advertised specifications for this card include:

• 136 million vertices per second,
• 1.23 trillion operations per second, and
• 10.4GB/sec memory bandwidth.

The 1.23 trillion “operations per second” number seems somewhat
high, and presumably it reflects micro-ops used by the chip
internally. If we accept the 136 million vertices/second number, a
more reasonable estimate for GPU’s vertex program speed in terms
of vertex program opcodes would be:

Max. opcodes per program * Vertices per second =

128 * 136 million = 17 billion opcodes per second.

While this number still seems high, the empirical results presented
in this section do demonstrate exception performance.

For testing purposes, we compared CPU and GPU implementations
of various toy routines, as well as a more realistic 3-SAT solver, on
a 1.5GHz Pentium IV computer. To ensure that the implementations
being compared were structurally similar, we did not write custom
native CPU code for each of the problems. Rather, our CPU tests
involved running our simulator on the same code used for the GPU
tests. Some might argue that comparing the GPU implementations
with carefully hand-coded CPU implementations would be a more
realistic comparison. However, such results would differ only by a
constant factor from the results presented in the paper, and the
overall asymptotic trends would remain the same.

To give a more realistic picture of the relative performance of the
CPU and GPU, we provide one set of results where the C++
compiler optimizations were turned on, and one set where they
were turned off. Our framework does not incorporate a GPU-
specific compiler or any kind of GPU optimization algorithms, so
the argument could be made that comparing results with C++
optimizations turned off is a more fair comparison. One can
certainly imagine developing algorithms that optimize the way the
GPU is used.

Timing measurements were taken using the computer’s real time
clock, since we could not be sure that CPU and kernel times would

include time spent waiting for the graphics card. The real time
clock on our test computer had a (relatively coarse) resolution of 10
milliseconds, which explains why some of the shorter tests cases
measured as taking 0 milliseconds.

5.2 Test Programs

We used the following toy programs as test cases; each consists of a
single DBlock:

arithmetic – Evaluates)log(3xπ for each element of a vector. The
program contains 13 opcodes.

exponents – Computes 10x for each element of a vector. The
program includes 10 opcodes.

muls – Performs a variety of multiplies on each element of a
vector; the total number of opcodes can be made to vary from 2 to
100.

factorial – Computes the factorial function for a vector of random
integers, each between 0 and 9. This program was illustrated in
Figure 3. It simulates branching using the SLT and SGE opcodes
and manual loop unrolling. The program contains 59 opcodes.

Below, we present results showing how computation times for both
the CPU and GPU compare and grow with increasing input vector
sizes.

 Vector size

 500 5000 50000 500000

arithmetic cpu noopt 0 20 211 2163

 gpu noopt 10 0 30 331

 cpu opt 0 10 80 751

 gpu opt 0 0 10 170

exponents cpu noopt 0 30 241 2434

 gpu noopt 10 0 30 330

 cpu opt 0 10 80 831

 gpu opt 0 0 20 161

factorial cpu noopt 20 130 1222 12288

 gpu noopt 0 0 40 340

 cpu opt 0 40 431 4296

 gpu opt 0 10 20 161

Table 4 The effects of increasing vector sizes. Numbers indicate run times
in milliseconds and “opt” denotes an executable compiled with
optimizations turned on.

factorial

0

2000

4000

6000

8000

10000

12000

14000

500 5000 50000 500000

Input vector size

cpu noopt gpu noopt cpu opt gpu opt

Figure 4 The effect of input vector size on the run time of the factorial
program. Though both the CPU and GPU run times increase in proportion to
the input size, the CPU run time grows more dramatically.

6

Because of the system timer’s coarse 10 millisecond granularity,
our results for a vector size of 500 are largely meaningless. It is
difficult to accurately compare the performance the CPU and GPU
for such small vectors. However, for all the larger sizes of input we
tested, our graphics card implementations beat the CPU
implementations. The superiority of the GPU is apparent even in
cases where compiler optimizations were used. For one example
program—factorial, having 59 opcodes—the optimized CPU
implementation is more than 26 times slower than the GPU
implementation on a vector size of 500,000. These results may
seem surprising or even shocking at first glance, but they make
sense. Essentially, the graphics hardware allows us to establish a
high-speed custom data processing pipeline. Once the pipeline is
set up, data can be streamed through with devastating efficiency.

As Figure 4 illustrates, both the CPU and GPU run times increase
in proportion to the input problem size, but the CPU
implementation times grow much more quickly.

On the other hand, the GPU run times do not increase with program
complexity. For a given input size, the GPU run times are
essentially identical across all three example programs. This
suggests that transmission of data between the main processor and
the GPU is more of a bottleneck than computation time. In order to
verify this, we ran the muls test program on a 500,000 element
vector, varying the total number of opcodes between 2 and 100.
The results are shown below.

muls

0

1000

2000

3000

4000

5000

6000

7000

8000

2 10 20 40 60 80 100

Number of MUL opcodes

R
u
n

t
i
m
e

(
m
i
l
l
i
s
e
c
o
n
d
s
)

cpu opt gpu opt

Figure 5 The effect of program size (number of opcodes) on the runtime of
the muls test program with a 500,000 element input vector. The CPU run
time increases roughly linearly with the input size, whereas the GPU run
time remains constant.

As predicted, the run time for the GPU implementation remains
nearly constant and is not significantly affected by program size,
while the CPU implementation run time increases in rough linear
proportion to the input size. The GPU run time is constrained by
the time it takes to transfer the vertex data to the graphics card and
then retrieve it, not by computation time. This suggests that future
research should concentrate on finding ways to make the DBlocks
sent to the graphics processor as large as possible. Investigating
ways to reduce the transfer time would also be worthwhile.

In order to better understand the bottlenecks, we instrumented a 20
opcode version of the muls example with code to measure the time
to transfer data to the graphics card as well as the time to retrieve it.
The results, gathered from a run with a 500,000 element input
vector, are shown in Table 5.

Total run time 160 milliseconds

Time to send data to GPU 70 milliseconds

Time to retrieve output 90 milliseconds

Table 5 Run time bottlenecks for the muls example.

Observe that 44% of the time is spent sending data, and 66% is
spent retrieving it. The time for all other types of processing in the
program is negligible. There is no separate category titled “time for
the GPU to compute the results” because the graphics card operates
asynchronously to the main CPU and processes the most recently
available data while the CPU is busy transferring the next vertex to
the GPU. One unfortunate consequence of these results is that
unless more efficient ways are found to “feed the beast,” it may be
difficult in future work to develop a system that performs
computation on the CPU and GPU simultaneously (in parallel). The
CPU may always need to be busy feeding the GPU. Had we known
that transfer times would have been such a bottleneck at the
beginning of the project, we would have explored using more
sophisticated techniques, such as compiled vertex arrays, to pass
data to the GPU. These could be dramatically more efficient, but
their syntax and semantics (particularly the requirement that vertex
arrays be a declared as a fixed size) make them more difficult to
work with in a context like ours.

5.3 A More Realistic Test: 3-SAT

5.3.1 Motivation

The test programs demonstrated earlier were enlightening, but
because they are implemented with single DBlocks, they do not
reflect typical uses of our framework to solve real problems. In
particular, realistic programs involve a nontrivial amount of
branching. To adequately demonstrate our framework, we
implemented a solver for the Boolean satisfiability problem with
three variables per clause (3-SAT).

We use a genetic algorithm solution technique for 3-SAT because it
represents a common idiom used in a variety of problems. Genetic
algorithms (GA) are a random local search technique premised on
the evolutionary ideas of natural selection and genetic, which has
been successfully applied to many NP-complete or NP-hard
optimization problems. In this algorithm, a fixed number of
potential solutions (a population of chromosomes) are maintained
for a generation, and a new generation is reproduced by applying
genetic operators such as cross-over and mutation and selecting the
chromosomes fittest for the solution.[15] Its common application
problems are NP-complete or NP-hard and in its nature it requires
extensive use of CPU time, high-performance processors are
crucial for its efficiency, and several implementation techniques on
parallel machines has been studied. This is why we decide to
implement and simulate this algorithm for the processor of a
programmable graphics card with performance better than most
today’s general-purpose microprocessor. Though this card provides
only 17 instructions and some useful instructions like branch and
logical operations are not included in the instruction set, its fine-
grained multithreaded vector processor executes more than trillion
instructions per second, and enables parallel processing of properly
scheduled multiple data at a time.

5.4 The 3-SAT Algorithm

The satisfiability problem is a problem of deciding whether a
consistent value can be assigned to each variable in a CNF formula,
and the 3-SAT problem is a special case of satisfiability problem
where the number of variables in a clause is limited up to 3. This
problem is well-known NP-hard problem, and various techniques
have been applied to solve this problem. In GA, two schemes are
commonly used to represent possible solutions, bit string [11] and
clausal representation.[4] In bit string encoding scheme, the value
for each variable is represented as a bit (gene), and each
chromosome is a string of bits representing the values for all the
variables in the formula. Typical cross-over and mutation operators

7

can be applied naturally, and its fitness can be expressed as the
number of clauses that are evaluated as true. In clausal
representation, a chromosome is a string of numbers (genes,) which
indicates a possible assignment for a clause. For example, In 3-
SAT problem, 8 possible assignments for a clause is encoded as an
integer number between 0 and 7, and a chromosome is just a string
of these numbers. The fitness of a chromosome can be expressed
as the number of variables with a consistent value throughout the
formula. The following is the algorithm we use:

Procedure GA_3SAT(Formula F, int M, int T, float r)
Parameter : F – formula to be solved,
N – population size,
 T – # of generation for search.
 R - mutation rate.
Local : N - # of variables in F,
 L - # of genes in F,
 K – integer indicating the current generation
 P[i, j] – the value of j-th gene in i-th chromosome.
Randomly generate the population of size M.
while a solution is not found and k < T do
 for I < M do
 Generate two random number a and b between 1 and L.
 Swap P(I, a)~P(I,b) with P(i+1,a)~P(i+1,b).
 Randomly flip a gene according to the mutation rate R.

Add the new chromosomes to the population of
children.

 I = i+2
 End for
 Select M chromosomes of the next generation from
 the population of the parents and children,
 M/2 chromosomes with best fitness value and M/2 at
 random from the rest.
End while
End procedure

Figure 6 Our algorithm for 3-SAT.

To implement this algorithm in this hardware, we face the
following three challenges: how to implement the genetic operator,
how to calculate fitness values, and how to select the chromosomes
for the next generation. The difficulties lie in the limitation that we
cannot use logical operation or branch instructions to should
implement these. To tackle this problem, we implement logical
operator using currently available instructions, and static
scheduling to avoid branching. Some tasks, like sorting, should be
done in the main processor so how works can be distributed
between the main processor and the graphics card, and how the
high-performance of the card can be fully utilized is another
problem. By maintaining some number of subpopulations and
feeding them to the processor, best performance can be achieved.

5.5 Implementation of 3-SAT

Our implementation details are as follows.

Encoding: Although it is more common to represent a gene using a
bit, the limitation of operations we can use prevented us from
following the numbers and instead we had to devise an alternative
way of representing a bit. Our way of doing this is to keep a
number 0 or 1 in a component of a register. Each of the 4 register
components can contain a 16-bit number, and we use this just for
one bit, so we are wasting some resources. However, the ease of
encoding and implementation of problem and operations made us
think that is a reasonable choice at least. Thus each gene is
represented by a number 0 or 1, each chromosome by a string of a
genes. Since your registers can hold up to 4 element at a time, 4
genes are fed together to the processor when an operation is
performed on it.

Basic logical operators: Before we discuss our implementation of
GA operations, we should say something about logical operations.
Since GA usually manipulates bits, it is essential to use bit-wise
logic operator to get a good performance result. But in our
instruction set, logical operators are not listed so we had to come up
with a way of emulating those operations. Based on our encoding
scheme that permits only 0 or 1 in a component of a register, we
could devise arithmetic operations that will emulate the logical

operations. First, logical AND can be emulated easily by
multiplication. Only when both operands are 1, the result of the
operation will be 1.

1x1 = 1&1 = 1

1x0 = 1&0 = 0

0x1 = 0&1 = 0

0x0 = 0&0 = 0

Likewise, other logical operations can be emulated. The following
table shows logical operations and their equivalent arithmetic
operations.

Logical operations Corresponding
arithmetic operations

AAND B A x B

A OR B (A + B) > 0.5

NOT A (A – 1)2

A XOR B (A – B)2

A NOR B (A + B – 1)2

Table 6 Logical operations that can be emulated.

Cross-over: Cross-over, one of the major operations in GA, is to
swap some bits between a pair of chromosomes. Thus this
operation takes two operands and outputs two bit strings with some
bits exchanged. However, since in our hardware model, one
operation can produce only one result string, not two, and the
instruction set doesn’t include conditional branch and the hardware
does not support some kind random number generator, we had
devise another clever trick.

First, we produced one bit string per crossover operation with the
same length as the other chromosomes in addition to the original
two operands. The additional string has some consecutive 1’s in
some part. When these three strings of bits are produced to the
processor, the bits from the original chromosomes in the same
position as the 1’s in the third string are swapped by some
arithmetic operation. Since the processor can produce one output
string, we used this operation twice to get both of the swapped
chromosomes. Swap operation can be implemented in our setting
as follows:

Swap(A, B) = ((C -> A) && (!c -> b)) || ((C -> B) && (!C -> A))

So in our implementation, first half was done to get one result, and
next, the other was performed to get the other half.

Mutation: This operator takes one chromosome and it may flip one
or two bits or just pass it to the output, and the probability for abit
to be flipped is determined by the mutation rate. In our
implementation, the main processor produced random numbers and
fed it with the original operand to the GPU. Then GPU flips a bit
with the probability of mutation rate. To do this, we did the
following operations:

Mutation(A) = (slt(B,R) -> !A),

where R is mutation rate, B is the randomly generated string of bits,
and slt() is “set on less than” instruction. -> (imply) operator can
be translated to our basic operators like:

A -> B = !A || B

we could implement this operation.

8

Fitness evaluation: As mentioned in section 5.2, fitness value in
SAT problem can be the number of clauses satisfied. To calculate
thisThe assignment was done by the main processor, and then
whether the assignment is satisfactory is determined by GPU using
the following formula:

Fitness_eval(A) = slt(0.5, dp3(A,A)),

where dp3 is three component dot product instruction in the
GeForce4.

Other parameters: As a selection mechanism, we used tournament
and random selection with the best keeping strategy. For each
generation, N (population size) new chromosomes are created using
crossover and mutation. First, a parent from older generation and a
child from the new generation have a tournament and the one with
higher fitness will survive. After the tournament throughout the
population, we have N winners , half of which will replaced by
randomly chosen chromosomes from the losers. This prevents the
entire population from being mired in a local minima. For the
performance reason, the chromosome with the highest fitness value
are preserved in the next generation. We used 1% mutation rate,
population size of 100. 3SAT problems were generated using a
random automatic generator.

5.6 Results

The following table illustrates the performance of our
implementation of 3-SAT:

 Problem size

 32/64 32/128 48/96 48/196

cpu noopt 11527 16694 14932 23074

gpu noopt 15252 18236 17405 21371

cpu opt 4326 5699 5318 7651

gpu opt 10625 11937 11887 13249

Table 7 Performance of our 3-SAT solver. Numbers represent run times in
milliseconds. The notation “32/128” indicates a problem instance with 32
variables and 128 clauses.

These results are not as impressive as the toy programs earlier, but
they are not unreasonable either. In one instance (without compiler
optimization) the GPU manages to outperform the CPU, and in all
other cases the performance of the two implementations does not
differ by more than a factor of 2.4. Our relatively poor performance
is primarily due to making frequent round trips of data between the
CPU and the GPU. After doing this implementation, we were able
to determine a few areas in which the architecture of the card could
be improved in order to make it more convenient and efficient to
program, minimizing round trips of large chunks of data. Our
suggestions are discussed in the next section.

6 Analysis

Though the framework we have developed in this paper is effective
for simple problems, our framework could be much more useful
and powerful if a number of limitations of the graphics hardware
were addressed. In this section, we discuss some of the
architectural weaknesses we discovered. Many of these limitations
could be easily resolved with minor changes to the hardware and
programming interfaces. By adopting such changes, graphics
hardware manufacturers could potentially increase the size of the
market for their products. Hence, we feel that these observations
could have a real impact on future graphics architectures.

Better interfaces to memory buffers: Rather than having to
render vertex data to the screen, then read it back, the graphics
programming interface should provide a way to render directly to a

memory buffer in main memory. Perhaps the GPU could render to a
section of graphics memory, then transfer the results using DMA
[Direct Memory Access] to main memory. Likewise, there should
be an interface where the programmer passes a pointer to a block of
input vertices directly to the GPU, and the GPU takes care of
pulling all the vertices into the graphics core. The end result would
be reduced latency for moving data to and from the GPU. The
DMA scheme would also reduce the load on the main CPU,
potentially allowing it to be used for computations in parallel with
the GPU.

Better control over arithmetic precision: Suggestions from the
previous paragraph would avoid the ugly step of us having to
access single-precision floating point numbers by reading a bank of
8-bit pixels. However, a larger issue is that the graphics card is
designed for speed rather than accuracy. The LOG opcode, for
instance, is fast partially because it is not as accurate as a traditional
log() function. The NVIDIA engineers were insightful enough to
have the LOG function place a few scalars in output registers that
can be used to increase the precision of logarithmic results (the
mechanism for doing this is somewhat esoteric and is described in
the NVIDIA OpenGL SDK [12]), but it should be possible to have
a true, high-precision LOGHI opcode. Unfortunately, it may be
difficult to implement such an opcode while still preserving the
assembly language’s uniform semantics (all opcodes take the same
amount of time). It will be interesting to see whether or not the
NVIDIA engineers eventually develop a more complicated out-of-
order core that can handle opcodes with variable latency.

Logical Boolean operations: It is somewhat surprising that such
simple operations are not available, especially since they are very
common in image processing. Simulating logical operations as
discussed in this paper is tedious and many times more inefficient
than a good hardware implementation.

Ability to preserve state across vertex program invocations:
This is perhaps our most important recommendation. Often, the
programmer wants to inspect a vector for some global property. For
instance, a programmer might want to inspect a vector to determine
if it contains the number 42. Ideally, the programmer should be able
to get more than a yes/no answer—the vertex program should be
able to return the vector index where number 42 is located.
Currently, such global vector operations must be done by the CPU
rather than the GPU because there is no way of sharing data
between multiple vertex program invocations. Currently, at the
beginning of each vertex program, the temporary and output
registers are cleared and set to zero. If this zeroing was an optional
behavior that could be turned on or off, the programmer would be
able to share state across vertex program invocations. OpenGL is
filled with a myriad of Boolean flags for controlling the hardware,
so such an optional behavior would not be unusual. This change
would also be an extremely easy to make to the architecture, since
it just involves not doing something that is currently being done.
Alternatively, the architecture could be extended to include a new
bank of global registers that would be accessible both from
OpenGL and from any vertex program. Regardless of how vertex
state preservation is accomplished, we feel that it would
dramatically improve the speed of our 3-SAT implementation, since
more could be done directly on the GPU and less in the CPU.

A compiler: We have demonstrated in this paper that the most
efficient way to use the graphics hardware is to supply it with basic
blocks that contain as many instructions as possible. Coding such
blocks in assembly is tedious and error prone. Moreover,
techniques such as loop unrolling for getting around the hardware’s
lack of branching are more practical for a compiler to implement.
Also, a compiler could make more efficient use of the vertex
attribute registers. This would reduce the number of vertices that
would need to be sent to the GPU, reducing the costs associated

9

with transferring data from main memory to the graphics hardware.
Trace scheduling, which is inherently designed for processors in
which branching may be inconvenient and for which large basic
blocks are desirable, could potentially deliver dramatic
performance improvements.

7 Discussion and Future Work

In this paper we describe a programming framework we have
devised for solving general-purpose problems using graphics
hardware. We demonstrate the framework’s surprising effectiveness
at accelerating highly regular operations on large vectors. We then
describe an implementation of 3-SAT that uses our programming
framework. For the most part, our SAT solver does not achieve
greater speeds using the GPU, though it is not slower by a large
margin. We investigate the sources of bottlenecks and propose
minor architectural enhancements which would help to reduce the
bottlenecks and make general-purpose programming more effective
on modern programmable graphics hardware.

The results described in this paper are much better than we ever
expected. Our feeling prior to beginning this research was that
bottlenecks, architectural limitations, or simply slow hardware
would have put the GPU much farther behind the CPU, even for the
simplest examples. That the CPU implementation of our factorial
example is 26 times slower than the GPU implementation was, and
still is, nearly mind-boggling. Likewise, the fact that we were
unable to ever force the graphics hardware to fall prey to
computational rather than data transfer rate bottlenecks was
sobering.

Graphics hardware similar to the hardware discussed in this paper
is available in the majority of consumer oriented desktop PCs sold
today, as well as in the Microsoft Xbox game console. This means
that commodity hardware is being shipped with vector units
capable of previously inconceivable—and definitely untapped—
computational power. Perhaps vector processing is not dead after
all. As evidenced by the increasing popularity of distributed
computing clusters and the decreasing popularity of
supercomputers, there is sufficient demand for low-cost alternative
computing technologies using commodity hardware to make our
approach a valuable contribution. In a few years it may not be
unusual to go into the server room of a biotech research company
and find Beowulf clusters of cheap Xboxes, selected specifically
for their vector capabilities.

We believe that the next logical step in this research is to define a
higher-level vector programming language and construct a
compiler, perhaps using sophisticated techniques such as trace
scheduling, that outputs code that takes more careful advantage of
modern graphics architectures. There are many interesting research
issues here. For instance, a regular VLIW compiler only has a
single, one-dimensional line of operation “slots” to consider per
instruction when deciding how to schedule code. In contrast,
optimal scheduling of pixel operations on a GPU may involve
making effective use of a two-dimensional matrix of “slots.” In
addition, because round trips are so costly and support for
branching is poor or non-existent on modern graphics architectures,
it may be most effective to do unusual things like always speculate
down both sides of a branch rather than attempt branch prediction
at compile-time.

Acknowledgements

We are grateful to Stephen Spencer for helping us set up the
hardware we needed for this research.

References

[1] DirectX Software Development Kit. Version 8.1. Microsoft
Corporation, 2001.

[2] Nick England. “A Graphics System Architecture for
Interactive Application-Specific Display Functions.” IEEE
Computer Graphics and Applications, 6(1): 60-70, January
1986.

[3] Henry Fuchs et. al. “Pixel-Planes 5: A Heterogeneous
Multiprocessor Graphics System Using Processor-Enhanced
Memories.” Proceedings of SIGGRAPH 1989, July 1989.

[4] J. Hao. “A Clausal Genetic Representation and its
Evolutionary Procedures for Satisfiability Problems.”
Artificial Neural Nets and Genetic Algorithms: Proceedings
of the 1995 International Conference, Ales, France, 1995.

[5] A. Kunimatsu et. al. “5.5 GFLOPS Vector Units for Emotion
Synthesis.” Conference Record, Hot Chips 11, August 1999.

[6] A. M. Logar and E. M. Corwin. “Implementation of
Massively Parallel Genetic Algorithms on the MasPar MP-1.”
Proceedings of the 1992 ACM/SIGAPP Symposium on
Applied Computing, 1015-20, 1992.

[7] Adam Levinthal and Thomas Porter. “Chap – A SIMD
Graphics Processor.” Proceedings of SIGGRAPH 1984, July
1984.

[8] Erik Lindholm, Mark J. Kilgard, and Henry Moreton. “A
User-Programmable Vertex Engine.” Proceedings of
SIGGRAPH 2001, August 2001.

[9] Michael D. McCool. “SMASH: A Next-Generation API for
Programmable Graphics Accelerators.” Technical Report CS-
2000-14, Computer Graphics Lab, University of Waterloo.

[10] The Mesa 3D Graphics Library. http://www.mesa3d.org

[11] N. Nemer-Preece and R. Wilkerson. “Parallel Genetic
Algorithms to Solve the Satisfiability Problem.” Proceedings
of the 1998 ACM Symposium on Applied Computing.

[12] NVIDIA OpenGL Extension Specifications. Mark Kilgard,
editor. NVIDIA Corporation, May 2001.

[13] M. Olano. A Programmable Pipeline for Graphics Hardware.
Ph.D. thesis, University of North Carolina at Chapel Hill,
1998.

[14] Kekoa Proudfoot et. al. “A Real-Time Procedural Shading
System for Programmable Graphics Hardware.” Proceedings
of SIGGRAPH 2001, August 2001.

[15] A. Whitley. “A Genetic Algorithm Tutorial.” Technical
Report CS-93-103, Department of Computer Science,
Colorado State University, 1993.

