
CSE548: Optimality of Tomasulo's Algorithm

Amol Prakash, Sumit Sanghai

March 16, 2002

1 Introduction

The focus of architects has always been on faster execution of instructions. After pipelining, the
architects realised that the processor resources were still not being fully exploited. By doing an
out-of-order execution they could perform better. R.M. Tomasulo [10] in 1967 gave an algorithm
which improved the performance by exploiting Instruction Level Parallelism. It introduced two
interesting concepts: Common Data Bus and Virtual Register Renaming.

The Tomasulo algorithm is the classical scheduler supporting out-of-order execution. It is widely
used in current high performance microprocessors. The correctness of this algorithm has been
proved in a variety of cases. Nearly all the processors these days are based on this algorithm. Even
though lots of changes have happened in processors since 1967, but still Tomasulo's algorithm forms
the basis of scheduling instructions in all of them. Cycle time has reduced drastically. Hardware
has become a lot cheaper. Communication delays are becoming bottlenecks. Even with all these
developments, processors are still based on Tomasulo's algorithm.

As of today, we do not know whether Tomasulo's approach is best for the present state-of-the-
art processors and those belonging to the future. In this project we aim to �gure this out. First
we try and �gure out the assumptions that we need to make to prove the algorithm optimal. By
optimality we mean that under certain hardware assumptions, a program (which follows certain
rules) would take the minimum number of cycles. After we have proven the optimality, we will
analyse the assumptions which fail in today's processors. Then we will give worst case bounds on
the performance loss if this algorithm is employed in them.

In Section 2, we discuss the variety of cases where Tomasulo's algorithm has been proved correct.
This will help us analyse the approach that one follows while studying a hardware algorithm. In
section 3, we �gure out the assumptions that we need to prove Tomasulo's algorithm optimal. In its
subsections we state the assumption and �nd the worst case bound on the algorithm's performace
if this assumption fails. Also we prove that the worst case analysis is indeed worst case. In Section
4, we discuss the proof of optimality of Tomasulo's algorithm given the assumptions. In Section 5
and 6, we discuss the performance of Tomasulo's algorithm under in-order and out-of-order issue
and dispatch. In Section 7 , we state our conclusions.

2 Related Work

In recent years, much of the work related to Tomasulo's algorithm has been focussed on proving its
correctness. Di�erent approaches have been used to prove the correctness of Tomasulo's algorithm.

Damm and Pnueli [2] give a proof based on re�nement. This proof is in two stages, �rst
re�ning a sequential speci�cation to an intermediate model based on partially ordered executions,

1



and then re�ning this model to the implementation. Arons and Pnueli [1] extend this approach by
using the concept of "predicted value". The "predicted value" is an auxillary variable which helps
in comparing the implementation against its speci�cation without constructing an intermediate
abstraction. They verify the proof using the PVS thorem prover. The proof works for arbitrary
con�gurations of unlimited size and is independent of the operations appearing in the instructions.
But, the model is limited to non-branching programs. Also, the proof does not deal with loads and
stores.

Mcmillan [5] gives a model checking based veri�cation of Tomasulo's algorithm. He partly
automates the proof of Damn and Pnueli. He re�nes the speci�cation directly to implementation
with no intermediate step by using compositional model checking. The proof is fully veri�ed by the
SMV veri�er. Mcmillan uses symmetry reductions to manually decompose the proof into lemmas
about small collections of state components. The re�nement maps that he uses also seem a fairly
natural representation of the function of the various machine components. The proof can also be
possibly reused to verify other architectures. The problem here is that the proof is dependent on
the actual con�guration and the arithmetic functions used.

Skakkebaek, Jones and Dill [4] verify a complex model of out-of-order execution using the
Stanford Validity Checker. They provide a formal method called incremental 
ushing to show that
the intermediate abstraction is functionally equivalent to the speci�cation machine. The approach
used by Arons and Pnueli, as discussed above, use re�nement on the speci�cation level, thus
obviating the need for a second stage.

All of the proofs discussed above don't deal with exceptions and the liveness properties.
Sawada and Hunt [9] provide a veri�cation of a processor implementing Tomasulo's algorithm

with a reorder bu�er, exceptions and speculative execution. They use a table of history variables,
called MAETT. The MAETT is an intermediate abstraction that contains selected parts of the
implementation as well as extra history variables and variables holding abstract values. A predi-
cate relating the MAETT and the implementation is found by manual inspection and proven by
induction to be an invariant on the execution of the implementation. The problem here is that a
lot of manual e�ort is required to construct the intermediate abstraction.

Hosabettu, Gopalakrishnan and Srivas [8] use the completion functions approach to prove
the correctness of Tomasulo's algorithm. They also give a proof for a processor implementing
Tomasulo's algorithm without a reorder bu�er [6]. This proof also relies on the completion functions
approach which they introduced in [7]. The veri�cation requires the user to manually de�ne a set of
completion functions, one per un�nished instruction in 
ight, describing how that instruction will
be completed, given that all the instructions on which it has a data dependency have already been
completed. This e�ectively results in a manual recreation of much of the hardware functionality.
Furthermore, the user has to manually de�ne a way to compose these completion functions in order
to form the abstraction function for the processor.

Kroenig, Mueller and Paul [3] give a mathematical proof of a Tomasulo scheduler supporting
precise interrupts. They show that the data consistency is maintained and that the algorithm is
deadlock-free and fair. The fairness and the deadlock-free execution are shown by a worst case run-
time analysis of an arbitrary program. The proof, however, omits the scheduling problem within
complex function unit such as iterative 
oating point dividers. Also, the proof lacks automatiza-
tion.

2



3 Assumptions Required

As discussed in previous sections, Tomasulo's algorithm has been proved correcting a variety of
scenarios. We are trying to prove its optimality under a given set of assumptions. There are two
steps in doing this. The �rst is to �gure out the assumptions that we require. The next step is to
prove it optimal given those set of assumptions.

The assumption set should be necessary and suÆcient. This means that if any assumption
fails, then we should be able to prove that the algorithm is not optimal. The easiest approach
would be a proof by evidence, i.e. �nd a sequence of instructions for which the algorithm does not
perform the best if that assumption failed. We have also done a worst case analysis and found the
performance loss in case the assumption failed. To show that the assumption set to be suÆcient
we prove Tomasulo to be optimal given the set of assumptions.

We initially assume that Tomasulo's algorithm follows an in-order issue and an in-order dispatch,
and so does any other algorithm if we are comparing Tomasulo against anything. Also for sake of
simplicty, we assume that there are no branch instructions or load-store instructions.

In the following subsections we form the assumption set by adding assumptions one by one.

3.1 In�nite Reservation Stations

In Tomasulo's algorithm, after an instruction is issued, it is put into the reservation station. It
waits here till its operands are available. This could be because of a dependency on a previous
instruction (which is executing or waiting). After both of its operands are available it is executed
on the corresponding functional unit (if there is one free). If we assume enough functional units,
then as soon as the operands become ready, the instruction is executed. For simplicity purposes, let
us assume that there only be one type of instructions : DIV. The analysis gets a lot more complex
if we assume a variety of instruction types, but the result is still the same. Why did we choose DIV
instruction particularly ? Again, just to make the analysis simpler and more convincing.

3.1.1 Why In�nite?

Having in�nite reservation stations intuitively seems as a requirement to achieve best performance,
so let us prove that we need to make this assumption in order to prove Tomasulo's algorithm opti-
mal. Suppose that instead we do not have in�nite reservation stations. Let there be m reservation
stations in the processor. Suppose there is a sequence of (m+2) instructions :
DIV R1, R2, R3
DIV R4, R1, R5
DIV R6, R1, R7
DIV R8, R1, R9
.
.
.
DIV Ri, R1, Rj

All instructions (leaving the �rst one) are dependent on the �rst one. As the �rst instruction
is dispatched (from the reservation station), the second instruction enters the reservation station.
But it cannot be executed because it needs the result of the �rst instruction. Similarly, the rest
instructions keep getting issued and then wait in the reservation station because they are all depen-
dent on the �rst instruction. This happens till the reservation station gets full. So m cylces after

3



the dispatch of the �rst instruction, the reservation stations get full. Assuming that division takes
more than m cycles to execute, after m cycles there are more instructions that were dependent only
on the �rst instruction and have still not got issued because the reservation stations are full. So,
when the �rst instruction �nishes execution there are m DIV instructions waiting in the reservation
station. Now as soon as the result for R1 is computed, there are m DIV instructions which can
be dispatched simultaneously. But more could have been dispatched, had there been space in the
reservation stations in the �rst case. But since it is �nite, only m instructions get executed.

The above analysis shows a case of performace loss if there are �nite number of reservation
stations. So Tomasulo's algorithm will not perform optimally in the absense of in�nite reservation
stations. In the following paragraphs, we do a worst case analysis of the above problem.

3.1.2 Worst Case Performance Loss

The case we present here may or may not be the worst case but it exhibits a signi�cant performance
loss. Consider n1 instructions, each of which is dependent on the previous instruction, followed by n2
mutually independent instructions, each of which is dependent on the last instruction from the �rst
set. Assume that all instructions are of the same type each taking k cycles. Let n2 = n1 � (k� 1).
When there are in�nite reservation stations, the total execution time would be n1�k+k cycles. This
is because when the �rst n1 instructions �nish executing, all the remaining n2 instructions would
have entered the reservation station and all of them can be dispatched simultaneously. Assume
that the number of functional units is greater than n2.

When the number of reservation stations is �nite, say m, after the �rst n1 instructions are
executed, only m instructions would have been present in the reservation station. Thus it would
take n2 �m additional cycles to bring the instructions into the reservation station. Thus the total
number of cycles taken is equal to n2 �m + n1 � k + k. After substituting for n2 and taking n1
suÆciently high, we get that there is a scaleup of 2.

3.2 In�nite Functional Units

Functional units are required in any hardware to compute functions like addition, multiplication,
division etc. Tomasulo's algorithm uses reservation stations to prepare operands for these functional
units. It exploits Instruction Level Parallelism by implementing out-of-order execution. So the
instructions which have a dependency wait in the reservation stations till the operand becomes
available after which they are executed (in functional units). For simplicity sake we assume only
one type of instructions : DIV. The analysis gets a lot more complex if we assume a variety of
instruction types, but the result is still the same. Why did we choose DIV instruction particularly
? Again, just to make the analysis simpler and more convincing.

3.2.1 Why In�nite?

Having in�nite hardware is a dream, but we need to make this assumption in order to prove Toma-
sulo's algorithm optimal. Suppose that instead we do not have in�nite DIV units. Let there be m
DIV units in the processor. Suppose there is a sequence of (m+2) instructions :
DIV R1, R2, R3
DIV R4, R1, R5
DIV R6, R1, R7
DIV R8, R1, R9
.

4



.

.
DIV Ri, R1, Rj

All instructions (leaving the �rst one) are dependent of the �rst one. As the �rst instruction is
dispatched, the second instruction enters the reservation station. But it cannot be executed because
it needs the result of the �rst instruction. Similarly, the rest m instructions wait in the reservation
station because they all are dependent of the �rst instruction. Assume that there is enough space
in the reservation station and division takes more than m cycles to execute. So, when the �rst
instruction �nishes execution there are at least (m+1) DIV instructions waiting in the reservation
station. Now as soon as the result for R1 is computed, there are at least (m+1) DIV instructions
which can be dispatched. But at this time there are only m available DIV units. So at least one
instruction would have to wait till it gets a free DIV unit.

The above analysis shows a case of performace loss if there are �nite number of functional units,
under certain assumptions. So Tomasulo's algorithm might not perform optimally in the absense
of in�nite hardware. In the following paragraphs, we do a worst case analysis of the above problem.

3.2.2 Worst Case Performace Loss

We assume that the number of functional units,m, is less than the maximum of the number of cycles
taken by all the instructions, denoted by k. This is especially true for the DIVISION functional
units.

Again, the following may or may not be the worst case.
Consider n independent instructions each of which take k cycles to execute. It is easy to see that

when the number of functional units is in�nite, the total number of cycles required to execute these
instructions is equal to n + k. It takes 1 cycle to fetch each instruction into the reservation station.
As soon as any instruction enters the reservation station it gets scheduled into some functional
unit. This is because it is independent of all the previous instructions and also a functional unit is
available.

Now, consider the case when there are m functional units available where m < k. Consider the
m + 1th instruction. It would arrive in the reservation station at the m + 1th cycle. But, at that
time all the functional units are full. This instruction would get scheduled at the k + 1th cycle,
when the �rst instruction is �nished executing, and would �nish at the 2k + 1th cycle. Similarly
the 2mth instruction would �nish at the 2k +mth cycle. By repeating this argument we get that
the total execution time is (n=m) � k +m cycles (assuming n is a multiple of m). Thus we can see
that there is a scaleup of k/m.

3.3 Global Communication

In Tomasulo's algorithm, communication between functional units, reservation stations and bu�ers
is done with the help of Common Data Bus. This bus connects all the units which helps them to
transfer data amongst themselves. If there is a contention, then that is resolved using priority. A
unit which takes more delay to compute has a higher priority to contend for the Common Data
Bus. So, a faster unit will have to wait to put the data on the Common Data Bus.

To contend for the bus, the unit has to request it two cycles before the output becomes available.
After this a priority resolution is done, after which the bus is allotted. Bus contention can be a
problem, because it potentially can lead to loss in performance. In the following example we cite a
sequence of instructions where the priority would lead to a non-optimal evaluation of instructions.

5



Instead having a connection from every unit to every unit would lead to optimal performance. This
way, contention would never be a problem.

3.3.1 The Worst Case

Again, this may or may not be the worst case but it exhibits signi�cant performance loss. Consider
a DIV instruction followed by n1 DIV instructions, all of which depend on the �rst one. After this,
there are n1 ADD instructions each of which depends on the corresponding DIV instruction.

As the �rst instruction executes, the rest instructions wait in the reservation stations because
of dependency. After the result of �rst instruction is available, then all the rest n1 instructions get
dispatched. Assume that there is suÆcient functional units. Now the ADD instruction waits in
the reservation station. Suppose DIV takes k cycles to complete. So, after k cycles, all the DIV
instructions complete execution. Now since there is only one common data bus, each one of them
will contend for that. It would be allotted on a �rst come �rst server basis, because all the units
have the same delay. So the last instruction would be able to transmit its result only after n1
cycles. Thus the last ADD instruction would get dispatched only n1 + 1 cycles after the execution
of DIV instructions.

On the other hand, had each unit been connected to each unit, this situation would not have
arrived. The last ADD would have received the result immediately after the execution of the last
DIV instruction. So we get a performance loss of n1 cycles. This is proportional to the number of
instructions.

4 Proof of Optimality and SuÆciency

After making a necessary assumption set, let us try and prove it to be suÆcient. We do it by way
of induction.

We compare the performance of Tomasulo's algorithm over an optimal algorithm using the same
hardware. The hardware used by the optimal algorithm might have di�erent structure, but it would
still have similar organization i.e. it would have an instruction bu�er from where instructions are
fetched, a bu�er (reservation station) where instructions are stored before they are dispatched, and
functional units. There may be di�erences in the number of pipeline stages and links, but overall
the organisation looks the same.

Also, we assume that the same sequence of instructions is being fed to both the algorithms and
both the algorithms follow in-order issue strategy.

4.1 Variable of Induction

For every instruction, consider a number p which indicates the number of cycles remaining for it
to complete execution.

1. For executed instructions p is zero, since these have �nished execution.

2. For an instruction which is executing, p is number of cycles remaining for it to �nish execution.

3. For a ready instruction which is in the reservation station, p is 1 greater than the number of
cycles required to complete execution. The intuition for this is that the instruction will take
at least one additional cycles to move from reservation station to functional unit.

6



4. For an instruction which is in the reservation station but still not ready, p is 2 greater than the
number of cycles required to complete execution. The intuition for this is that the instruction
will take at least two additional cycle to move from reservation station to functional unit, one
for getting ready and second to move from reservation station to functional unit.

5. For instructions in instruction bu�er, give a line number to each instruction starting with
1 being given to the instruction next to be issued. Now, p is (line number + 2) greater
than the number of cycles required to complete execution. The intuition for this is that
the instruction will take line number cycles to get issued, one cycle to resolve dependency
and one additional cycle to move from reservation station to functional units. We may not
need the extra cycle in which dependency is resolved (for independent instructions), but we
want to distinguish between the �rst instruction to-be-issued and the instructions which are
not-ready and waiting in the reservation stations.

After n cycles, if we are following Tomasulo's algorithm, the value of p for all instructions is less
than or equal to the value of p for the corresponding instruction while using the optimal algorithm.
The variable of induction is n.

4.2 Base Case

For n = 1, all but one instruction would be following the case 5. So for both Tomasulo's algorithm
and the optimal algorithm, they would have equal value of p. The �rst instruction would have
entered the reservation station, and since it would not be dependent on any other instruction
(trivially), it would follow case 3. It would be ready to be dispatched. So again both Tomasulo's
algorithm and the optimal algorithm have equal value for p.

4.3 Induction Hypothesis

Assume that the statement is true for all k � n i.e. after every clock cycle till n cycles, using
Tomasulo's algorithm, the value of p for all instructions is less than or equal to the value of p for
the corresponding instruction while using the optimal algorithm.

4.4 Inductive Case

Consider the n+ 1 cycle. Let's analyse each type of instruction individually as to its status in the
nth cycle.

1. For executed instructions p was zero while using Tomasulo's algorithm. The value of p cannot
be smaller than zero for the same instuctions while using the optimal algorithm.

2. For an instruction which is executing, suppose the value was p1 (using Tomasulo's algorithm)
and p2 (using optimal algorithm) after n cycles. By induction hypothesis, p1 � p2. After
one cycle, the value using Tomasulo's algorithm decrements by one (since the instruction is
executing) which is the maximum that the value can decrement by in any case. So p1� 1 �
p2 � 1. Here we have used the assumption regarding the instant writeback of results using
instant communication instead of CDB.

3. For a ready instruction which is in the reservation station, suppose the value was p1 (us-
ing Tomasulo's algorithm) and p2 (using optimal algorithm) after n cycles. By induction
hypothesis, p1 � p2. After one cycle, the value using Tomasulo's algorithm decrements by

7



one (since the instruction is ready, so it gets dispatched) which is the maximum that the
value can decrement by in any case. So p1 � 1 � p2 � 1. Here we have assumed that in
Tomasulo's algorithm, we have functional units available to us for dispatch which comes from
the assumption about in�nite functional units.

4. For an instruction which is in the reservation station but still not ready, suppose the value
was p1 (using Tomasulo's algorithm) and p2 (using optimal algorithm) after n cycles. By
induction hypothesis, p1 � p2. There are three cases possible :

� Suppose using Tomasulo's algorithm, the instruction becomes ready in n + 1 cycle. So
after n + 1 cycle, the value using Tomasulo's algorithm decrements by one, so it gets
dispatched which is the maximum that the value can decrement by in any case. So
p1� 1 � p2� 1.

� Suppose the instruction does not get ready in either case. So the values of p remain the
same after n+ 1 cycles. So, following induction hypothesis, p1 � p2.

� Suppose the instruction remains not-ready using Tomasulo's algorithm in n + 1 cycle.
But, it gets ready in the optimal algorithm. Now, since the instruction got ready in the
n+1 cycle, this means that all the instructions on which it depended �nished execution
then. So at the end of n cycles, all these instructions were either executing or had �nished
execution. So the value of p for all these instruction was either 0 or 1. By induction
hypothesis, the value of p has to at most 1 for all these instructions even when we are
using Tomasulo's algorithm. Since an instruction takes at least 1 cycle to execute, all
these instructions should also be executing or �nished execution at the end of n cycles.
Again assuming instant writeback, all these instructions would �nish execution at the
end of n + 1 cycles. So it cannot be possible that this instruction remains not-ready
while using Tomasulo's algorithm after n+ 1 cycles.

5. For an instruction in instruction bu�er, suppose the value was p1 (using Tomasulo's algorithm)
and p2 (using optimal algorithm) after n cycles. By induction hypothesis, p1 � p2. In
every cycle, Tomasulo's algorithm moves one instruction from the instruction bu�er to the
reservation station. So this means, after one cycle, the value using Tomasulo's algorithm
decrements by one (since one instruction is issued, all line numbers reduce by 1) which is
the maximum that the value can decrement by in any case. So p1 � 1 � p2 � 1. Here we
have assumed that in Tomasulo's algorithm, we have reservation stations available to us for
dispatch which comes from the assumption about in�nite reservation stations.

Now, by principle of mathematical induction, after n cycles, if we are following Tomasulo's algo-
rithm, the value of p for all instructions is less than orequal to the value of p for the corresponding
instruction while using the optimal algorithm. This shows that the sequence of instructions can-
not execute faster for the optimal algorithm against Tomasulo's algorithm. So this shows that
Tomasulo's algorithm is optimal and the set of assumptions is suÆcient.

5 Out-Of-Order and In-Order Issue

In the previous sections, we have proved Tomasulo to be optimal going with in-order issue. For
this we made certain assumptions only under which Tomasulo was proved optimal. On the other
hand, we can also assume out-of-order issue, but this would be more of a plugin for the Tomasulo's
algorithm. Reordering a sequence of instructions can potentially yield a better performance, but this

8



reordering would be the same for Tomasulo and any other algorithm. So what any algorithm would
do is to follow in-order issue over this reordered sequence. So we do not discuss the performance
of out-of-order issue.

6 Out-Of-Order and In-Order Dispatch

As for dispatch, Tomasulo's algorithm does not have any good scheduling algorithm for this. It
just follows an in-order dispatch strategy. But we need to compare its performace against other
algorithms which might follow di�erent strategy.

6.1 In�nite Functional Units

In the case of in�nite hardware it does not make any di�erence. As any instruction gets ready, it is
dispatched because there is no problem regarding availability of hardware. So no instruction has to
wait in the reservation station. So in-order or out-of-order dispatch will not make any di�erence.

6.2 Finite Functional Units : In-Order Dispatch

Uptil now, we have been assuming in-order dispatch for all our proves, where we showed Tomasulo
to be non-optimal in the case of �nite hardware against in�nite hardware. Let us try and analyse a
similar case against �nite hardware, i.e. against an ideal algorithm which follows in-order dispatch
but has �nite number of functional units.

6.2.1 Counter Example

Consider the following sequence of 5 instructions where each instruction takes 4 cycles. Instruction
2 and 3 depend on instruction 1. Instruction 4 is independent. Instruction 5 depends on instruction
3. Also assume that there are two functional units available to us.

The way Tomasulo would execute this, instruction 1 gets executed in �rst cycle. In cycle 4,
instruction 4 is issued so it can be dispatched (because instructions 2 and 3 are waiting). Later on,
in cycle 5, instruction 2 is scheduled (when instruction 1 ends). Instruction 4 �nishes execution in
cycle 7, and in the 8th cycle instruction 3 is scheduled. Instruction 5 is scheduled in cycle 12th
(when instruction 3 3 ends). So the sequence is completely executed by the 15th cycle.

Suppose now we had an ideal algorithm that also did an in-order dispatch. This algorithm
schedules instruction 1 in the 1st cycle. Instructions 2 and 3 wait for 1 to �nish. Since it is an
in-order dispatch, no other instruction can get dispatched. This algorithm does not schedule the
4th instruction, but instead in the 5th cycle, both 2nd and 3rd instructions get scheduled. And
then in the 9th cycle, both instructions 4 and 5 get scheduled. These �nish in the 12th cycle. So
the sequence is completely executed in the 12th cycle.

The above example showed that even against an algorithm following in-order dispatch, we are
able to show an improvement of one cycle.

6.3 Finite Functional Units : Out-of-Order Dispatch

As we showed above, Tomasulo's algorithm is not optimal if we follow in-order dispatch over �nite
number of functional units, so trivially it would perform still worse against an algorithm which
performs out-of-order dispatch. Here we try an give a bound on the performance loss by doing a
worst case analysis.

9



6.3.1 Worst Case

Assuming there are m functional units (taking only one type of instruction), we can prove that
the maximum performance loss that we encounter by not using out-of-order dispatch is a factor of
(2 � 1==m). The proof for this being the worst case performace loss is related to the proof of the
famous online scheduling problem, and can be found in [11].

6.3.2 Worst Case Example

Here we give an example where we encounter a performance loss of the order given above. Assume
that we have m functional units (all for one instruction which takes k cycles to execute). Consider
a sequence of m � (m � 1) instructions all which are independent. This is then followed by m
instructions each of which depends on its previous instruction. So the instruction at the beginning
of this m block depends on the last instruction in the independent instructions block. Assume that
k is much larger than m (true for DIV instructions).

Tomasulo would schedule the independent instructions in blocks of m becasue of hardware
constrainst and after that the dependent instructions go one by one. So the total number of cycles
taken are (m� 1) � k +m+m � k, which is approximated to (2m� 1) � k.

An algorithm following out-of-order dispatch, would schedule (m� 1) instruction blocks (from
independent block) and 1 instruction from the dependent block (the appropriately chosen block
and the dependent instruction). This way the sequence of instructions can be scheduled in m � k
cycles. Taking the ratio, we get that the performance loss is (2m � 1)=m) which is same as the
worst case claimed in [11].

7 Conclusions

In the above sections we have �gured out the assumptions that we need in order to prove optimality
of Tomasulo's algorithm. As we showed above, we need in�nite reservation stations and functional
units. Other than that we also need hardware for global communication instead of a Common Data
Bus. This can be met by connecting each unit with the other.

Along with stating the assumptions, we also showed examples where there was a heavy loss in
performance. Also, we have tried to bring out the worst cases, but have not given proofs showing
that the cases dealt are indeed worst case. In the absense of in�nite reservation stations, we showed
a case where the performance was half of the optimal. In the absense of in�nite functional units, we
showed a case where the performance was m=k of the optimal where m is the number of functional
units and k is the number of cycles taken by the instruction to execute. Also, by using CDB (and
not using instant writeback) we showed a case where the performance loss was proportional to the
size of instruction code.

Later we proved Tomasulo's algorithm to be optimal under this set of conditions. This way we
also proved the assumption set to be suÆcient. This was done using the principle of mathematical
induction.

An out-of-order issue would be a plugin to Tomasulo's algorithm, but we can improve if we use
out-of-order dispatch. If we have in�nite functional units, using in-order dispatch or out-of-order
dispatch gives the same performance. But, in the practical case of �nite number of functional units,
having in-order dispatch can hamper performance. Also, we compare it against another algorithm
which too has �nite number of functional units, but uses out-of-order dispatch. Here we �nd a
performance loss of (2� 1=m) by doing a worst case analysis where m is the number of functional

10



units. Thus, by using in-order issue but out-of-order dispatch, we can improve the performance of
Tomasulo's algorithm over �nite hardware.

References

[1] T. Arons and A. Pnueli. Verifying tomasulo's algorithm by re�nement. Proc. 12th International
Conference on VLSI Design, 1999.

[2] W. Damm and A. Pnueli. Verifying out-of-order executions. D. Probst, editor, CHARME'97.

[3] Silvia M. Muller Daniel Kroening and Wolfgang J. Paul. A rigorous correctness proof of a
tomasulo scheduler supporting precise interrupts. Proc. of the SCI'99/ISAS'99 International
Conference.

[4] Robert B. Jones Jens U. Skakkebaek and David L. Dill. Formal veri�cation of out-of-order
execution using incremental 
ushing. Proc. 10th International Conference on Computer Aided
Veri�cation, 1998.

[5] K. L. Mcmillan. Veri�cation of an implementation of tomasulo's algorithm by compositional
model checking. Proc. 10th International Conference on Computer Aided Veri�cation, 1998.

[6] Mandayam Srivas Ravi Hosabettu and Ganesh Gopalakrishnan. A proof of correctness of a
processor implementing tomasulo's algorithm without a reorder bu�er. CHARME'99.

[7] Mandayam Srivas Ravi Hosabettu and Ganesh Gopalakrishnan. Decomposing the proof of
correctness of pipelined microprocessors. Hu and Vardi, 1998.

[8] Mandayam Srivas Ravi Hosabettu and Ganesh Gopalakrishnan. Proof of correctness of a
processor with reorder bu�er using the completion functions approach. Proc. 11th International
Conference on Computer Aided Veri�cation, 1999.

[9] J. Sawada and Jr. W. A. Hunt. Processor veri�cation with precise exceptions and speculative
execution. Hu and Vardi, 1998.

[10] R. M. Tomasulo. An eÆcient algorithm for exploiting multiple arithmetic units. IBM Journal
of Research and Development, 11(1), 1967.

[11] R. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical Journal, Vol.
45, pp. 1563{1581, 1966.

11


