
Increasing Confidence in Proper Execution through Invariant Checking

Miryung Kim and Andrew Petersen
{miryung, petersen}@cs.washington.edu

Department of Computer Science and Engineering
University of Washington

Abstract

With the size of processors and the distance
between components decreasing rapidly, the
probability of transient errors occurring during
execution is increasing. While these errors can
cause any program to fail or behave erratically,
such behavior is not acceptable in many
domains, including safety-critical and high-
reliability systems. In simulations that take days
or weeks to complete or control systems that
should not fail, for example, the ability to
prevent a serious system failure can be very
beneficial. One possible step towards ensuring
correct processor execution involves self-
verification of the execution of groups of
instructions using an invariant that should hold
before and after a block is executed.
 Invariants, provided by the programmer or by
an automatic invariant detector, can be used to
increase confidence in the correctness of the
primary computations and will form the basis for
this self-verifying architecture. If the processor’s
output does not preserve the invariant, the
processor will stop execution and can be “rolled
back” to a previously verified state to re-execute
the program from that point. While not
guaranteeing absolute correctness of execution,
the additional tests catch many of the processor’s
errors and can reduce the chance of a serious
fault, with the effectiveness and performance
impact of the method depending on the strength
(and exhaustiveness) of the invariants used.

1 Introduction

Fault tolerant architectures have become more
interesting in recent years, as it has become
increasingly evident that the small, high speed
processors of the future will be extremely prone
to transient errors caused by electronic noise and
random natural interference. This problem is
compounded by the huge costs that will have to
be borne to fully verify the correctness of
increasingly complex and hard to design
systems. Since not developing (or not using) the

advanced systems of the future is not an option, a
solution will have to be found to make systems
more tolerant (or at least cogent) of faults caused
either by a fault in design or by a random event.
 To that end, we propose a self-verifying
system where the compilers insert checks to
verify that a user-provided or automatically
generated invariant holds at that point in the
program’s execution. In general, these invariants
will not verify specific, individual statements.
Instead, they will correspond to groups of
statements, so performance should not be greatly
affected. Invariant checking can be performed
more quickly than we can re-compute all of the
results, but it does incur some performance cost
above not checking the results at all. Thus,
while this method does not guarantee the abso-
lute correctness of the program or the processor’s
results, it does greatly enhance our confidence in
the result’s validity by guaranteeing correctness
with respect to the invariants, and it does so
without very little impact to performance. Our
work is based on an idea by Jeong and Jamison
[6] that checks invariants with one processor of a
dual processor machine. Our design does not
incur the extra communication and control over-
head that an extra processor brings, but it does
sacrifice the ability to catch faults in the
processor’s design, since a secondary processor
would not necessarily include the same design
flaws as the primary processor.
 In this paper, we concentrate on how to imp -
lement a compiler that supports a self-verifying
architecture. We hope that by gathering data on
the relative performance penalties of various
methods for inserting invariants, we will gain
some insight into what technology will be
needed to build a compiler for a self-verifying
architecture and how best to implement it.
 In Section 2, we provide a brief overview of
invariants, their traditional use, and current
invariant verification technology. Next, in Sec-
tion 3, we examine the overall structure of a self-
verifying architecture, and then in Section 4,
discuss the metrics we use to measure the effect-
iveness of our technique. This leads us to
introduce the process we used for adding invar-

iants to programs, describe our test programs,
discuss the reasoning behind our choices, and
examine results obtained in a simulation using
SimpleScalar v3.0 [3] in Sections 5 and 6.
Finally, Section 7 introduces related work, and
we close with a summary and possible future
work in Section 8.

2 Invariants

Invariants, or relationships between data
members that hold for all possible values of the
members involved, are commonly used to
enforce program safety (especially type safety).
Programmers are often encouraged to annotate
their programs with invariants, with the aim of
improving maintainability and ease of verific-
ation. While not used universally, invariants are
commonly employed, and when explicitly stated,
are thought to make it easier to design and
implement programs.
 Therefore, the software engineering com-
munity has exerted a great deal of effort towards
building sound automatic invariant generators
and checkers, to make the creation of invariants
less manpower intensive and the types of
invariants included in programs more uniform.
However, at the moment, most invariant
generation is done manually. If their annotation
is already performed during development, this
processor verification technique should not re-
quire additional work on the part of the program-
mer. However, if it is not already part of the
development process, we hope to encourage its
use during the design and testing process without
adding to the developer’s workload. With the
facilitation of the these goals in mind, we tried to
select an automatic invariant detector that will
use any provided annotations while requiring a
minimum of user input and that could be used in
an automated process for inserting invariant
checks into code.
 The available tools can be roughly divided
into two basic groups: static checkers and dyna-
mic detectors. Static invariant checkers need not
run the program but must be guided by human
input and as such, often require annotations or
specifications created by the program designer or
implementer [5]. Dynamic checkers, in contrast,
usually do not require additional input from a
human (although they will accept and use
annotations if available) but must execute the
program being analyzed with a large test suite to
infer possible invariants. Unfortunately, while
the two groups differ in the amount of user input

required, all current invariant detectors have
several shortcomings due to the intrinsic
difficulty of invariant generation.
 First, invariant detectors cannot discover a
complete set of invariants, because the problem
of determining all invariants is undecidable.
Second, invariant generation tools operate at the
level of functional granularity, partly because the
idea for invariants developed from Hoare triples
and loop invariants, which are derived from
methods that consider basic blocks. Third,
invariant detectors only suggest relationships
between the parameters passed to the function
and the return value, because they generally
begin their search by looking at those values and
examine transformations performed on them.
Hence, invariant detectors may fail to suggest an
interesting invariant that involves local data
allocated in the callee’s stack. Finally, it is
almost always necessary to have substantial
amounts of input from the programmer to direct
the checker towards useful invariants.
 Despite these shortcomings, we chose Daikon
[5] as our invariant detector. To direct it toward
interesting invariants, we provided each program
with a test suite, since Daikon is a dynamic
invariant checker. In addition, when Daikon
fails to generate invariants of interest, we
enhanced the its output by manually adding
invariants.

3 A Self-Verifying Architecture

Since we perform invariant checks on the same
processor that performs the main computations,
our model for a self-verifying architecture does
not need an additional computation unit.
Therefore, the compiler technology we espouse
should be able to run on any system without
additional cost. Thus, detecting errors and
terminating execution if an error is found is
cheap, in terms of additional design and hard-
ware costs. (We will investigate performance
penalties in the next three sections.) However,
the ability to roll back the processor to an earlier
state if an invariant is violated will require
additional hardware to store a state and commit
the changes once an invariant check is passed.
In addition, some control is needed to avoid an
infinite loop that might occur if the program (or
invariant) is flawed, since our method cannot
determine whether an error is caused by a
processor fault or a fault in the program itself.
We do not investigate the costs involved with
designing or integrating special hardware or in

using exceptions that will return the processor to
the last successfully checked state, but these
ideas are definitely targets for future work.
 For the purposes of this project, if an error is
found, the value of a static, global variable is
changed to signal that an error has been detected
and execution continues. This avoids the long
jump necessary to throw an exception. To verify
that invariants hold, checks are inserted as
simple if-statements. If any data (or state) needs
to be stored to perform a check later in the
program, a new variable is created, and the
required data is stored in it as soon as possible
after an invariant check, to increase the chance
that the data is correct. Often, this means that a
series of new variable declarations and initializ-
ations occur at the beginning of functions.

4 Metrics

Our goal while building this self-verifying
technique is to determine how much confidence
is gained in our belief that the program executed
correctly. However, this gain must be mitigated
by the amount of performance was sacrificed. In
Section 4.1, we discuss the idea of “confidence
gain” by describing how processor reliability
relates to instruction executions. In Section 4.2,
we discuss what we mean by “performance
sacrifice” and introduce a metric that measures it.
Finally, in Section 4.3, we explain how we use
the metrics from the two previous sections to
interpret our experimental results.

4.1 Confidence Gain

Unfortunately, we cannot guarantee that a
program has executed correctly, since the
problem of absolute program correctness is
undecidable. (To do so would mean we have
solved the halting problem!) However, we can
increase the user’s confidence in the correctness
of any results that are obtained from the
program.
 While considering how to measure how
effective inserting invariant checks were, we
thought about how much confidence is gained
when a single computation is repeated. Assume
that the ratio of correct to total computations for
a processor is X. Then, our initial confidence in
the computation is X. If we repeat this
computation once more as a check, there are four
possibilities: the processor computes both
instructions correctly, incorrectly computes the
check, incorrectly computes the first instruction,

or incorrectly computes both instructions. Thus,
the chance that we will detect some error is at
least 1 – X2, since any of the first three cases will
always lead to the detection of the error. (It is
possible that the last case will also reveal an
error, but we will assume that this is not so.)
Hence, for an arbitrarily high confidence, we
need only repeat the computation some limited
number of times. Therefore, any confidence gain
that we obtain must be at less cost than re-
executing the program some number of times.
 The best way to measure confidence gain is to
prove that invariant checking guarantees the
program is correct. Since we are unable to
generate a complete set of invariants and it is
difficult to check by how much confidence
increases when invariant checks are applied, we
approximate confidence gain with the ratio of the
number of instructions added to the program to
the number of instructions in the original
program. This is an extremely conservative
estimate, since it assumes that each instruction
that is added checks only one instruction from
the original program and the idea behind
invariants is to check the “intent” of a block of
code which may contains a large number of
instructions. However, it gives us a basis from
which to begin.

beforeninstructio
beforensinstructioiantsinafternsinstructio

ratioincreasenInstructio

_#
_#var__#

__
−

=

Figure 1. Confidence Gain Heuristic

 In Figure 1, we introduce our heuristic for
estimating confidence gain, the Instruction
Increase Ratio: This metric measures the
increase in the number of instructions after
adding invariant checks. Because it only counts
instructions added for invariant checking
purposes (which are used only to verify the
processor), we can use this metric to
approximate the confidence gained by invariant
checking.

 The second metric we introduce is the
Computation instruction increase ratio, which is
revealed in Figure 2. It compares the number of
non-memory instructions added by invariant
checks to the total number of non-memory
instructions in the original program. Because
reference instructions do not contribute to our
verification computations, it may be more
accurate to remove memory-referencing
instructions from our confidence gain metric.
Thus, we use Computation instruction increase

ratio as our measure of net confidence gain when
using invariant checks.

beforeninstructioreferencememoryNon
beforensinstructioreferencememoryNon

iantsinafternsinstructioreferencememoryNon
ratioincreaseninstructioncomputatio

____#
____#

var_____#

−
=

Figure 2. Net Confidence Gain Heuristic

4.2 Performance Sacrifice

The term “performance sacrifice” refers to the
cost paid to check the invariants added to the
program. The Cycle time increase ratio stands
for the cycle time increase caused by the addition
of invariant checks. (Refer to Figure 3.)
Because it uses the difference in cycle time
between the instrumented and original programs,
it can be used as a metric for the performance
sacrifice required to perform invariant checks.

beforetimeCycle
beforetimeCycleiantsinaftertimeCycle

ratioincreasetimeCycle

__
__var___

−
=

Figure 3. Performance Sacrifice Metric

4.3 Interpretation of Metrics

Given that we have an original program P and
several version of the same program P(i) that
have differing numbers of invariant checks, we
can use the metrics from above to measure the
effectiveness and efficiency of the checks we
have added. Note that later in the paper, we will
use increasing values of i to denote increasing
numbers of invariant checks added.
 As above, the performance sacrifice is
represented using the Cycle time increase ratio
and confidence gain is represented using the
Instruction increase ratio. By plotting the Cycle
time increase ratio for different levels of
invariants on the same program, we can also see
how quickly the performance sacrifice changes
as invariants of differing complexities are
inserted. In the same way, we can measure how
quickly confidence gain changes as the number
and degree of invariants added differ. These two
rates can be used to see whether monitoring the
type and number of invariants added to a
program will be important for controlling the
amount of performance sacrificed.
 For example, if we find that for a certain type
of application, the cycle time increase ratio
increases dramatically faster than the instruction
increase ratio, then we will know that
controlling invariant additions is critical for
maintaining a bearable performance. However,

if the reverse holds, then we will know that a
larger number of invariants can be added without
adversely affecting performance to any great
extent.

5 Measurements

Before we investigate the performance overhead
involved when inserting and checking invariants,
we focused on finding an optimal granularity for
inserted invariants (Section 4.1), discovering the
best location for inserting invariants (Section
4.2), and utilizing the most optimal spatial and
temporal complexity for checking invariants
(Section 4.3). These work was needed because
we had to find the appropriate way of inserting
invariants because adding invariants in different
style could make big difference in performance
gain.

5.1 Invariant Granularity

As we mentioned in Section 2, most invariant
generators suggest invariants at the functional
level of granularity. Despite the state of the
current invariant detection technology, we
wanted to contrast the performance differences
between invariants derived at the functional level
and invariants obtained at the statement level.

Instruction and Cycle Time Ratio to the
Macro Version program without Invariant

Checking

0.9
0.95

1
1.05

1.1
1.15

1.2

F
un

ct
io

n

F
un

ct
io

n
In

va
ria

nt
C

he
ck

in
g

M
ac

ro

M
ac

ro
In

va
ria

nt
C

he
ck

in
g

Programs

R
at

io

Instruction Ratio
to Macro Version

Cycle Ratio to
Macro Version

Figure 4. Instruction and Cycle Time Ratios:
the same invariants were inserted in both
cases to make the comparison fair.

 Figure 4 shows that if we use in-line
invariants with in-line functions, the least
amount of performance is sacrificed to check the
invariants. However, due to the dominance of
functional and object oriented programming
methodologies, having functions, classes, and
methods is inevitable. Thus, in the next section,
we investigate where to insert invariant checks

for maximum gain and minimum performance
degradation.

5.2 Insertion Locations for Invariant Checks

If we have invariants obtained at the level of
functional granularity, they are relevant in two
places: at the entrance point of the function and
at its exit point(s). Therefore, checks can be
inserted for them either outside of the function,
in the caller’s code, or inside the function, in the
callee’s code. Invariants can be checked at either
of these locations since Daikon derives the
invariants it suggests from parameters passed to
callee. Therefore, these values are accessible in
both the calling and the called function.
However, performance penalties differ due to the
spatial locality of the variables being checked.

Checked outside of function Checked inside of function
Vector Addition Function: Invariant
Checking Inside Function

Vector Addition Function:
Invariant Checking
Outside of Function.

void foo(int cnt,int *c, int* a,int* b)
{
int i;
//Check before
if (sizeof(a)!=sizeof(b)) i_flag=1;
if (sizeof(a)!=sizeof(c)) i_flag=1;
for (i=0;i<cnt;i++){
 c[i]=a[i]+b[i];
}
//Check after
for (i=0;i<cnt;i++){
 if (c[i]!=a[i]+b[i]) i_flag=1;
}
}
int main ()
{ …..
foo(100,c,a,b);
 …..
}

void foo(int cnt,int *c, int* a,int* b)
{
int i;
for (i=0;i<cnt;i++){
 c[i]=a[i]+b[i];
}
}
int main ()
{ …..
//Check before
if (sizeof(a)!=sizeof(b)) i_flag=1;
if (sizeof(a)!=sizeof(c)) i_flag=1;
foo(100,c,a,b);
//Check after
for (j=0;j<100;j++{
 if (c[j]!=a[j]+b[j]) i_flag=1;
}
 ……
}

Figure 5. Different Locations to Insert
Invariants

 As an aside, the latter method is made more
complex by functions with multiple exit points.
However, we consider only functions with a
single exit point, as any algorithm can be
represented as a proper program (with one entry
and one exit point).
 Table 1 displays the result of an experiment
that inserts invariants in different locations. The
test was performed on programs that
implemented various vector computations by
passing local array pointers to the functions. The
results were interesting, as they differed from our
expectations. We hypothesized that inserting
invariants outside of called function would be
faster, since checking the added invariants
involves accessing variables allocated on the call
stack of the calling function. However, the
simulation revealed the opposite behavior.
Inserting invariants on the caller’s side caused a
higher instruction cache miss rate and degraded

performance. We presume the results are related
to speculation failures, because our invariant
checks are implemented with if-statements.
Furthermore, we hypothesized that if speculation
errors caused the higher rate of instruction cache
misses when invariants were inserted outside of
called functions, manipulating the branch
prediction scheme would reveal that trend.

Table 1. Performance comparison between
inserting invariant checks outside of the
function (in the caller’s body) versus inside of
function (in the callee’s body)

 We tried 5 different branch prediction
schemes to test this hypothesis. As Figure 6
shows, the type of branch prediction used does
not affect the pattern of higher instruction cache
misses. All of the variants have higher level 1
instruction cache miss rates when invariants are
added inserted outside of functions. Thus, we
must conclude that this phenomenon is
independent from the branch prediction scheme.

Cache Miss Rates
 Depending on Invariant Insertion Location

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007

no
ch

ec
k

in
si

de
ch

ec
k

ou
ts

id
ec

he
ck

no
ch

ec
k

in
si

de
ch

ec
k

ou
ts

id
ec

he
ck

no
ch

ec
k

in
si

de
ch

ec
k

ou
ts

id
ec

he
ck

no
ch

ec
k

in
si

de
ch

ec
k

ou
ts

id
ec

he
ck

no
ch

ec
k

in
si

de
ch

ec
k

ou
ts

id
ec

he
ck

Bimod Always
Taken

Always Not
Taken

Comb 2level

Branch Predictor

C
ac

h
e

M
is

s
R

at
e

il1_miss

dl1_miss

Figure 6. Level 1 Instruction Cache Miss
Rate with Different Branch Predictors

 Our next hypothesis involved the capacity of
the level 1 instruction cache size. Figure 7
reveals the results of our experiments with
different level 1 cache sizes. The larger sized

 Vector addition Vector Multiply Vector division

 Inside Outside Inside Outside Inside Outside

Cycle 1464732 1510387 1508036 1520287 1855598 1856132
IL1.
miss 1162 4135 1364 4135 1780 1947
DL1.
miss 181 191 193 191 311 313
L2
lookup 1343 4326 1557 4326 2093 2262
Branch
miss 344 1531 1531 1531 11404 11405

instruction caches have closed the performance
gap between inserting invariants inside of the
called function and outside of the function.
However, while closer together, the pattern still
shows up.

of
Cache
Lines
Level 1
I -Cache

Invariant
Check
Location

Cycle Level 1
I- Cache
Miss
Rate

Level 1
D- Cache
Miss Rate

512 No check 1851377 0.0005 0.0003

 Inside 1855598 0.0005 0.0003

 Outside 1856132 0.0006 0.0003

1024 No check 1848966 0.0004 0.0003

 Inside 1853187 0.0004 0.0003

 Outside 1854909 0.0005 0.0003

Figure 7. Level 1 Cache Miss Rates with
Different Level 1 Instruction Cache Size

 Next, we wondered if we were documenting a
phenomenon caused by the limited issue window
size in Superscalar processors. As the issue
window size became larger, the IPC increased,
showing that the amount of available parallelism
contributes to reducing the performance gap
between different insertion locations. However,
this is also not a final solution.

n- way
superscalar

Insertion
Location Cycle sim_IPC Il1_miss

2way No checks 2459332 1.3285 0.0005

 Inside 2465138 1.3292 0.0005

 Outside 2464886 1.3283 0.0006

4way No checks 1851377 1.7648 0.0005

 Inside 1855598 1.7658 0.0005

 Outside 1856132 1.7639 0.0006

8way No checks 1830714 1.7847 0.0005

 Inside 1834814 1.7858 0.0005

 Outside 1835909 1.7834 0.0006

Figure 8. Performance Difference between
Different Issue Windows in Superscalar

 Finally, we decided to try the same
experiment with a different cache replacement
algorithm. As Figure 9 shows, the cache
replacement algorithm also doesn’t significantly
affect this situation. Hence, having reduced most
of the major influences on processor
performance, we speculate that this performance

difference is caused by compiler optimizations
and independent of architectural constraints.

Cache Miss Rates and Replacement Ratio
Depending on Differnt Invariant Insertion

Location

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007

N
oC

he
ck

LR
U

O
ut

si
de

C
he

ck

In
si

de
C

he
ck

N
oC

he
ck

R
A

N
D

O
M

O
ut

si
de

C
he

ck

Cache Replacement Algorithm

R
at

e

il1_miss

il1_replace

dl1_miss

Figure 9. Cache Miss Rates and Replacement
Rates with Different Replacement Algorithms

5.3 Complexity of Invariant Checks

We have identified three major types of
complexity when dealing with invariants: spatial,
which refers to the need for extra variables;
temporal, which describes the varying numbers
of operations that a single invariant might
include; and functional, which refers to the
necessity of calling library functions in invariant
checks.

5.3.1 Spatial Complexity
When checking invariants, state must sometimes
be stored, since some variables are overwrit ten
during execution of a function. New variables of
the same type and size must be allocated to store
the old state.

When we want to check the invariant “post_A[I]
==pre_A[I]+pre_B[I]” in the code above, we
need to store pre_A into a temporary array T.
Copying the values in array A to T adds
O(sizeof(A)) bytes of spatial complexity to the
system. Table 2, below, compares the
computation times for adding new storage to
check invariants, rather than using memory that
is already existant in the program. On our test
programs, adding new storage to check the
invariants took, on average, 11% more

Function accumulation(array A, array B) {
int s= sizeof (A);
for (int I=0;I<s;I++) {
 A[I]=A[I]+B[I];
}

computation time, even the same invariants are
checked.

 Operation # Instruction # cycle

Needs
Additional
storage

A[k]=A[k]+B[k] 759602 353224

Needs
No
additional
storage

C[k]=A[k]+B[k] 660335 317134

Table 2. Performance comparison between
invariant checks that require additional data
storage and those that do not.

5.3.2 Temporal Complexity
Checking invariants for large data types (like
arrays or trees) can be computationally intensive.
For example, checking invariants for every
element of a single -dimensional array takes
O(sizeof(array)) time. By checking a randomly
selected subset of the array, only O(c) time is
consumed, where c is a predetermined value, and
there is some net gain in our confidence in the
computed values. However, this is balanced by
possibility of missing more computation failures.
A check on random pieces of the data structure
will catch an error that occurs in most (or all)
elements, but it will probably not catch an error
that involves only a single element.
Nevertheless, the simulations results show that
we can save at least 10% of total execution time
by only checking invariants for some randomly
selected subset. More simulation results are
needed for different data structures and programs ,
and we must determine how to best balance
computation confidence and performance cost.

5.3.3 Functional Complexity
Inserting invariants that verify library function
calls is difficult, and some programs make huge
amounts of calls to library functions. Daikon
cannot detect invariants that involve library
functions, so the insertion must be done
manually. Also, despite knowing the checks
inside of function calls are faster, library
functions cannot be modified, so invariant
checks must be added outside of the called
function. Many of the checks added involved
either checking that the return value was in an
appropriate range or simply re-executing the
library call and comparing the two return values.
For example, for cos(x) and sin(x), we can insert
weak invariants such as cos(x) and sin(x) are in
the range –1 to 1. However, for tan(x), we had
to re-compute tan(x) and compare the result with
the previous outcome to increase confidence,

since the range of tan(x) is not bounded. Re-
executing library calls can be prohibitively
expensive, and the methods required to check
library calls are distinctly different from the time
complexity mentioned in Section 5.3, so we
classify these checks as O(f) complexity, with f
meaning “function.”

6 Analysis

In section 5, we learned that invariant checking
has its own temporal and spatial complexity. We
also found that inserting invariants inside a
function is better than inserting the same checks
outside of the function. These are basic proper-
ties that can affect how efficient invariant checks
can be. Now, we want to investigate the trade-
off between performance sacrifice and
confidence gain using several realistic bench-
mark programs.
 In section 6.1.1, we use linked lists and binary
search tree programs as small examples of
realistic, pointer-heavy applications. We believe
these programs are characteristic of general
applications, which often use large amounts of
pointers and recursion. Next, in section 6.1.2,
we use mathematical analysis programs to model
scientific applications that require a high level of
accuracy. Finally, in section 6.1.3, we display
our results for one integer and one floating-point
application from the Spec 2000 benchmark suite.

6.1 Benchmarks

Thus far, our investigation has gathered data
using overly simplified toy programs with very
limited characteristics. We wanted to see how
much performance is sacrificed on real systems
that employ invariant checking.

6.1.1 General applications
For models of general applications, we chose
several programs that use common abstract data
types, including one that features a binary search
tree and one that utilizes a linked list. These
programs were more challenging than the “toy”
programs we tested in earlier sections in three
important ways: heavy pointer use, complex
invariants, and recursive structure.
 First, both of these programs feature
extensive use of pointers. This presents a large
challenge to invariant checkers, and Daikon is no
exception. It had difficulty obtaining interesting
invariants for these programs, as it is not good at
capturing relationships between dereferenced

pointers. Second, the two data structures feature
only fairly complex, difficult to check invariants,
which we believe is characteristic of many
general applications. However, lists and trees
are well studied in the literature, so we manually
added invariants that check that the basic
properties of the data structure are maintained.
(For example, one invariant of a list is that after
insertion, the size of the list increases by no more
than one.) Finally, the recursive nature of lists
and trees, in addition to the explicit recursion
used in the implementation of the binary search
tree, adds complexity to the problem. To check
many invariants (for example, that the tree is not
altered during a “find” operation), every node
must be revisited, using a recursive function with
(possibly) heavy overhead.

Linked L is t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Light Checking Heavy Checking

Degree o f Invar ian t Check ing

Instruction Increasement
Ratio

Cycle Time
Increasement
Ratio

Computation
Instruction
Increasement

s

Figure 10. Linked List: Performance
Sacrifice and Coverage

Binary Search Tree

0

0.5

1

1.5

2

2.5

3

3.5

Light Checking Heavy Checking

Degree of Invariant Checking

In
cr

ea
se

m
en

t
R

at
io

Instruction Increasement
Ratio

Cycle Time
Increasement
Ratio

Computation
Instruction
Increasement

Figure 11. Binary Search Tree: Performance
Sacrifice and Coverage

 The combination of these three factors led to
the results we see below. While we were able to
significantly increase our confidence in the
correctness of the program’s execution, this
result was won with an extremely high perform-
ance sacrifice. Consider a simple find function,
which does not need to vis it every node in the
list or tree to execute properly. As part of our
effort toward verifying that this function worked

correctly, we can check that the size of the struc-
ture does not change. To check this, however,
the invariant check must visit every node, which
makes the invariant check significantly more
expensive than the function it is checking. In
this case, we believe that it is definitely more
worthwhile to either scale down the number (or
complexity) of the invariants checked (which
reduces our confidence in the result) or to simply
re-execute the program
 Figure 10 and Figure 11 shows that as we add
more invariant checks, we have a higher
Computation Instruction Increase with a lower
Cycle Time Increase Ratio.

6.1.2 Scientific applicati ons
We believe our verification technique is espec-
ially applicable for scientific computing prob-
lems. These problems could benefit from the
added confidence in the results that invariant
checking brings, and invariants are discovered
easily for such programs, since they are often
based directly on mathematical relationships that
can be checked. We prepared several mathe-
matical analysis programs for these simulations,
including applications using Taylor series,
Machine Epsilon, Newton’s method, polynomial
interpolation, Spline approximation.
 These mathematical analysis programs all
used library functions from “math.h”. Daikon
ignores library function when detecting invar-
iants, so using our invariant checking technique
required that we re-execute the library functions.
Since these invariant checks are expensive and
distinctly different from the time complexity
mentioned in Section 4.3, we call this O(f)
complexity, with f standing for “function.”
 For each program, we added invariants that
can be checked without calling library functions
again. Next, we added O(f) complexity invar-
iants. For example, tan(x) is not bounded by any
value, so to increase our confidence level in the
correct computation of tan(x), we recomputed
tan(x) and compared it with previously computed
value.
 We found interesting results throughout these
experiments. Even though we added more invar-
iants, the performance sacrifice from invariant
checking we documented was not as expensive
as the cost of executing the instructions we
covered. Also, we noticed that the cycle time
sacrifice is not always in a 1:1 correspondence
with the number of invariants added.

Mathematical Analysis

-0.1

0
0.1

0.2
0.3
0.4

0.5
0.6
0.7

0.8

O
(1

)

O
(F

)

O
(1

)

O
(F

)

O
(1

)

O
(F

)

O
(1

)

O
(F

)

O
(1

)

Taylor
Series

Machine
Epsilon

Newton
Method

Polynomial
Interpolation

Spline
Approximation

Invariant Complexity

In
cr

ea
se

m
en

t
R

at
io

Instruction Increasement
Ratio

Cycel time Increasement
Ratio

Figure 12. Mathematical Analysis Programs:
Performance Sacrifice and Coverage

6.1.3 Spec 2000
While the previous two sections have exercised
our invariant insertion technique on more
realistic programs, we still needed a basis upon
which to compare our work to other techniques.
Therefore, we chose to instrument two
benchmarks from the Spec2000 CPU Benchmark
suite that exhibited extremely different program
characteristics: art, from the floating point suite,
and mcf, an integer program.
 It should be noted that since we ran these
programs on SimpleScalar simulator, we were
not able to run these benchmarks in an official,
reportable manner. The runspec utility could not
be used to execute the instrumented executables,
so we cannot guarantee that we used the official
command line options, although every effort was
made to ensure that the programs were invoked
correctly. In addition, in the interest of time,
instead of using the full test suites, the “test” test
suites were used. [9]

6.1.3.1 179.art
art is an image recognition program that trains a
neural net using a series of training images and
then attempts to recognize and categorize images
from a separate set of images. We chose art
from the floating point suite since it features a
large number of inner loops, uses a large amount
of memory, is CPU intensive, and relies heavily
on array operations, including multiplication. In
this sense, it resembles many of the toy programs
we used earlier, but it dwarfs them in terms of
scale.
 Invariants were inserted to art in two levels to
get some idea of the relation between increasing
confidence and decreasing performance. The
“light” level contains roughly half as many
checks as the “heavily” instrumented program.
However, in both cases, no additional variables

were added, and only invariants of O(1) temporal
complexity were inserted. (See sections 5.3.1
and 5.3.2 for a more complete discussion on
temporal and spatial complexity.) Therefore, the
invariants inserted were simple and checked
single values, array boundaries, and counters.
We did not insert O(n) invariants (which would
have allowed us to verify that all of the array
operations were completed correctly) so that we
could more easily compare our data for art with
the data obtained for mcf, which does not
provide many opportunities for O(n) complexity
checks.

S p e c 2 0 0 0 : A r t

0

0.02

0.04

0.06

0.08

0.1

0.12

light check heavy check

D e g r e e o f I n v a r i a n t I n s e r t i o n

Instruction
Increasement
Ratio

Cycle
Increasement
Ratio

Computation
Increasement
Ratio

Figure 13. Spec2000 Art: Performance
Sacrifice and Coverage

Spec 2000: Art

0.485

0.49

0.495

0.5

0.505

0.51

0.515

nocheck light check heavy check

Degree of Invariant Insertion

IP
C sim_IPC

Figure 14. Spec2000 Art: IPC

 Figure 13 and Figure 14 describe the results
we obtained from running SimpleScalar on art
and our instrumented variants of art. The IPC
increases as more invariants are added, which
suggests that even more checks could have been
inserted while continuing to take advantage of
empty issue slots. It is especially nice that the
computation increase ratio grows nearly six
times as fast as the cycle increase ratio, although
it is too early to declare a trend, as we have only
two points.

6.1.3.2 181.mcf
mcf was derived from a resource scheduling
program: specifically, mcf was originally a
“single-depot vehicle scheduler.” [9] It almost
exclusively utilizes integer arithmetic and
features a huge amount of pointer swapping and
dereferencing. As such, it is not overly
intensive, computationally, and poses a real
problem for Daikon, which does not handle
pointers well. In this sense, it is reminiscent of
the “general application” programs we tested in
section 4.4.1, with one key difference: mcf does
not utilize highly recursive structures.

Spec 2000:mcf

-0.04
-0.02

0
0.02
0.04
0.06
0.08
0.1

0.12

In
st

ru
ct

io
n

In
cr

ea
se

m
en

t
R

at
io

C
yc

le
In

cr
ea

se
m

en
t

R
at

io

C
om

pu
ta

tio
n

In
cr

ea
se

m
en

t
R

at
io

Degree of Invariant Insertion

In
cr

ea
se

m
en

t R
at

io

light check

heavy check

Figure 15. Spec2000 Mcf: Performance
Sacrifice and Coverage

Spec2000: Mcf

0.98

1
1.02

1.04
1.06
1.08

1.1
1.12

nocheck light check heavy check

Degree of Invariant Insertion

IP
C sim_IPC

Figure 16. Spec2000 Mcf: IPC

 Like in art, invariants were added to mcf in
two levels, with the “heavy” level of invariant
checking having about twice as many checks as
the “light” level. Again, no extra variables were
added to the program (with the exception of the
global error flag), and only O(1) complexity
invariants were considered. Most of those used
in to instrument mcf consisted of NULL pointer
checks, verification that a single value lay within
a legal range, and array boundary checks.
 Figures 15 and 16 describe the data that we
obtained from simulating the original mcf and
our instrumented versions. The IPC increases

even more dramatically than it does in art, and
we received some extremely strange results for
the instruction increase ratio and the
computation increase ratio: in some cases the
ratios are negative, indicating a reduction from
the original. We have tried isolating the reason
for these results but, at the moment, can only
conclude that the compiler was able to optimize
the code more effectively or that SimpleScalar
ran into simulation problem.

6.2 Result

IPC vs. Confidence Gain

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8

Instruction Increasement Ratio

IP
C

Spec2000 Art

Spec2000 mcf

Vector Division

Vector Multiplication

Taylor Series

Machine Epsilon

Newton Method

Polynomial
Interpolation

Spline Approximation

Figure 17. IPC vs. Confidence Gain: IPC

Figure 17, above, shows that in each program,
adding more invariant checks generally increased
the IPC. We believe that invariant checks often
use data that is already resident in the cache, so
they can be executed without memory latency,
which increases IPC. Hence, we think invariant
checking can use the empty issue slots in a
superscalar processor extremely efficiently.

Cycle Time Sacrifice vs. Confidence Gain

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.005 0.01 0.015 0.02 0.025

Instruction Increasement Ratio

C
yc

le
 In

cr
ea

se
m

en
t

R
at

io

cycle sacrfice

Figure 18. Cycle Time Sacrifice vs.
Confidence Gain

 Figure 18 shows that cycle time sacrificed
increases, in general, more slowly than confi-
dence gain, which implies that adding invariant
checks is more efficient than re-execution of the
code.

Cycle Time Sacrifice vs. Confidence Gain

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.2 0 0.2 0.4 0.6 0.8

Instruction Increasement
Ratio

C
yc

le
 T

im
e

In
cr

ea
se

m
en

t
R

at
io

Spec2000 Art

Spec2000 Mcf

Vector Division

Vector Multiplication

Taylor Series

Machine Epsilon

Newton Method

Polynomial
Interpolation

Spline Approximation

Figure 19. Cycle Time Sacrifice vs.
Confidence Gain

 From the graph of Cycle Time Sacrifice vs.
Confidence Gain (Figure 19), we saw that our
two metrics are correlated in a linear relationship,
so the performance sacrifice is always roughly
the same as the confidence gain.

Cycle Time vs. Net Confidence Gain

-0.2

0
0.2

0.4

0.6
0.8

1
1.2

-0.5 0 0.5 1 1.5

Non-Refence Instruction
Increasement Ratio

C
yc

le
 T

im
e

In
cr

ea
se

m
en

t
R

at
io

Cycle Time
Sacrifice

Cycle Time==Net
Confidence Gain

Figure 20. Cycle Time vs. Net Confidence
Gain: Net Confidence Gain is approximated
using the Non-Reference Instruction Increase
heuristic

Figure 20 shows the relationship between Cycle
Time and Net Confidence Gain. The gap
between the break-even point and the slope of
Computation Confidence Gain is even larger
than that of the Confidence Gain. This means
with the same performance sacrifice, we get a
more effective verification, because with the
same cost, we contribute more towards non-
memory computations. We think the more
invariant checks that are inserted, the better the
cache hit rate, and therefore, memory latency is ,
relatively speaking, less of a constraint on
parallelism.

7 Related Work

Traditionally, verification of programs has lain
entirely in the domain of software engineering
(especially in the field of type safety). As
reliability in comple x systems becomes a larger
concern, due to the ever-increasing cost of
verifying design correctness and the growing
possibility of faults caused by interference
(natural or otherwise), fault tolerant architectures
are attracting more interest in the architectural
community. Much of the work done to date has
focused on attempting to guarantee correctness
of execution with respect to the code being run,
usually by adding a secondary processor, rather
than increasing confidence in the program’s
correct execution, as we have done, which is
reminiscent of the work done in software
engineering and type safety.
 We based our work on an idea by Jeong and
Jamison [6], which was, in turn, an extension of
Necula’s idea of proof-carrying code [7] and an
alternative to the DIVA [1] architecture. Proof-
carrying code includes a proof of safety that
guarantees safe execution if the accompanying

invariants hold. Similarly, in Jeong and
Jamison’s work, programs are annotated with
invariants that, while not guaranteeing proper
execution, increase confidence in the executed
instructions if they hold. They use a dual
processor system (with a fast primary processor
and slower secondary processor) that
simultaneously executes the primary program
(on the faster processor) and verifies groups of
instructions (on the slower processor) by
computing the invariants inserted by the
programmer. If an invariant is violated, the
corresponding block of code is re -executed.
 While Jeong and Jamison verify code at the
“block” granularity, DIVA verifies (through re-
execution) every instruction, offers a stronger
guarantee of execution correctness with respect
to the provided program, and greatly increases
the fault tolerance of the system. Austin’s goal
in this research was to reduce hardware design
costs and the need for completely correct
processors by introducing a second processor
that recomputes all of the results of the primary
processor. The second processor is much
simpler than the first, as it does not have to
perform branch or data speculation since the first
processor has already done that work. In
addition, it is slower. This combination of
factors makes the second processor less prone to
noise-related faults and easier to design and
verify. However, the DIVA architecture does
include additional hardware, and it must rely on
the correctness of the program it is executing,
while our system can, with annotations provided
by the programmer, catch errors in the code
itself.
 In contrast to DIVA, which focuses on
verifying correctness at the hardware level,
Chong [4] introduced hardware structures that
support execution verification at the software
level. For example, he is interested in a
hardware access table (HAT) to accelerate table
lookups that are critical for locating memory
access and concurrency errors. (Austin’s [1]
spatial and temporal memory access checking
could take advantage of this, for example.)
Chong’s efforts are more directed towards error
detection in programs during software
development (rather than verification of
processor execution in general), and while the
hardware support that he espouses provides
greatly decreases the performance penalty
associated with dynamic pointer checking, it
does not, by itself, increase the ruggedness of the
system.

8 Conclusion

We have presented data showing that adding
invariants to programs to verify that they are
correctly computed is feasible, in terms of
performance, especially since invariant checks
tend to make use of empty issue slots and
increase parallelism. Furthermore, we have done
small studies that indicate that the best way to
insert such checks is to focus at a functional
granularity, to place the invariants inside the
called function, and to perform only the simple,
O(1) checks. To make these assertions, we
developed a framework for measurement that
compares performance sacrifices (or compu-
tational throughput) to the amount of confidence
that the inserted checks give us.
 Nevertheless, this is only a tiny amount of the
work that must be done before this technique can
truly be deemed worthwhile. In the future, we
would like to focus upon determining the true
effectiveness of the inserted checks and
gathering more varied data points from which to
draw conclusions. To start, we would like to
simulate errors in computation by modifying
SimpleScalar to randomly insert errors in its
simulation at varying frequencies, and then we
would like to complete our instrumentation of
the Spec2000 benchmarks. Finally, even if this
technique continues to show performance, huge
advances in invariant generation technology will
have to be made. The current generation of
technology is simply not at the point where
invariant checks can be automatically inserted
into code by a compiler or some other tool.
 Overall, we believe that the future techno-
logical advances will lead to an unavoidable
increase in computation errors committed by
processors. Techniques for increasing the fault
tolerance of systems must be developed to deal
with this trend as well as to allow us to build
extremely fast systems that are not limited by our
current fixation on absolutely correct compu-
tation.

Acknowledgements

We would like to thank Tim James and Mark
Oskin for all of their guidance and the huge
amount of technical support they provided dur-
ing the quarter. Thanks also to Michael Ernst,
for all of his work on Daikon.

References

[1] Todd M. Austin, “DIVA: A Dynamic
 Approach to Microprocessor Verification,” in
 the Journal of Instruction-Level Parallelism,
 May 2000.

[2] Todd M. Austin, Scott E. Breach, and
 Gurindar S. Sohi, “Efficient Detection of All
 Pointer and Array Access Errors,” in
 Proceedings of the SIGPLAN ’94
 Conference on Programming Language
 Design and Implementation, 1994.

[3] Doug Burder and Todd M. Austin, The
 SimpleScalar Tool Set, Version 3.0.

[4] Frederick Chong et al, “Hardware
 Support for Software Safety,” 2002.

[5] Michael D. Ernst, “Dynamically Detecting

Likely Program Invariants,” PhD
Dissertation, University of Washington,
August 2000.

[6] Jaein Jeong and Jonathon Jamison,
 “Verifying Architecture,” 2000.

[7] George C. Necula, “Proof-Carrying Code,”

 in Proceedings of the Principles of
Programming Languages (POPL) , January
1997.

[8] Jeremy W. Nimmer and Michael D. Ernst,

“Invariant Inference for Static Checking: An
Empirical Evaluation,” ACM, 2001.

[9] Standard Performance Evaluation
 Corporation, http://www.specbench.org/osg/
 cpu2000/, 2000.

