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Abstract 
 
With the size of processors and the distance 
between components decreasing rapidly, the 
probability of transient errors occurring during 
execution is increasing.  While these errors can 
cause any program to fail or behave erratically, 
such behavior is not acceptable in many 
domains, including safety-critical and high-
reliability systems.  In simulations that take days 
or weeks to complete or control systems that 
should not fail, for example, the ability to 
prevent a serious system failure can be very 
beneficial.  One possible step towards ensuring 
correct processor execution involves self-
verification of the execution of groups of 
instructions using an invariant that should hold 
before and after a block is executed.   
     Invariants, provided by the programmer or by 
an automatic invariant detector, can be used to 
increase confidence in the correctness of the 
primary computations and will form the basis for 
this self-verifying architecture.  If the processor’s 
output does not preserve the invariant, the 
processor will stop execution and can be “rolled 
back” to a previously verified state to re-execute 
the program from that point.  While not 
guaranteeing absolute correctness of execution, 
the additional tests catch many of the processor’s 
errors and can reduce the chance of a serious 
fault, with the effectiveness and performance 
impact of the method depending on the strength 
(and exhaustiveness) of the invariants used.   
 
1  Introduction 
 
Fault tolerant architectures have become more 
interesting in recent years, as it has become 
increasingly evident that the small, high speed 
processors of the future will be extremely prone 
to transient errors caused by electronic noise and 
random natural interference.  This problem is 
compounded by the huge costs that will have to 
be borne to fully verify the correctness of 
increasingly complex and hard to design 
systems.  Since not developing (or not using) the 

advanced systems of the future is not an option, a 
solution will have to be found to make systems 
more tolerant (or at least cogent) of faults caused 
either by a fault in design or by a random event.   
     To that end, we propose a self-verifying 
system where the compilers insert checks to 
verify that a user-provided or automatically 
generated invariant holds at that point in the 
program’s execution.  In general, these invariants 
will not verify specific, individual statements.  
Instead, they will correspond to groups of 
statements, so performance should not be greatly 
affected.  Invariant checking can be performed 
more quickly than we can re-compute all of the   
results, but it does incur some performance cost 
above not checking the results at all.  Thus, 
while this method does not guarantee the abso-
lute correctness of the program or the processor’s 
results, it does greatly enhance our confidence in 
the result’s validity by guaranteeing correctness 
with respect to the invariants, and it does so 
without very little impact to performance.  Our 
work is based on an idea by Jeong and Jamison 
[6] that checks invariants with one processor of a 
dual processor machine.  Our design does not 
incur the extra communication and control over-
head that an extra processor brings, but it does 
sacrifice the ability to catch faults in the 
processor’s design, since a secondary processor 
would not necessarily include the same design 
flaws as the primary processor. 
     In this paper, we concentrate on how to imp -
lement a compiler that supports a self-verifying 
architecture.  We hope that by gathering data on 
the relative performance penalties of various 
methods for inserting invariants, we will gain 
some insight into what technology will be 
needed to build a compiler for a self-verifying 
architecture and how best to implement it.   
     In Section 2, we provide a brief overview of 
invariants, their traditional use, and current 
invariant verification technology.  Next, in Sec-
tion 3, we examine the overall structure of a self-
verifying architecture, and then in Section 4, 
discuss the metrics we use to measure the effect-
iveness of our technique.  This leads us to 
introduce the process we used for adding invar-



iants to programs, describe our test programs, 
discuss the reasoning behind our choices, and 
examine results obtained in a simulation using 
SimpleScalar v3.0 [3] in Sections 5 and 6.  
Finally, Section 7 introduces related work, and 
we close with a summary and possible future 
work in Section 8. 
 
2  Invariants 
 
Invariants, or relationships between data 
members that hold for all possible values of the 
members involved, are commonly used to 
enforce program safety (especially type safety).  
Programmers are often encouraged to annotate 
their programs with invariants, with the aim of 
improving maintainability and ease of verific-
ation.  While not used universally, invariants are 
commonly employed, and when explicitly stated, 
are thought to make it easier to design and 
implement programs.   
     Therefore, the software engineering com-
munity has exerted a great deal of effort towards 
building sound automatic invariant generators 
and checkers, to make the creation of invariants 
less manpower intensive and the types of 
invariants included in programs more uniform.  
However, at the moment, most invariant 
generation is done manually.  If their annotation 
is already performed during development, this 
processor verification technique should not re-
quire additional work on the part of the program-
mer.  However, if it is not already part of the 
development process, we hope to encourage its 
use during the design and testing process without 
adding to the developer’s workload.  With the 
facilitation of the these goals in mind, we tried to 
select an automatic invariant detector that will 
use any provided annotations while requiring a 
minimum of user input and that could be used in 
an automated process for inserting invariant 
checks into code.  
     The available tools can be roughly divided 
into two basic groups:  static checkers and dyna-
mic detectors.  Static invariant checkers need not 
run the program but must be guided by human 
input and as such, often require annotations or 
specifications created by the program designer or 
implementer [5].  Dynamic checkers, in contrast, 
usually do not require additional input from a 
human (although they will accept and use 
annotations if available) but must execute the 
program being analyzed with a large test suite to 
infer possible invariants.   Unfortunately, while 
the two groups differ in the amount of user input 

required, all current invariant detectors have 
several shortcomings due to the intrinsic 
difficulty of invariant generation.  
     First, invariant detectors cannot discover a 
complete set of invariants, because the problem 
of determining all invariants is undecidable.  
Second, invariant generation tools operate at the 
level of functional granularity, partly because the 
idea for invariants developed from Hoare triples 
and loop invariants, which are derived from 
methods that consider basic blocks.  Third, 
invariant detectors only suggest relationships 
between the parameters passed to the function 
and the return value, because they generally 
begin their search by looking at those values and 
examine transformations performed on them.  
Hence, invariant detectors may fail to suggest an 
interesting invariant that involves local data 
allocated in the callee’s stack.  Finally, it is 
almost always necessary to have substantial 
amounts of input from the programmer to direct 
the checker towards useful invariants. 
    Despite these shortcomings, we chose Daikon 
[5] as our invariant detector.  To direct it toward 
interesting invariants, we provided each program 
with a test suite, since Daikon is a dynamic 
invariant checker.  In addition, when Daikon 
fails to generate invariants of interest, we 
enhanced the its output by manually adding 
invariants.  
 
3  A Self-Verifying Architecture  
 
Since we perform invariant checks on the same 
processor that performs the main computations, 
our model for a self-verifying architecture does 
not need an additional computation unit.  
Therefore, the compiler technology we espouse 
should be able to run on any system without 
additional cost.  Thus, detecting errors and 
terminating execution if an error is found is 
cheap, in terms of additional design and hard-
ware costs.  (We will investigate performance 
penalties in the next three sections.)  However, 
the ability to roll back the processor to an earlier 
state if an invariant is violated will require 
additional hardware to store a state and commit 
the changes once an invariant check is passed.  
In addition, some control is needed to avoid an 
infinite loop that might occur if the program (or 
invariant) is flawed, since our method cannot 
determine whether an error is caused by a 
processor fault or a fault in the program itself.  
We do not investigate the costs involved with 
designing or integrating special hardware or in 



using exceptions that will return the processor to 
the last successfully checked state, but these 
ideas are definitely targets for future work. 
     For the purposes of this project, if an error is 
found, the value of a static, global variable is 
changed to signal that an error has been detected 
and execution continues.  This avoids the long 
jump necessary to throw an exception.  To verify 
that invariants hold, checks are inserted as 
simple if-statements.  If any data (or state) needs 
to be stored to perform a check later in the 
program, a new variable is created, and the 
required data is stored in it as soon as possible 
after an invariant check, to increase the chance 
that the data is correct.  Often, this means that a 
series of new variable declarations and initializ-
ations occur at the beginning of functions.   
 
4  Metrics 
     
Our goal while building this self-verifying 
technique is to determine how much confidence 
is gained in our belief that the program executed 
correctly.  However, this gain must be mitigated 
by the amount of performance was sacrificed.  In 
Section 4.1, we discuss the idea of “confidence 
gain” by describing how processor reliability 
relates to instruction executions.  In Section 4.2, 
we discuss what we mean by “performance 
sacrifice” and introduce a metric that measures it.  
Finally, in Section 4.3, we explain how we use 
the metrics from the two previous sections to 
interpret our experimental results.  
 
4.1  Confidence Gain 
 
Unfortunately, we cannot guarantee that a 
program has executed correctly, since the 
problem of absolute program correctness is 
undecidable.  (To do so would mean we have 
solved the halting problem!)  However, we can 
increase the user’s confidence in the correctness 
of any results that are obtained from the 
program. 
     While considering how to measure how 
effective inserting invariant checks were, we 
thought about how much confidence is gained 
when a single computation is repeated.  Assume 
that the ratio of correct to total computations for 
a processor is X.  Then, our initial confidence in 
the computation is X.  If we repeat this 
computation once more as a check, there are four 
possibilities:  the processor computes both 
instructions correctly, incorrectly computes the 
check, incorrectly computes the first instruction, 

or incorrectly computes both instructions.  Thus, 
the chance that we will detect some error is at 
least 1 – X2, since any of the first three cases will 
always lead to the detection of the error.  (It is 
possible that the last case will also reveal an 
error, but we will assume that this is not so.)  
Hence, for an arbitrarily high confidence, we 
need only repeat the computation some limited 
number of times.  Therefore, any confidence gain 
that we obtain must be at less cost than re-
executing the program some number of times.   
     The best way to measure confidence gain is to 
prove that invariant checking guarantees the 
program is correct. Since we are unable to 
generate a complete set of invariants and it is 
difficult to check by how much confidence 
increases when invariant checks are applied, we 
approximate confidence gain with the ratio of the 
number of instructions added to the program to 
the number of instructions in the original 
program.  This is an extremely conservative 
estimate, since it assumes that each instruction 
that is added checks only one instruction from 
the original program and the idea behind 
invariants is to check the “intent” of a block of 
code which may contains a large number of 
instructions.   However, it gives us a basis from 
which to begin. 
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Figure 1.  Confidence Gain Heuristic 

 
     In Figure 1, we introduce our heuristic for 
estimating confidence gain, the Instruction 
Increase Ratio:  This metric measures the 
increase in the number of instructions after 
adding invariant checks. Because it only counts 
instructions added for invariant checking 
purposes (which are used only to verify the 
processor), we can use this metric to 
approximate the confidence gained by invariant 
checking.   

     The second metric we introduce is the 
Computation instruction increase ratio, which is 
revealed in Figure 2.  It compares the number of 
non-memory instructions added by invariant 
checks to the total number of non-memory 
instructions in the original program. Because 
reference instructions do not contribute to our 
verification computations, it may be more 
accurate to remove memory-referencing 
instructions from our confidence gain metric. 
Thus, we use Computation instruction increase 



ratio as our measure of net confidence gain when 
using invariant checks. 
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Figure 2.  Net Confidence Gain Heuristic 
      
4.2  Performance Sacrifice 
 
The term “performance sacrifice” refers to the 
cost paid to check the invariants added to the 
program. The Cycle time increase ratio stands 
for the cycle time increase caused by the addition 
of invariant checks.  (Refer to Figure 3.)  
Because it uses the difference in cycle time 
between the instrumented and original programs, 
it can be used as a metric for the performance 
sacrifice required to perform invariant checks. 
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Figure 3.  Performance Sacrifice Metric 
 
4.3  Interpretation of Metrics  
 
Given that we have an original program P and 
several version of the same program P(i) that 
have differing numbers of invariant checks, we 
can use the metrics from above to measure the 
effectiveness and efficiency of the checks we 
have added.  Note that later in the paper, we will 
use increasing values of i to denote increasing 
numbers of invariant checks added.  
     As above, the performance sacrifice is 
represented using the Cycle time increase ratio 
and confidence gain is represented using the 
Instruction increase ratio.  By plotting the Cycle 
time increase ratio  for different levels of 
invariants on the same program, we can also see 
how quickly the performance sacrifice changes 
as invariants of differing complexities are 
inserted.  In the same way, we can measure how 
quickly confidence gain changes as the number 
and degree of invariants added differ.  These two 
rates can be used to see whether monitoring the 
type and number of invariants added to a 
program will be important for controlling the 
amount of performance sacrificed. 
     For example, if we find that for a certain type 
of application, the cycle time increase ratio 
increases dramatically faster than the instruction 
increase ratio, then we will know that 
controlling invariant additions is critical for 
maintaining a bearable performance.  However, 

if the reverse holds, then we will know that a 
larger number of invariants can be added without 
adversely affecting performance to any great 
extent.   
  
5  Measurements 
 
Before we investigate the performance overhead 
involved when inserting and checking invariants, 
we focused on finding an optimal granularity for 
inserted invariants (Section 4.1), discovering the 
best location for inserting invariants (Section 
4.2), and utilizing the most optimal spatial and 
temporal complexity for checking invariants 
(Section 4.3). These work was needed because 
we had to find the appropriate way of inserting 
invariants because adding invariants in different 
style could make big difference in performance 
gain.  
 
5.1  Invariant Granularity 
 
As we mentioned in Section 2, most invariant 
generators suggest invariants at the functional 
level of granularity.  Despite the state of the 
current invariant detection technology, we 
wanted to contrast the performance differences 
between invariants derived at the functional level 
and invariants obtained at the statement level. 
 

Instruction and Cycle Time Ratio to the 
Macro Version program without Invariant 
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Figure 4.  Instruction and Cycle Time Ratios:  
the same invariants were inserted in both 
cases to make the comparison fair. 
 
     Figure 4 shows that if we use in-line 
invariants with in-line functions, the least 
amount of performance is sacrificed to check the 
invariants. However, due to the dominance of 
functional and object oriented programming 
methodologies, having functions, classes, and 
methods is inevitable.  Thus, in the next section, 
we investigate where to insert invariant checks 



for maximum gain and minimum performance 
degradation. 
 
5.2  Insertion Locations for Invariant Checks 
 
If we have invariants obtained at the level of 
functional granularity, they are relevant in two 
places:  at the entrance point of the function and 
at its exit point(s).  Therefore, checks can be 
inserted for them either outside of  the function, 
in the caller’s code, or inside the function, in the 
callee’s code.  Invariants can be checked at either 
of these locations since Daikon derives the 
invariants it suggests from parameters passed to 
callee.  Therefore, these values are accessible in  
both the calling and the called function.  
However, performance penalties differ due to the 
spatial locality of the variables being checked.   
 
Checked outside of  function Checked inside of function 
Vector Addition Function: Invariant 
Checking Inside Function  
 

Vector Addition Function: 
Invariant Checking  
Outside of Function. 

void foo(int cnt,int *c, int* a,int* b) 
{ 
int i;  
//Check before  
if (sizeof(a)!=sizeof(b)) i_flag=1;  
if (sizeof(a)!=sizeof(c)) i_flag=1; 
for (i=0;i<cnt;i++){ 
  c[i]=a[i]+b[i]; 
} 
//Check after 
for (i=0;i<cnt;i++){ 
  if (c[i]!=a[i]+b[i]) i_flag=1; 
} 
} 
int main () 
{   ….. 
foo(100,c,a,b); 
     ….. 
} 
 

void foo(int cnt,int *c, int* a,int* b) 
{ 
int i;  
for (i=0;i<cnt;i++){ 
  c[i]=a[i]+b[i]; 
} 
} 
int main () 
{ ….. 
//Check before  
if (sizeof(a)!=sizeof(b)) i_flag=1;  
if (sizeof(a)!=sizeof(c)) i_flag=1; 
foo(100,c,a,b); 
//Check after 
for (j=0;j<100;j++{ 
  if (c[j]!=a[j]+b[j]) i_flag=1; 
} 
 …… 
} 
 

Figure 5. Different Locations to Insert 
Invariants  

 
     As an aside, the latter method is made more 
complex by functions with multiple exit points.  
However, we consider only functions with a 
single exit point, as any algorithm can be 
represented as a proper program (with one entry 
and one exit point).   
     Table 1 displays the result of an experiment 
that inserts invariants in different locations. The 
test was performed on programs that 
implemented various vector computations by 
passing local array pointers to the functions.  The 
results were interesting, as they differed from our 
expectations.  We hypothesized that inserting 
invariants outside of called function would be 
faster, since checking the added invariants 
involves accessing variables allocated on the call 
stack of the calling function.  However, the 
simulation revealed the opposite behavior.   
Inserting invariants on the caller’s side caused a 
higher instruction cache miss rate and degraded  

performance.  We presume the results are related 
to speculation failures, because our invariant 
checks are implemented with if-statements. 
Furthermore, we hypothesized that if speculation 
errors caused the higher rate of instruction cache 
misses when invariants were inserted outside of 
called functions, manipulating the branch 
prediction scheme would reveal that trend. 
 

Table 1.  Performance comparison between 
inserting invariant checks outside of the 
function (in the caller’s body) versus inside of 
function (in the callee’s body)  
 
     We tried 5 different branch prediction 
schemes to test this hypothesis. As Figure 6 
shows, the type of branch prediction used does 
not affect the pattern of higher instruction cache 
misses.  All of the variants have higher level 1 
instruction cache miss rates when invariants are 
added inserted outside of functions. Thus, we 
must conclude that this phenomenon is 
independent from the branch prediction scheme.  
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Figure 6.  Level 1 Instruction Cache Miss 
Rate with Different Branch Predictors 
 
     Our next hypothesis involved the capacity of 
the level 1 instruction cache size.  Figure 7 
reveals the results of our experiments with 
different level 1 cache sizes.  The larger sized 

 Vector addition Vector Multiply  Vector division 

 Inside Outside Inside Outside Inside Outside 

Cycle 1464732 1510387 1508036 1520287 1855598 1856132 
IL1. 
miss 1162 4135 1364 4135 1780 1947 
DL1. 
miss 181 191 193 191 311 313 
L2 
lookup  1343 4326 1557 4326 2093 2262 
Branch 
miss 344 1531 1531 1531 11404 11405 



instruction caches have closed the performance 
gap between inserting invariants inside of the 
called function and outside of the function.  
However, while closer together, the pattern still 
shows up. 
  
# of  
Cache 
Lines 
Level 1 
I -Cache 

Invariant 
Check 
Location 

Cycle Level 1 
I- Cache 
Miss 
Rate 

Level 1 
D- Cache 
Miss Rate 

512 No check 1851377 0.0005 0.0003 

 Inside 1855598 0.0005 0.0003 

 Outside 1856132 0.0006 0.0003 

1024 No check 1848966 0.0004 0.0003 

 Inside 1853187 0.0004 0.0003 

 Outside 1854909 0.0005 0.0003 

Figure 7.  Level 1 Cache Miss Rates with 
Different Level 1 Instruction Cache Size 

 
     Next, we wondered if we were documenting a 
phenomenon caused by the limited issue window 
size in Superscalar processors.  As the issue 
window size became larger, the IPC increased, 
showing that the amount of available parallelism 
contributes to reducing the performance gap 
between different insertion locations.  However, 
this is also not a final solution. 
 
n- way 
superscalar 

Insertion 
Location Cycle sim_IPC Il1_miss 

2way  No checks 2459332 1.3285 0.0005 

 Inside 2465138 1.3292 0.0005 

 Outside 2464886 1.3283 0.0006 

4way  No checks 1851377 1.7648 0.0005 

 Inside 1855598 1.7658 0.0005 

 Outside 1856132 1.7639 0.0006 

8way  No checks 1830714 1.7847 0.0005 

 Inside 1834814 1.7858 0.0005 

 Outside  1835909 1.7834 0.0006 

Figure 8.  Performance Difference between 
Different Issue Windows in Superscalar 

 
     Finally, we decided to try the same 
experiment with a different cache replacement 
algorithm.  As Figure 9 shows, the cache 
replacement algorithm also doesn’t significantly 
affect this situation.  Hence, having reduced most 
of the major influences on processor 
performance, we speculate that this performance 

difference is caused by compiler optimizations 
and independent of architectural constraints.  
 

Cache Miss Rates and Replacement Ratio 
Depending on Differnt Invariant Insertion 
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Figure 9.  Cache Miss Rates and Replacement 
Rates with Different Replacement Algorithms  

 

5.3  Complexity of Invariant Checks 
 
We have identified three major types of 
complexity when dealing with invariants:  spatial, 
which refers to the need for extra variables; 
temporal, which describes the varying numbers 
of operations that a single invariant might 
include; and functional, which refers to the 
necessity of calling library functions in invariant 
checks. 
 
5.3.1  Spatial Complexity 
When checking invariants, state must sometimes 
be stored, since some variables are overwrit ten 
during execution of a function.  New variables of 
the same type and size must be allocated to store 
the old state. 
 
 
 
 
 
 
When we want to check the invariant “post_A[ I] 
==pre_A[I]+pre_B[I]” in the code above, we 
need to store pre_A into a temporary array T. 
Copying the values in array A to T adds 
O(sizeof(A)) bytes of spatial complexity to the 
system.  Table 2, below, compares the 
computation times for adding new storage to 
check invariants, rather than using memory that 
is already existant in the program.  On our test 
programs, adding new storage to check the 
invariants took, on average, 11% more 

Function accumulation(array A, array B) { 
int s= sizeof (A); 
for (int I=0;I<s;I++) { 
   A[I]=A[I]+B[I]; 
} 



computation time, even the same invariants are 
checked. 
  
 Operation # Instruction  # cycle 

Needs 
Additional 
storage 

A[k]=A[k]+B[k] 759602 353224 

Needs  
No 
additional 
storage 

C[k]=A[k]+B[k] 660335 317134 

Table 2.  Performance comparison between 
invariant checks that require additional data 
storage and those that do not. 
 
5.3.2  Temporal Complexity 
Checking invariants for large data types (like 
arrays or trees) can be computationally intensive. 
For example, checking invariants for every 
element of a single -dimensional array takes 
O(sizeof(array)) time.  By checking a randomly 
selected subset of the array, only O(c) time is 
consumed, where c is a predetermined value, and 
there is some net gain in our confidence in the 
computed values.  However, this is balanced by 
possibility of missing more computation failures.  
A check on random pieces of the data structure 
will catch an error that occurs in most (or all) 
elements, but it will probably not catch an error 
that involves only a single element.  
Nevertheless, the simulations results show that 
we can save at least 10% of total execution time 
by only checking invariants for some randomly 
selected subset.  More simulation results are 
needed for different data structures and programs , 
and we must determine how to best balance 
computation confidence and performance cost.   
 
5.3.3  Functional Complexity  
Inserting invariants that verify library function 
calls is difficult, and some programs make huge 
amounts of calls to library functions.  Daikon 
cannot detect invariants that involve library 
functions, so the insertion must be done 
manually.  Also, despite knowing the checks 
inside of function calls are faster, library 
functions cannot be modified, so invariant 
checks must be added outside of the called 
function.  Many of the checks added involved 
either checking that the return value was in an 
appropriate range or simply re-executing the 
library call and comparing the two return values. 
For example, for cos(x) and sin(x), we can insert 
weak invariants such as cos(x) and sin(x) are in 
the range –1 to 1.  However,  for tan(x), we had 
to re-compute tan(x) and compare the result with 
the previous outcome to increase confidence, 

since the range of tan(x) is not bounded.  Re-
executing library calls can be prohibitively 
expensive, and the methods required to check 
library calls are distinctly different from the time 
complexity mentioned in Section 5.3, so we 
classify these checks as O(f) complexity, with f 
meaning “function.” 
 
6  Analysis 
 
In section 5, we learned that invariant checking 
has its own temporal and spatial complexity.  We 
also found that inserting invariants inside a 
function is better than inserting the same checks 
outside of the function.  These are basic proper-
ties that can affect how efficient invariant checks 
can be.  Now, we want to investigate the trade-
off between performance sacrifice and 
confidence gain using several realistic bench-
mark programs.  
     In section 6.1.1, we use linked lists and binary 
search tree programs as small examples of 
realistic, pointer-heavy applications.  We believe 
these programs are characteristic of general 
applications, which often use large amounts of 
pointers and recursion.  Next, in section 6.1.2, 
we use mathematical analysis programs to model 
scientific applications that require a high level of 
accuracy. Finally, in section 6.1.3, we display 
our results for one integer and one floating-point 
application from the Spec 2000 benchmark suite.  
 
6.1 Benchmarks 
  
Thus far, our investigation has gathered data 
using overly simplified toy programs with very 
limited characteristics.  We wanted to see how 
much performance is sacrificed on real systems 
that employ invariant checking. 
 
6.1.1 General applications 
For models of general applications, we chose 
several programs that use common abstract data 
types, including one that features a binary search 
tree and one that utilizes a linked list.  These 
programs were more challenging than the “toy” 
programs we tested in earlier sections in three 
important ways: heavy pointer use, complex 
invariants, and recursive structure.   
     First, both of these programs feature 
extensive use of pointers.  This presents a large 
challenge to invariant checkers, and Daikon is no 
exception.  It had difficulty obtaining interesting 
invariants for these programs, as it is not good at 
capturing relationships between dereferenced 



pointers.  Second, the two data structures feature 
only fairly complex, difficult to check invariants, 
which we believe is characteristic of many 
general applications.  However, lists and trees 
are well studied in the literature, so we manually 
added invariants that check that the basic 
properties of the data structure are maintained.  
(For example, one invariant of a list is that after 
insertion, the size of the list increases by no more 
than one.)  Finally, the recursive nature of lists 
and trees, in addition to the explicit recursion 
used in the implementation of the binary search 
tree, adds complexity to the problem.  To check 
many invariants (for example, that the tree is not 
altered during a “find” operation), every node 
must be revisited, using a recursive function with 
(possibly) heavy overhead. 
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     The combination of these three factors led to 
the results we see below.  While we were able to 
significantly increase our confidence in the 
correctness of the program’s execution, this 
result was won with an extremely high perform-
ance sacrifice.  Consider a simple find function, 
which does not need to vis it every node in the 
list or tree to execute properly.  As part of our 
effort toward verifying that this function worked 

correctly, we can check that the size of the struc-
ture does not change.  To check this, however, 
the invariant check must visit every node, which 
makes the invariant check significantly more 
expensive than the function it is checking.  In 
this case, we believe that it is definitely more 
worthwhile to either scale down the number (or 
complexity) of the invariants checked (which 
reduces our confidence in the result) or to simply 
re-execute the program  
     Figure 10 and Figure 11 shows that as we add 
more invariant checks, we have a higher 
Computation Instruction Increase with a lower 
Cycle Time Increase Ratio. 
 
6.1.2  Scientific applicati ons 
We believe our verification technique is espec-
ially applicable for scientific computing prob-
lems.  These problems could benefit from the 
added confidence in the results that invariant 
checking brings, and invariants are discovered 
easily for such programs, since they are often 
based directly on mathematical relationships that 
can be checked.  We prepared several mathe-
matical analysis programs for these simulations, 
including applications using Taylor series, 
Machine Epsilon, Newton’s method, polynomial 
interpolation, Spline approximation. 
    These mathematical analysis programs all 
used library functions from “math.h”.  Daikon 
ignores library function when detecting invar-
iants, so using our invariant checking technique 
required that we re-execute the library functions.   
Since these invariant checks are expensive and 
distinctly different from the time complexity 
mentioned in Section 4.3, we call this O(f) 
complexity, with f standing for “function.” 
    For each program, we added invariants that 
can be checked without calling library functions 
again.  Next, we added O(f) complexity invar-
iants. For example, tan(x) is not bounded by any 
value, so to increase our confidence level in the 
correct computation of tan(x), we recomputed 
tan(x) and compared it with previously computed 
value.  
   We found interesting results throughout these 
experiments. Even though we added more invar-
iants, the performance sacrifice from invariant 
checking we documented was not as expensive 
as the cost of executing the instructions we 
covered.  Also, we noticed that the cycle time 
sacrifice is not always in a 1:1 correspondence 
with the number of invariants added.  
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6.1.3 Spec 2000 
While the previous two sections have exercised 
our invariant insertion technique on more 
realistic programs, we still needed a basis upon 
which to compare our work to other techniques.  
Therefore, we chose to instrument two 
benchmarks from the Spec2000 CPU Benchmark 
suite that exhibited extremely different program 
characteristics:  art, from the floating point suite, 
and mcf, an integer program.   
     It should be noted that since we ran these 
programs on SimpleScalar simulator, we were 
not able to run these benchmarks in an official, 
reportable manner.  The runspec utility could not 
be used to execute the instrumented executables, 
so we cannot guarantee that we used the official 
command line options, although every effort was 
made to ensure that the programs were invoked 
correctly.  In addition, in the interest of time, 
instead of using the full test suites, the “test” test 
suites were used.  [9] 
 
6.1.3.1 179.art 
art is an image recognition program that trains a 
neural net using a series of training images and 
then attempts to recognize and categorize images 
from a separate set of images.  We chose art 
from the floating point suite since it features a 
large number of inner loops, uses a large amount 
of memory, is CPU intensive, and relies heavily 
on array operations, including multiplication.  In 
this sense, it resembles many of the toy programs 
we used earlier, but it dwarfs them in terms of 
scale. 
     Invariants were inserted to art in two levels to 
get some idea of the relation between increasing 
confidence and decreasing performance.  The 
“light” level contains roughly half as many 
checks as the “heavily” instrumented program.  
However, in both cases, no additional variables 

were added, and only invariants of O(1) temporal 
complexity were inserted.   (See sections 5.3.1 
and 5.3.2 for a more complete discussion on 
temporal and spatial complexity.)  Therefore, the  
invariants inserted were simple and checked 
single values, array boundaries, and counters.  
We did not insert O(n) invariants (which would 
have allowed us to verify that all of the array 
operations were completed correctly) so that we 
could more easily compare our data for art with 
the data obtained for mcf, which does not 
provide many opportunities for O(n) complexity 
checks. 
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     Figure 13 and Figure 14 describe the results 
we obtained from running SimpleScalar on art 
and our instrumented variants of art.  The IPC 
increases as more invariants are added, which 
suggests that even more checks could have been 
inserted while continuing to take advantage of 
empty issue slots.  It is especially nice that the 
computation increase ratio grows nearly six 
times as fast as the cycle increase ratio, although 
it is too early to declare a trend, as we have only 
two points.   



 
6.1.3.2 181.mcf 
mcf was derived from a resource scheduling 
program:  specifically, mcf was originally a 
“single-depot vehicle scheduler.”  [9]  It almost 
exclusively utilizes integer arithmetic and 
features a huge amount of pointer swapping and 
dereferencing.  As such, it is not overly 
intensive, computationally, and poses a real 
problem for Daikon, which does not handle 
pointers well.  In this sense, it is reminiscent of 
the “general application” programs we tested in 
section 4.4.1, with one key difference:  mcf does 
not utilize highly recursive structures.   
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     Like in art, invariants were added to mcf in 
two levels, with the “heavy” level of invariant 
checking having about twice as many checks as 
the “light” level.  Again, no extra variables were 
added to the program (with the exception of the 
global error flag), and only O(1) complexity 
invariants were considered.  Most of those used 
in to instrument mcf consisted of NULL pointer 
checks, verification that a single value lay within 
a legal range, and array boundary checks.   
     Figures 15 and 16 describe the data that we 
obtained from simulating the original mcf and 
our instrumented versions. The IPC increases 

even more dramatically than it does in art, and 
we received some extremely strange results for 
the instruction increase ratio  and the 
computation increase ratio:  in some cases the 
ratios are negative, indicating a reduction from 
the original.  We have tried isolating the reason 
for these results but, at the moment, can only 
conclude that the compiler was able to optimize 
the code more effectively or that SimpleScalar 
ran into simulation problem. 
 
6.2 Result 
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Figure 17, above, shows that in each program, 
adding more invariant checks generally increased 
the IPC.  We believe that invariant checks often 
use data that is already resident in the cache, so 
they can be executed without memory latency, 
which increases IPC.  Hence, we think invariant 
checking can use the empty issue slots in a 
superscalar processor extremely efficiently.   
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     Figure 18 shows that  cycle time sacrificed 
increases, in general, more slowly than confi-
dence gain, which implies that adding invariant 
checks is more efficient than re-execution of the 
code. 
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     From the graph of Cycle Time Sacrifice vs. 
Confidence Gain (Figure 19), we saw that our 
two metrics are correlated in a linear relationship, 
so the performance sacrifice is always roughly 
the same as the confidence gain. 
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Figure 20 shows the relationship between Cycle 
Time and Net Confidence Gain. The gap 
between the break-even point and the slope of 
Computation Confidence Gain is even larger 
than that of the Confidence Gain.  This means 
with the same performance sacrifice, we get a 
more effective verification, because with the 
same cost, we contribute more towards non-
memory computations.  We think the more 
invariant checks that are inserted, the better the 
cache hit rate, and therefore, memory latency is , 
relatively speaking, less of a constraint on 
parallelism. 
 
7  Related Work 
 
Traditionally, verification of programs has lain 
entirely in the domain of software engineering 
(especially in the field of type safety).  As 
reliability in comple x systems becomes a larger 
concern, due to the ever-increasing cost of 
verifying design correctness and the growing 
possibility of faults caused by interference 
(natural or otherwise), fault tolerant architectures 
are attracting more interest in the architectural 
community.  Much of the work done to date has 
focused on attempting to guarantee correctness 
of execution with respect to the code being run, 
usually by adding a secondary processor, rather 
than increasing confidence in the program’s 
correct execution, as we have done, which is 
reminiscent of the work done in software 
engineering and type safety. 
     We based our work on an idea by Jeong and 
Jamison [6], which was, in turn, an extension of 
Necula’s idea of proof-carrying code [7] and an 
alternative to the DIVA [1] architecture.  Proof-
carrying code includes a proof of safety that 
guarantees safe execution if the accompanying 



invariants hold.  Similarly, in Jeong and 
Jamison’s work, programs are annotated with 
invariants that, while not guaranteeing proper 
execution, increase confidence in the executed 
instructions if they hold.  They use a dual 
processor system (with a fast primary processor 
and slower secondary processor) that 
simultaneously executes the primary program 
(on the faster processor) and verifies groups of 
instructions (on the slower processor) by 
computing the invariants inserted by the 
programmer.  If an invariant is violated, the 
corresponding block of code is re -executed.   
     While Jeong and Jamison verify code at the 
“block” granularity, DIVA verifies (through re-
execution) every instruction, offers a stronger 
guarantee of execution correctness with respect 
to the provided program, and greatly increases 
the fault tolerance of the system.  Austin’s goal 
in this research was to reduce hardware design 
costs and the need for completely correct 
processors by introducing a second processor 
that recomputes all of the results of the primary 
processor.  The second processor is much 
simpler than the first, as it does not have to 
perform branch or data speculation since the first 
processor has already done that work.  In 
addition, it is slower.  This combination of 
factors makes the second processor less prone to 
noise-related faults and easier to design and 
verify.  However, the DIVA architecture does 
include additional hardware, and it must rely on 
the correctness of the program it is executing, 
while our system can, with annotations provided 
by the programmer, catch errors in the code 
itself. 
     In contrast to DIVA, which focuses on 
verifying correctness at the hardware level, 
Chong [4] introduced hardware structures that 
support execution verification at the software 
level.  For example, he is interested in a 
hardware access table (HAT) to accelerate table 
lookups that are critical for locating memory 
access and concurrency errors.  (Austin’s [1] 
spatial and temporal memory access checking 
could take advantage of this, for example.)  
Chong’s efforts are more directed towards error 
detection in programs during software 
development (rather than verification of 
processor execution in general), and while the 
hardware support that he espouses provides 
greatly decreases the performance penalty 
associated with dynamic pointer checking, it 
does not, by itself, increase the ruggedness of the 
system. 

 
8  Conclusion 
 
We have presented data showing that adding 
invariants to programs to verify that they are 
correctly computed is feasible, in terms of 
performance, especially since invariant checks 
tend to make use of empty issue slots and 
increase parallelism.  Furthermore, we have done 
small studies that indicate that the best way to 
insert such checks is to focus at a functional 
granularity, to place the invariants inside the 
called function, and to perform only the simple, 
O(1) checks.  To make these assertions, we 
developed a framework for measurement that 
compares performance sacrifices (or compu-
tational throughput) to the amount of confidence 
that the inserted checks give us.   
     Nevertheless, this is only a tiny amount of the 
work that must be done before this technique can 
truly be deemed worthwhile.  In the future, we 
would like to focus upon determining the true 
effectiveness of the inserted checks and 
gathering more varied data points from which to 
draw conclusions.  To start, we would like to 
simulate errors in computation by modifying 
SimpleScalar to randomly insert errors in its 
simulation at varying frequencies, and then we 
would like to complete our instrumentation of 
the Spec2000 benchmarks.  Finally, even if this 
technique continues to show performance, huge 
advances in invariant generation technology will 
have to be made.  The current generation of 
technology is simply not at the point where 
invariant checks can be automatically inserted 
into code by a compiler or some other tool.   
     Overall, we believe that the future techno-
logical advances will lead to an unavoidable 
increase in computation errors committed by 
processors.  Techniques for increasing the fault 
tolerance of systems must be developed to deal 
with this trend as well as to allow us to build 
extremely fast systems that are not limited by our 
current fixation on absolutely correct compu-
tation.   
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