
A Simulation of A Graphics Subsystem

Aseem Agarwala & Antoine McNamara

University of Washington

548 Final Project Report

March 14, 2002

1 Introduction

We present a simple, complete, and extensible
simulation of a hardware graphics subsystem.
The architecture community relies heavily on
simulation. Tools like Simplescalar [3] can be
modi�ed to help researchers predict the expected
performance of new CPU designs, without the
tremendous cost of implementing them in hard-
ware. Up ntil now, these tools have simulated
numerous CPU architectures, but have not taken
into account GPUs (graphics processing units).
Graphics acceleration cards are becoming stan-
dard on desktop hardware, and the applications
that they aid are becoming increasingly essen-
tial. Even 3D games like Quake are considered
important test benchmarks for new systems, and
in fact it has been ported to simplescalar.

Our project is to create a hardware simula-
tion of a combined CPU / GPU system, whose
results could ideally be used to more accurately
benchmark expected performance on real sys-
tems with graphics acceleration. With such a
system, researchers could tweak various aspects
of the pipeline and observe how it a�ects perfor-
mance.

However, it is clear that is an ambitious task.
The main problem is that there is a bewildering
variety of options and choices to be made in the
design of such a system. To understand this, it is
�rst necessary to provide an overview of current
and previous graphics subsystems.

Figure 1: A simpli�ed model of a computer.

2 Graphics subsystems

A simple model of desktop computers is shown
in Figure 1 (Figures 1-4 are taken from [4]). Es-
sentially, a computer conducts a large amount
of communication between various components;
common components of a computer include the
CPU, memory, disk, network I/O, and others.
These must all communicate requests and results
to each other. While the CPU normally has a
direct connection to memory, the other compo-
nents reside on a shared bus. The most common
bus today is PCI (personal computer interface),
whose maximum bandwidth is 133 MB/s.

Thus, it is necessary to decide how a graph-
ics subsystem �ts into this picture. The trade-
o� is clear; fast graphics performance requires
the transfer of large amounts of information be-
tween the CPU/memory and the GPU, but ac-
complishing this requires specialized designs that
add cost.

2.1 GPU/CPU/memory organization

We show three common approaches to the prob-
lem.

1

Figure 2: PCI Graphics Card.

Figure 3: Uni�ed memory architecture (UMA).

Figure 4: Advanced graphics port (AGP).

2.1.1 PCI graphics card

The cheapest, and until recently most common
solution is to add a graphic card onto the PCI
shared bus, as shown in Figure 2. This is a simple
design that �ts into existing desktop computers
without any modi�cations. However, it has per-
formance drawbacks. Any communication with
the GPU must go over a shared bus, and thus
must compete over a shared resource with other
components such as the network which also com-
municate over PCI. Also, even without this com-
petition, the bandwidth of PCI is not enough for
demanding graphics applications.

2.1.2 Uni�ed memory architecture

The uni�ed memory architecture, or UMA, is
an organization speci�cally for graphics work-
stations designed by SGI. As shown in Figure 3,
all components communicate through a central
controller. The individual communication links
run at high bandwidth (500-800 MB/s), and the
main memory (at 2.1 GB/s) serves as the mem-
ory for all components. In this way, there is
less need for di�erent components to pass around
information; if the CPU wishes to pass a large
chunk of memory to the GPU, it simply passes
a pointer.

2.1.3 Advanced graphics port

The advanced graphics port, or AGP, is a ded-
icated bus between the CPU/memory and the
GPU, as shown in Figure 4. It is designed by
Intel for desktop computers. The bandwidth of
this bus is 512 MB/s or 1024 MB/s, depend-
ing on whether information is passed on one or
both edges of a clock cycle; either way, the band-
width is signi�cantly higher than PCI. Addition-
ally, With an AGP communication to the GPU
does not need to compete for a shared resource.

2.2 Other choices

We continue this discussion by detailing several
other aspects of graphics subsystems and the
choices they o�er.

2

Modeling
Transformation

Lighting
Viewing

Transformation

Clipping Divide by W Rasterization Display

Object
Database
Traversal

Figure 5: The rendering pipeline.

2.2.1 Graphics pipeline

The process of specifying and rendering three-
dimensional models for computer graphics con-
sists of several stages, as shown in Figure 5. The
issue is that various graphics accelerator cards
implement various amounts of this pipeline.
Cheaper cards only perform parts of rasteriza-
tion and display. Better ones include hardware-
accelerated viewing transformations, clipping,
and onwards in the pipeline. Recent cards like
the market-leader NVIDIA GeForce3 also per-
form modeling transforms and lighting. SGI
graphics workstations perform these tasks as
well.

2.2.2 Card simulation

It would be most helpful to the computer archi-
tecture community to simulate a commonly use
graphics card, such as the NVIDIA GeForce3.
However, their technology is proprietary and
they have not published enough details to write
an accurate simulation. A recent publication by
NVIDIA [8] describes a speci�c feature of the
GeForce3; the user-programmable vertex engine.
This allows developers to specify short sequences
of custom assembly instructions that will be per-

formed per vertex. However, this only describes
a speci�c, new feature for modeling transforma-
tion and lighting, which is only a fraction of the
rendering pipeline. Thus, it was not enough to
simulate the GeForce3.
SGI, on the other hand, has published several

papers on their architectures [1, 2, 7], making it
easier to simulate their hardware approaches.

2.2.3 Asynchronous execution

A further complication is presented by the fact
that CPU's and GPU's do not typically oper-
ate on the same clock; they run asynchronously.
Because of this their communication must be
bu�ered, which is done through the use of a �rst-
in / �rst-out (FIFO) queue. If the CPU hands
data at a quicker rate than the GPU can han-
dle, the FIFO �lls up and the GPU sends an
interrupt to the CPU; in this case, the applica-
tion is considered GPU-bound. Alternatively, if
the GPU exhausts the FIFO and stalls waiting
for more data from the CPU, the application is
considered CPU-bound.
This is clearly diÆcult to model within ex-

isting architectural simulation tools. One could
take an existing simulator like Simplescalar and
make it multi-threaded, so that the CPU and

3

GPU run through separate threads in parallel.
However, beyond the obvious diÆculty of this,
there is no reason to believe that the way an
operating system schedules threads would accu-
rately model the asynchronous execution of the
CPU and GPU.

2.2.4 Minutiae

Several other choices are worth mentioning.
For one, it is most useful to model commonly
used graphics application programming inter-
faces (API's). The two most common are
OpenGL and DirectX.
Finally, a relatively new feature of graphics ac-

celerator cards are programmable engines, such
as vertex shaders and pixel shaders. These al-
low developers to specify short sequences of cus-
tom assembly instructions that will be performed
per 3D vertex or per fragment in the rasterizer.
These are powerful new features, but are com-
plex systems to simulate.

3 Design choices and simpli�-

cations

Now that we have presented the large set of op-
tions in simulating graphics subsystems, it is nec-
essary to make choices. Clearly, modeling all as-
pects of such a system to its full complexity is
a prohibitively large task; we thus are forced to
make simplifying assumptions.

� We chose to model a small portion of the
OpenGL API; OpenGL is a very large
API [9], and to model it in its entirety would
be too large a project by itself. We thus im-
plemented enough of the API to render 3D
triangle meshes and 3D lines. Also, we chose
to ignore programmable engines; however, a
goal of our design was to leave the system
open to this addition at a later time.

� Since our target is desktop computers,
we choose as a hardware model the pub-
lished SGI architecture most relevant to this
goal [7]. This architecture was shipped in
the IRIS Indigo Extreme.

� We separate the graphics pipeline between
the CPU and GPU as follows: the CPU per-
forms modeling transformations and light-
ing, while the GPU calculates the rest of
the pipeline.

� As far as memory organization, we simply
assume instantaneous transfer of data be-
tween the CPU and GPU. This is not sig-
ni�cantly di�erent from the e�ect of UMA
or AGP; however, it does not model the la-
tency of the bus or the possibility of exceed-
ing its bandwidth.

� As far as asynchronous execution, we model
the timing of the CPU and GPU separately.
Thus, the simulation of the CPU suspends
during the simulation of the GPU, and the
simulation of the GPU suspends during sim-
ulation of the CPU. This is equivalent to
assuming that the components run in par-
allel and that one component never forces
the other to stall. That is, the CPU tim-
ing data assumes the application is CPU-
bound, and that the GPU never interrupts
the CPU. The GPU timing data assumes
the application is GPU-bound, and that it
never has to wait for the CPU to provide
data.

4 System Overview

A dataow overview of the system we built can
be seen in Figure 6. Our system takes as input
a n� �le (Neutral File Format) which describes
the three-dimensional geometry of a model in the
form of triangles.

4.1 Lighting

This �le is opened by our user application. Since
modeling and lighting are not implemented in
hardware, it is the task of the user application
to light the model. Details of lighting can be
found in [6]; we provide a quick overview to give a
sense of the volume of oating point calculations
involved.

4

User Application

Driver

Simplescalar Alpha

Syscalls

G
eo

m
et

ry

Graphics Pipeline

Timing Data

Timing Data

Picture

Figure 6: An overview of our system.

The application must �rst compute normals at
each vertex (a normal is a vector perpendicular
to the model surface). Normals are computed by
iterating over each triangle in the model, com-
puting the normal to the triangle (calculated as
the cross product of two sides of the triangle),
and adding this normal to each vertex normal.
Each vertice normal is then normalized (divided
by the magnitude of the vector, which involves a
square root).

Once normals are calculated, we use an ambi-
ent and di�use lighting model to illuminate 3D
models; this illumination simply consists of cal-
culating a color for each vertex. Ambient light
adds a constant to this color. Di�use light adds
the dot product of the light direction and the
normal of the model surface.

Once lighting is calculated, a data structure
consisting of a list of triangle is created. Each tri-
angle has three vertices, and each vertex has six
oats (three for location, three for color). This
data is then passed to the GPU using OpenGL
calls.

4.2 Passing data to the GPU

Once graphics data is created, it must be passed
to the GPU. The interface to the user consists
of OpenGL calls; we implement eight individ-
ual calls in our driver. The driver is compiled
directly into the user application, and both are
compiled into Alpha instructions using a GCC

cross-compiler.

Our CPU/GPU simulation is built directly
onto sim-alpha [5], a version of Simplescalar
which accurately models the DEC Alpha. So,
a mechanism must be created to pass graph-
ics data from the user application through Sim-
plescalar directly to the graphics pipeline.

This mechanism is the syscall. Syscalls al-
low the CPU simulation to trap system calls
and execute them; common syscalls handle �le
I/O and standard I/O. We thus add seven ad-
ditional syscalls to Simplescalar, which interact
with the graphics hardware simulation. The
graphics pipeline is then compiled directly into
Simplescalar.

We now trace the path of graphics data from
the user application to the GPU. First, the user
application executes OpenGL calls. The driver
implements these calls using the asm command,
which is a GCC extension to C that allows direct
speci�cation of assembly commands. The appro-
priate opcode for the syscall we wish to execute
is placed in register $A0. Then, any arguments
(up to four) are placed in registers $A16-$A19.
Finally, the Alpha assembly instruction callsys

is executed.

We pass at most one argument, which is a
pointer to oating point data. Within the syscall
handler in Simplescalar, we add handlers for the
graphics syscalls. If data is being passed, the
pointer to oats is used to copy the data from
the simulated user application to the GPU. In

5

this way, the user application can communicate
directly to the GPU.

4.3 OpenGL calls

Along with the basic OpenGL calls used to pass
triangle, vertex, and line data to the GPU, sev-
eral matrices for viewing transformation and
projection are calculated within the driver. One
such call is gluPerspective(), which allows the
programmer to specify the details of the pro-
jection of the model from 3D to 2D. Another
command is gluLookAt(), which is an intuitive
means for the programmer to specify the view-
ing transformation so that the camera is located
correctly and pointing at the model. These cal-
culated matrices are passed to the GPU.

5 The graphics pipeline

The last, and largest, step is to model the ren-
dering pipeline. Overall, we used the SGI chip as
a foundation, but there are several aspects that
were still unknown, unfeasible, or simply dated.
In these cases, we used our best judgement, with
the intention of creating a general model for a
graphics hardware pipeline that could be easily
extended in the future to more speci�c modern
architectures as needed.

The SGI graphics chip has an 8-way SIMD
parallel front-end (viewing transformation and
clipping) and a hyper-pipelined back-end (ras-
terizing). Because of the SIMD nature of the
parallelism, the chip can get excellent parallelism
(up to 8 times speedup) on groups of primitives
of the same type. On the other hand, because it
cannot calculate primitives out of order, it loses
all parallelism in the case of alternating trian-
gles and lines! This is why we opted to support
glBegin(GL LINES) as well even though we were
much more concerned with triangle performance:
not supporting line primitives would always re-
sult in an unrealistic 8-fold speedup.

The chip is broadly divided as shown in Fig-
ure 7. When the chip gets a call to begin process-
ing, the FIFO contains triangle and line primi-
tives from the CPU. The Command Parser re-

moves the primitives in order from the FIFO
and distributes them to the 8 Geometry Engines
(GEs). Here, all processors run in lock step, pro-
jecting and clipping the primitives. Once they
complete, the primitives sit in the GE output
bu�ers and are fed one by one into the rasterizer
pipelines (one pipeline draws the even lines, the
other the odd lines) and they are drawn to the
framebu�er. Our simulation has the same struc-
ture, although it runs sequentially. It loops until
the FIFO is empty, each time distributing the
oldest elements in the FIFO to GEs, executing
the GEs, and calling the Rasterizer on the GE
output bu�ers.

5.1 The Command Parser

The GPU FIFO is implemented as a linked-list.
In reality, the graphics card sends signals back
to the CPU when the FIFO �lls up, but in our
simpli�cation the FIFO can be as large as possi-
ble and will be emptied completely on a call to
GPU Draw(). Because we wanted the number of
GEs to be variable, the GE input bu�ers are also
represented as a linked-list, with one node per
SIMD processor. The command parser moves
primitives from the FIFO to this list until it sees
a di�erent type of primitive or has seen NUM GE

elements. The module returns the number of el-
ements that were distributed for timing analysis
and to determine when the FIFO is empty.

5.2 Geometry Engines

The GEs are responsible for projecting and clip-
ping primitives. In hardware, they are just sim-
ple processors with a multiplier and an adder
and run di�erent series of microinstructions de-
pending on the type of primitive (line or trian-
gle). We don't have any information on these
micro-programs, but assume they use the tradi-
tional algorithms presented in [6] optimized for
the particular hardware. Our software pipeline
also uses these same algorithms.

First, the viewing matrix is applied to all ver-
tices in the primitive (simple matrix multiplies).
Second, the primitive is clipped to the zNear and
zFar z-planes speci�ed in gluLookAt(). Third,

6

Figure 7: An overview of the modeled SGI graphics chip.

the projection matrix is applied to all vertices,
mapping to screen coordinates. Last, primi-
tives are clipped in x and y to the screen ex-
tents. The clipping against arbitrary planes in
3D is expensive, and so the x and y clipping are
pushed back after the projection, using Cohen-
Sutherland viewport clipping [6].

Clipping a triangle to a plane can result in ei-
ther a triangle or a quadrilateral, but since we
can only rasterize triangles, this latter case must
be split. Since each primitive must be clipped
against six planes, the number of primitives han-
dled by a single GE can grow tremendously. We
keep each primitive as a linked list, initally with
one node. If the primitive is clipped completely,
the node is removed. If it must be split, a new
node is created. All the operations (projection,
clipping, rasterization) are implemented to work
on arbitrary sized lists. In hardware, when one
GE needs to do more work than another, the oth-
ers stall, so we consider this when doing timing
evaluation.

5.3 Rasterizer

While the GEs are small processors that run
micro-instructions, the rasterizer is dedicated
hardware, pipelined into 26 stages between GE
output and the framebu�er. Our simulator scan-
converts lines using the Midpoint Line Algo-
rithm [6]. Triangles are rasterized using the tech-
nique described in the SGI paper:

1. Calculate the slopes of the three sides, in
terms of change in x over a unit change in
y,

2. step through the major edge of the triangle
(the edge between the maximum and mini-
mum y points) and the two minor edges to
generate scanlines through the triangle,

3. and draw each scanline, linearly interpolat-
ing the colors (Gouraud shading) and depth.

For each pixel drawn to the screen, compare the
depth to the corresponding value in the z-bu�er,
and, if closer, overwrite the frame bu�er and z-
bu�er.
Rasterization algorithms get tricky in the

case of subpixel primitives, especially triangles.

7

When the major edge of the triangle is entirely
within a pixel, the slope calculation may lead
to inappropriately large scanlines and other nu-
merical issues may crop up, leading to numerous
special cases to catch. We handle most of these,
but some still create artifacts (as may be evi-
denced along the silhouette of the teapot). We
don't feel these would be too diÆcult to �x, but
other aspects were more pressing and we were
still pleased with the results.

6 Timing

The goal of our project was to provide a simula-
tion that might easily be generalized to a number
of graphics cards; therefore, we did not focus on
producing accurate timing data for the partic-
ular chip we implemented. Even if we wanted
to, our reference papers weren't speci�c enough
to provide such insights, especially for the vari-
able length Geometry Engine calculations. In-
stead, we've laid the foundation for a timing sys-
tem that could trivially be extended to produce
accurate results for our SGI chip given the ap-
propriate constants, and but that is still general
enough to be applied to another card with simi-
lar structure.
In hardware, the three main subsystems are

pipelined: the command parser, the GEs and
the rasterizer all run simultaneously. The Ge-
ometry Engines are always the bottleneck in the
pipeline, and so the total rendering time can be
modeled as the time it takes the command parser
to distribute the �rst batch of primitives, plus
the total time for GEs to execute on all the prim-
itives, plus the time to rasterize the last batch:

TIMEALL = CPFIRST +DALL +RLAST (1)

The command parser takes time linear in the
number of primitives it distributes, and we de�ne
a constant NUMCYCLES TO DISTRIBUTE to allow
the user to change the speci�cs. On the other
end, the number of cycles the it takes to rasterize
a group of primitives is the pipeline depth (26
for our chip) plus a single cycle for each extra
primitive.

Model Immediate Display Lists

two-triangles 756 521
teapot 221309 14126

Figure 11: Graphics pipeline rendering time in
cycles.

The timing on the GEs is more complicated,
since they run in lockstep. When one GE needs
to do extra work, the others stall, but we can-
not merely take the maximum time required for
any one particular GE, since they all might have
stalled at one point or another. Instead, we sim-
plify the problem at bit, and divide the variable
work into 7 segments: the 6 clippings and the
projection transformation (the viewing transfor-
mation is always only applied to a single prim-
itive and hence is constant time for all GEs).
For each GE execution, we record the amount of
clock cycles required for that particular segment
and then take the maximum for each segment
across all GEs, �nally summing these maximums
to obtain the total running time for the block.
This still might miss some subtle interactions be-
tween SIMD processors within a single segment
(e.g., while clipping in x, one GE stalls on the
�rst triangle, another on the second), but mod-
eling these interactions would make the timing
analysis much more complex and it's not obvious
how inuential these extra interactions would be.
Because the number of cycles required for each
GE segment is dependent on the micro-code pro-
grams they execute, we have de�ned the param-
eters as constants and leave them to be �lled in
by someone with more intimate knowledge of the
chip's structure.

7 Results

We show two rendered results from our system,
along with timing data. In Figure 8 we see a ren-
dering of two triangles. While the triangle count
is small, this example shows a case of compli-
cated clipping; each triangle must be separated
into �ve triangles before rendering. This exam-
ple also shows Gouraud shading. Our second ex-
ample is the classic Utah teapot, a common ob-

8

Figure 8: Two rendered triangles.

ject used to test computer graphics systems. It is
shown in Figure 9, and consists of 3751 triangles.
We use a simple gray color to best indicate shad-
ing. The user application required 52,754,990
cycles to specify and light the model (a partial
listing of sim-alpha output is given in Figure 10).
At 500 MHz, this would require about .1 seconds.
Of course, much of this time came from com-
puting normals, which must be done only once.
Lighting must be calculated every time the ob-
ject moves relative to the light source, and so
our numbers indicate this could be done interac-
tively (interaction generally requires 15 frames
per second). Clearly though, moving lighting to
hardware would improve speed for larger models.

For the graphics pipeline, we generate two
types of timing data, corresponding to two com-
mon modes in OpenGL. One is immediate-mode,
where primitives are rendered as they are speci-
�ed; this is slower since the hardware cannot take
advantage of parallelism. Another is display lists,
where a large list of primitives is passed at once
to the pipeline. This mode is faster, but the ge-
ometry cannot be modi�ed as easily. The timing
data, in cycles, is shown in Figure 11. Clearly,
these models can be viewed at much faster than
interactive rates.

References

[1] Kurt Akeley. Reality engine graphics. In
Proceedings of ACM SIGGRAPH 93, Com-
puter Graphics Proceedings, Annual Confer-
ence Series, pages 109{116, August 1993.

[2] Kurt Akeley and Tom Jermoluk. High-
performance polygon rendering. In Computer

Graphics (Proceedings of ACM SIGGRAPH

88), pages 239{246, August 1988.

[3] Todd Austin, Eric Larson, and Dan Ernst.
SimpleScalar: An infrastructure for com-
puter system modeling. Computer, 35(2):59{
67, February 2002.

[4] Keith Cok. Developing eÆcient graphics soft-
ware: the Yin and Yang of graphics. In SIG-

GRAPH course program, 2000.

[5] Rajagopalan Desikan, Doug Burger, and
Stephen W. Keckler. Measuring experimen-
tal error in microprocessor simulation. In
Proceedings of the 28th Annual International

Symposium on Computer Architecture, pages
266{277. IEEE Computer Society and ACM
SIGARCH, June 30{July 4, 2001.

[6] J. D. Foley, A. van Dam, S. K. Feiner, and
J. F. Hughes. Computer Graphics: Principles

and Practice. Addison-Wesley, Reading, MA,
2nd edition, 1990.

9

Figure 9: A rendered Utah teapot.

[7] Chandlee B. Harrell and Farhad Fouladi.
Graphics rendering architecture for a high
performance desktop workstation. In Pro-

ceedings of ACM SIGGRAPH 93, Computer
Graphics Proceedings, Annual Conference
Series, pages 93{100, August 1993.

[8] Erik Lindholm, Mark J. Kilgard, and Henry
Moreton. A user-programmable vertex en-
gine. In Proceedings of ACM SIGGRAPH

2001, Computer Graphics Proceedings, An-
nual Conference Series, pages 149{158. ACM
Press / ACM SIGGRAPH, August 2001.

[9] Mason Woo, Jackie Neider, Tom Davis,
and OpenGL Architecture Review Board.
OpenGL programming guide: the oÆcial

guide to learning OpenGL, version 1.1. Addi-

son-Wesley, Reading, MA, USA, second edi-
tion, 1997.

10

sim: ** simulation statistics **
sim_num_insn 54165059 # total number of instructions committed
sim_num_refs 18807013 # total number of loads and stores committed
sim_num_loads 14005170 # total number of loads committed

sim_num_stores 4801843.0000 # total number of stores committed
sim_num_branches 8635973 # total number of branches committed
sim_elapsed_time 327 # total simulation time in seconds
sim_inst_rate 165642.3823 # simulation speed (in insts/sec)
sim_total_insn 59433502 # total number of instructions executed
sim_total_refs 20292912 # total number of loads and stores executed
sim_total_loads 15224678 # total number of loads executed
sim_total_stores 5068234.0000 # total number of stores executed

sim_total_branches 9103585 # total number of branches executed
sim_cycle 52754990 # total simulation time in cycles
sim_IPC 1.0267 # instructions per cycle
sim_CPI 0.9740 # cycles per instruction
sim_exec_BW 1.1266 # total instructions (mis-spec + committed) per cycle
sim_IPB 6.2720 # instruction per branch
Onbus.idle 0.9888 # fraction of time bus is idle
Onbus.queued 0.1886 # average queueing delay seen by bus request
Onbus.requests 232820 # number of transmissions on bus

Onbus.idle_cycles 52163725 # number of cycles bus was idle
Onbus.queued_cycles 43899 # total number of queued cycles for all requests
Membus.idle 0.9974 # fraction of time bus is idle
Membus.queued 4.8792 # average queueing delay seen by bus request
Membus.requests 13810 # number of transmissions on bus
Membus.idle_cycles 52616904 # number of cycles bus was idle
Membus.queued_cycles 67382 # total number of queued cycles for all requests
SDRAM.accesses 6904 # total number of accesses
ld_text_base 0x0120000000 # program text (code) segment base

ld_text_size 212992 # program text (code) size in bytes
ld_data_base 0x0140000000 # program initialized data segment base
ld_data_size 75936 # program init'ed `.data' and uninit'ed `.bss' size in bytes
ld_stack_base 0x011ff9b000 # program stack segment base (highest address in stack)
ld_stack_size 16384 # program initial stack size
ld_prog_entry 0x0120000300 # program entry point (initial PC)
ld_environ_base 0x011ff97000 # program environment base address address
ld_target_big_endian 0 # target executable endian-ness, non-zero if big endian

mem_brk_point 0x40014000 # data segment break point
mem_stack_min 0x1ff97000 # lowest address accessed in stack segment
mem_total_data 75k # total bytes used in init/uninit data segment
mem_total_heap -4194297k # total bytes used in program heap segment
mem_total_stack 4194321k # total bytes used in stack segment
mem_total_mem 99k # total bytes used in data, heap, and stack segments

Figure 10: Partial timing results from sim-alpha for teapot rendering.

11

