
Optimality of
Tomasulo’s Algorithm

Luna, Dong
Gang, Zhao

Feb 28th, 2002

Our Questions about Tomasulo
n Questions about Tomasulo’s Algorithm

– Is it optimal (can always produce the can always produce the
wisest instruction execution streamwisest instruction execution stream)?

– Is there any room for improvement if it is not
optimal?

– Is it a wise trade-off between time and complexity?

n Related work
– A lot of study on its correctness
– Some tests on its performance under different

implementation details
– Few theoretical analysis of its performance

Our Approach
n Our approach

– Build up mathematical models for formal proof or
find counterexamples for disproof

n Features of our approach
– Making comparison with a reference system a reference system ––

Data Driven System Data Driven System –– which can produce all
possible instruction execution orders without
violating data dependences.

– Introducing time description variablestime description variables into the
model to record the finish time of each instruction

– Examining the problem under a group of ideal a group of ideal
assumptionsassumptions first, and then drop them one by
one.

Our Result
n Unlimited hardware resources, no delay,

only calculations – optimal ☺
nWith transmission delay – optimal ☺
nWith limited instruction window

– optimal ☺
nWith Load/Store

– not optimal L IMPROVEMENT
nWith limited hardware resources

– not optimal L IMPROVEMENT
n Issue one instruction per cycle

– not optimal L

Assumptions for all of the Models

n Register renaming in both systems
– no WAR, WAW

n No jump, no branch
n Instruction misses fully hidden
n Fixed-point function units are regarded

just as another kind of units like floating-
point adder and floating-point multiplier

Our Result
nn Unlimited hardware resources, no Unlimited hardware resources, no

delay delay –– optimal optimal ☺☺
nWith transmission delay – optimal ☺
nWith limited instruction window

– optimal ☺
nWith Load/Store – not optimal L
nWith limited hardware resources

– not optimal L
n Issue one instruction per cycle

– not optimal L

Model I – Utopia Model

MAX

optime

waitTime

ADD R1, R2, R3
MUL R2, R5, R6
SUB R8, R4, R8
ADD R2, R1, R8
DIV R4, R1, R7
ADD R1, R1, R2
SUB R2, R2, R4
…

time[1]

time[4]

time[6]

I1
I2
I3
I4
I5

I6

I7

DATA DRIVEN SYSTEM

? +

I1

I2

I3

I4

I5

I6

I7

2

2

2

2 END
2

2
2

20

24

2

Model I – Utopia Model
TOMASULO SYSTEM

ADD R1, R2, R3
MUL R2, R5, R6
SUB R8, R4, R8
ADD R2, R1, R7
DIV R4, R1, R7
ADD R1, R1, R2
SUB R2, R2, R4
…

time[1]

time[4]

time[6]

I1
I2
I3
I4
I5
I6
I7

…

SUB R2, R2, R4

ADD R1, R1, R2

DIV R4, R1, R7

ADD R2, R1, R7

SUB R8, R4, R8

MUL R2, R5, R6

ADD R1, R2, R3

Program Instruction Window

I7

I6

I4

I3

I1

RS-ADD

Register File
R1
R2
R3
R4
R5
R6
R7
R8

CDB
bus1
bus4

I5

I2

RS-MUL

+

MAX

optime

Prog Time Src1Time SrcTime2 Prog Time Src1Time SrcTime2

Model I – Utopia Model

PROOF
Timed[n] = max(timed[sr1],timed[sr2])+opTime+waitTime

>= max(timed[sr1],timed[sr2])+opTime

Timet [n] = max(timet[sr1],timet[sr2])+opTime

lV
lV lV ll

Our Result
n Unlimited hardware resources, no delay

– optimal ☺
nnWith transmission delay With transmission delay –– optimaloptimal ☺☺
nWith limited instruction window

– optimal ☺
nWith Load/Store – not optimal L
nWith limited hardware resources

– not optimal L
n Issue one instruction per cycle

– not optimal L

Model II – Transmission Delay

MAX

optime
waitTime

ADD R1, R2, R3
MUL R2, R5, R6
SUB R8, R4, R8
ADD R2, R1, R8
DIV R4, R1, R7
ADD R1, R1, R2
SUB R2, R2, R4
…

time[1]

time[4]

time[6]

I1
I2
I3
I4
I5

I7

DATA DRIVEN SYSTEM

? +
I6

Transmit
Time

I6

I1

I2

I3

I4

I5
I7

2
2

2 END
2

2
2

20

30

2

+2
+2

+2
+2

2 +2

+2

+2
+2

+2

Model II – Transmission Delay
TOMASULO SYSTEM

ADD R1, R2, R3
MUL R2, R5, R6
SUB R8, R4, R8
ADD R2, R1, R7
DIV R4, R1, R7
ADD R1, R1, R2
SUB R2, R2, R4
…

time[1]

time[4]

time[6]

I1
I2
I3
I4
I5
I6
I7

…

SUB R2, R2, R4

ADD R1, R1, R2

DIV R4, R1, R7

ADD R2, R1, R7

SUB R8, R4, R8

MUL R2, R5, R6

ADD R1, R2, R3

Program Instruction Window

I7

I6

I4

I3

I1

RS-ADD

Register File
R1
R2
R3
R4
R5
R6
R7
R8

CDB
bus1
bus4

I5

I2

RS-MUL

+

MAX

optimeTransmitTime

Prog Time Src1Time SrcTime2 Prog Time Src1Time SrcTime2

Model II – Transmission Delay

PROOF
Timed[n] = max(timed[sr1],timed[sr2])+opTime+waitTime+tranTime

>= max(timed[sr1],timed[sr2])+opTime+tranTime

Timet[n] = max(timet[sr1],timet[sr2])+opTime+tranTime

lV
lV lV ll ll

Model II – Transmission Delay

Our Result
n Unlimited hardware resources, no delay

– optimal ☺
nWith transmission delay – optimal ☺
nnWith limited instruction window With limited instruction window

–– optimaloptimal ☺☺
nWith Load/Store – not optimal L
nWith limited hardware resources

– not optimal L
n Issue one instruction per cycle

– not optimal L

Model III – Limited Instru Win

optime
waitTime

ADD R1, R2, R3
MUL R2, R5, R6
SUB R8, R4, R8
ADD R2, R1, R8
DIV R4, R1, R7
ADD R1, R1, R2
SUB R2, R2, R4
…

time[1]

time[4]

time[6]

I1
I2
I3
I4
I5

I7

DATA DRIVEN SYSTEM

?

+

I6

TransmitTime

ADD R1, R1, R2
DIV R4, R1, R7
ADD R2, R1, R8
MUL R2, R5, R6

Instruction Window

MAX

time[3]

inWinTime

Model III – Limited Instru Win
TOMASULO SYSTEM

ADD R1, R2, R3
MUL R2, R5, R6
SUB R8, R4, R8
ADD R2, R1, R7
DIV R4, R1, R7
ADD R1, R1, R2
SUB R2, R2, R4
…

time[1]

time[3]
time[4]

time[6]

I1
I2
I3
I4
I5
I6
I7

ADD R1, R1, R2

DIV R4, R1, R7

ADD R2, R1, R7

MUL R2, R5, R6

Program Instruction Window

I7

I6

I4

I3

I1

RS-ADD

Register File
R1
R2
R3
R4
R5
R6
R7
R8

CDB
bus1
bus4

I5

I2

+

MAX

optime
TransmitTime

inWinTime
Prog Time Src1Time SrcTime2

RS-MUL
Prog Time Src1Time SrcTime2

Model III – Limited Instru Win

PROOF

Timed = max(timed[sr1],timed[sr2],inWinTime)+opTime+waitTime+tranTime

>= max(timed[sr1],timed[sr2],inWinTime)+opTime+tranTime

Timet = max(timet[sr1],timet[sr2],inWinTime)+opTime+tranTime

lV
lV lV ll lllV

Our Result
n Unlimited hardware resources, no delay

– optimal ☺
nWith transmission delay – optimal ☺
nWith limited instruction window

– optimal ☺
nnWith Load/Store With Load/Store –– not optimalnot optimal LL
nWith limited hardware resources

– not optimal L
n Issue one instruction per cycle

– not optimal L

Load and store

n Data dependence in load and store.
– The principles (We have discussed in our class)

• A stores is dependent on the previous store
• All Load are dependent on the previous store
• A store is dependent on all loads between it and the previous store.

n Load and store buffer used in
Tomasulo.
– L/S dependence may block instruction window as

Tomasulo’s design.
• For load instructions, no address conflict in store buffer
• For store instructions, no address conflict in load and store buffer

– In Tomasulo, the L/S buffer is a little bit conservative.
More aggressive strategy may boost throughput in
some case.

(1) Store R1, (A1); 50 cycles(cache miss)
…

(n) Load R1, (A1); 2 cycles
(n+1) Mult R3, R2, R4; 20 cycles

RAW
dependence
here,

Our improvement

Tomasulo
MEM BUS

MULTIPLY

MEM BUS
MULTIPLY

52 70

Load and store (cont.)

Assume only one
memory bus

Load and store (cont.)

nModifying L/S buffer to RS-like structure.

Store R1, (A1);
…
Load R3, (A2);
…
Store R1, (A3);
…
Store R1, (A4);
…
Load R3, (A1);
…

No
No
Yes

Ready

No
Yes

Ready

No3
102R[R3]R [A4]Yes2
101MUL1ADD1Yes1
99R [R1]R [A1]Yes0

IndexQkQjVkVjBusyID
Store Buffer

No2
103ADD2Yes1
100R [A2]Yes0

IndexQjVjBusyID
Load Buffer

Our Result
n Unlimited hardware resources, no delay

– optimal ☺
nWith transmission delay – optimal ☺
nWith limited instruction window

– optimal ☺
nWith Load/Store – not optimal L
nnWith limited hardware resources With limited hardware resources

–– not optimal not optimal LL
n Issue one instruction per cycle

–– not optimal L

The last-ditch of the optimality of Tomasulo

n Resource competition forces you to
make choice.
– Finite RS,FU, CDB
– Scheduling under resource competition is

an NPC problem. (It’s impossible to get the
optimal result in polynomial time.)

– Tomasulo is actually a greedy algorithm.
– Tomasulo uses simple FIFO strategy to to

solve ties in competition.

Counterexamples (Sorry, Tomasulo) :
Resource Competition

(1) ADD A1, A2, A3 2 cycles

(2) ADD A4, A5, A6 2 cycles

(3) MUL A7, A8, A4 20 cycles

22 24

Compete if these two
instructions get ready
at same time.

Tomasulo

Better way

MULTIPY
ADD

MULTIPLY
ADD

Assume we have only
one multiply FU and
add FU.

The similar situation
for finite RS and CDB

If it can be smarter further more.
(1) ADD A1, A2, A3 2 cycles

(2) MUL A7, A8, A9 20 cycles

(3) MUL A4, A5, A1 20 cycles

(4) ADD A10, A11, A4 2 cycles

(5) ADD A12, A13, A4 2 cycles

Tomasulo

Better way

42 44

MULTIPY
ADD

MULTIPLY
ADD

There is no competition
here. But if we just let FU
idle one cycle, we can get
better outcome.

(1) 2

(2) 20

(3) 20

(5) 2 (4) 2

end

Critical Path

Improvement
n So far, only “previous information” is used.

– Enough to deal with dependence problem.
– Far less for wise scheduling.

n “Following information” is valuable for scheduling
previous instruction.
– Construct the critical path information in RS
– Instructions in the critical path should get higher priority.
– Following instruction entered RS should affect previous

instructions’ priority in some way.
– Introducing earliest possible finish time and latest necessary

finish time to recode the information of critical path.

n Again, scheduling under resource competition is an
NP-complete problem. It’s still true for our
improvement.

Improvement(cont.)

(1) ADD A1, A2, A3

(2) MUL A7, A8, A9

(3) MUL A4, A5, A1

(4) ADD A10, A11, A4

(5) ADD A12, A13, A4

(24,24)

(22,22)

(1) ADD

(4) ADD

(2) MUL
(3) MUL

(5) ADD

END

(2,2)
(20,24)

(24,24)

(1) ADD A1, A2, A3

(2) ADD A4, A5, A6

(3) MUL A7, A8, A4

(3) MUL
(1) ADD

(2) ADD

END

(2,2)
(2,22)

(22,22)

Improvement(cont.)
n Is this always better than Tomasulo’s

when facing single FU? (LIKELY)
n Is it optimal in this condition?

(HOPEFULLY)
n Is this always better than Tomasulo’s

when facing multiple FUs? (NOT SURE)
n Is it optimal in this condition? (NEVER)

Our Result
n Unlimited hardware resources, no delay

– optimal ☺
nWith transmission delay – optimal ☺
nWith limited instruction window

– optimal ☺
nWith Load/Store – not optimal L
nWith limited hardware resources

– not optimal L
nn Issue one instruction per cycleIssue one instruction per cycle

–– not optimal not optimal LL

Answers to our previous questions.
n Is it optimal?

– The essence of the problem underlying is NP-
Complete.

n Is there any room for improvement if it is not
optimal?
– Yes, some problem comes from Tomasulo

algorithm itself.
• Conservative Load and store buffer.
• Greedy dispatch.
• FIFO strategy to solve ties in competition.

– Two ways to verify the our improvement.
n Is it a wise trade-off between time and

complexity?
– Parallelism, SMT, ILP
– Cost-efficient.

Conclusion
n Forget this paper

and

keep using Tomasulo’s Algorithm

