Optimality of
Tomasulo’s Algorithm

Luna, Dong

Gang, Zhao
Feb 28th, 2002

Our Questions about Tomasulo

m Questions about Tomasulo’s Algorithm

— Is it optimal (can always produce the
wisest instruction execution stream)?

— |Is there any room for improvement if it is not
optimal?

— Is it a wise trade-off between time and complexity?
m Related work

— A lot of study on its correctness

— Some tests on its performance under different
Implementation details

— Few theoretical analysis of its performance

Our Approach

= Our approach
— Build up mathematical models for formal proof or
find counterexamples for disproof
m Features of our approach

— Making comparison with a reference system —

Data Driven System — which can produce alll
possible instruction execution orders without
violating data dependences.

— Introducing time description variables into the
model to record the finish time of each instruction

N — Examining the problem under a group of ideal
assumptions first, and then drop them one by
one.

Our Result

' Unlimited hardware resources, no delay,
only calculations — optimal ©

m With transmission delay — optimal ©

= With limited instruction window
— optimal ©

= With Load/Store
— not optimal ® IMPROVEMENT

m With limited hardware resources
— not optimal ® IMPROVEMENT

m [ssue one Instruction per cycle
— not optimal ®

| Assumptionsfor all of the Models

m Register renaming in both systems
| — no WAR, WAW

= No jump, no branch
m [nstruction misses fully hidden

m Fixed-point function units are regarded
just as another kind of units like floating-
noint adder and floating-point multiplier

Our Result

m Unlimited hardware resources, no
delay — optimal ©

m With transmission delay — optimal ©

m \With limited instruction window
— optimal ©

m With Load/Store — not optimal ®

m With limited hardware resources
— not optimal ®

m [SSue one Instruction per cycle
— not optimal ®

|1
|12
|13
|14
15
|16
|/

Model | —Utopia M odel

‘ DATA DRIVEN SYSTEM

ADD , R2, R3
MUL RZ2, R5, R6
SUB R8\R4,R8
ADD R2,R1, R8—
DIV RY7

time[1]

- time[4]

ADD Rl R1, R2

6

SUB R2, R2, R4

><?’

MA

+ —optime

—=waitTime

Model | —Utopia M odel

. TOMASULO SYSTEM
Program | nstruction Window Register File
11 | ADD ~time[1] | ADD R1,R2,R3 <+Rt+1T—@ D —
12 | MUL A MUL R2, R5, R6 R2
13 | SUB SUB R8, R4, R8 R3
14 | ADD ~timel4] | Abp R2,R1,R7 R4
15 | DIV A DIV R4, R1, R7 R5
16 | ADD tihel]6] | Abo R1,R1, R2 R6
17 | SUB p R2 R2, R4/ SUB R2, R2, R4 R7
i A\ RS
RS-ADD - RSMLUIL
Prog Tim¢ SrcyTime Srcl'im(g Prog Time SrclTime SrcTime2

11 ' i 12

13 i 15

« | 8 |

+ =0pfjime

CDB

4 bussd |

Model | —Utopia M odel

PROOF

Timey[n] = max(timey[sr 1],timey[sr 2])+opTime+waitTime

>= max(tlmed[sr 1],time [sr2])+opTime

Time[n] = max(tlmet[sr 1],time[sr2])+opTime

Our Result

| .
m Unlimited hardware resources, no delay
— optimal ©
- mWith transmission delay — optimal ©

m With limited instruction window
— optimal ©

m With Load/Store — not optimal ®

m With limited hardware resources
— not optimal ®

m [SSue one Instruction per cycle
— not optimal ®

Model Il — Transmission Delay
DATA DRIVEN SYSTEM

11 |ADD R2, R3 time[1]
12 IMUL M R5, R6
13 |suB R&AR4, RS MA
14 |ADD 1, R8 —— time[4]
5 |DIV 7 o
6 |ADD Rl 2 6 —optime
17 |SUB R2, R2 R4 + —waitTime
«— [ransmit

212 Time
2+2
X?’ END

Model Il — Transmission Delay

TOMASULO SYSTEM
Program | nstruction Window Register File
|11 | ADD ~time[1] | ADD R1,R2,R3 <+R+1—e
12 | MUL A MUL R2, RS, R6 R2
13 | SUB SUB RS, R4, R8 R3
14 | ADD ~timel4] | Abp R2,R1,R7 R4
15 | DIV A DIV R4, R1, R7 R5
16 | ADD tihel]6] | Abo R1,R1, R2 R6
17 | SUB p R2 R2, R4/ SUB R2, R2, R4 R7
i AN RS
RS-ADD N RSVITOL
Prog Tim¢ SrcyTime Srcl'im(g Prog Time SrclTime SrcTime2
11 ‘ i 12
13 15
14

Model |1 — Transmission Delay

PROOF

Tlmed[n] max(time,[sr 1] time,[sr 2])+opTime+waitTime+tranTime

>= max(timey[sr 1],timey[sr2])+opTimettranTime

Time[n] = max(time][sr1],time[sr2])+opTimettranTime

Model Il — Transmission Delay

P1

P2

Ll

T

To

T3

T4

P1

P2

T1

e

T4

T1

T3

Ta

o Feai
|

m Unlimited hardware resources, no delay
— optimal ©
\

- m With transmission delay — optimal ©

m With limited instruction window
—optimal ©

m With Load/Store — not optimal ®
m With limited hardware resources
— not optimal ®
L - .
H“.L m [Ssue one Instruction per cycle
-

— not optimal ®

DATA DRIVEN SYSTEM

|1
|12
|13
|14
15
|16
|/

Moded |1l —Limited Instru Win

| nstruction Window

NAL 1l N9 DT R6

ADD

, R2, R3 —
MUL R2X, R5, R6—

w

ADD R2 R]|RS

SUB RS\ R4, R8—2umé[/l Ra RIR7
—

ADD R2,R1, R8=
R]|R2

ADD R1,R1, R2-=

m
. 3
. il
SUB R2,R2 R4
7 MAX
N = optime

— waitTime
—JransmitTime

Mode Il —Limited Instru Win

- TOMASULO SYSTEM

Program | nstruction Window Register File
11 | ADD MUL R2, R5, R6 <+R+1—e
2 | MUL ADD R2, R1, R7 R2
13 | SUB R4, R1, R7 R3
14 | ADD ADDJ|R1, R1, R2 R4
15 | DIV RS
16 | ADD R6
17 | SUB R7
R8
RSADD : RS-MUL
Prog Tim¢ SrcyTime Srcl'im(g Prog Time SrclTime SrcTime2
- o ! inwinTime -
s« | 8 I
16 » MAX
17

+ =0pjime

CDB

A g
hus4 |

|
Model Il —Limited I nstru Win

q\?> max(tiggl] time,[sr2],inWinTime)+opTimet+tranTime

Time = max(time[sr1],time[sr2],inWinTime)+opTime+tranTime
N

PROOF

Ti IME = max(timey[sr1] timey[sr2],inWinTime)+opTime+waitTime+tranTime

Our Result

m Unlimited hardware resources, no delay
optimal ©

- m With transmission delay — optimal ©
m With limited instruction window
—optimal ©
m With Load/Store — not optimal ®

m With limited hardware resources
— not optimal ®

m [SSue one Instruction per cycle
— not optimal ®

Load and store

m Data dependence in load and store.
— The principles (We have discussed in our class)

» A stores is dependent on the previous store
» All Load are dependent on the previous store
« A store is dependent on all loads between it and the previous store.

m Load and store buffer used In
Tomasulo.

— L/S dependence may block instruction window as
Tomasulo’s design.

* For load instructions, no address conflict in store buffer
e For store instructions, no address conflict in load and store buffer

— In Tomasulo, the L/S buffer is a little bit conservative.

I More aggressive strategy may boost throughput in

some case.

L oad and store (cont.)

(n) LoadR1, (Al);
(n+1) Mult R3, R2, R4; 20 cycles

(1) StoreR1, (Al); 50 cycles(cache miss) D

2 cycles

MEM BUS
MULTIPLY

MEM BUS
MULTIPLY

>

Tomasulo

RAW
dependence
here,

y——

Assume only one
memory bus

Our improvement

T m
| i
5

2

/0

L oad and store (cont.)
- m Modifying L/S buffer to RS-like structure.

StoreR1, (Al); Load Buffer
. ID | Busy Vj Qj Index | Ready
Load R3, (A2); O | Yes R [A2] 100 Yes
1 | Yes ADD?2 103 No
Store R1, (A3); 2 | No

Store Buffer
. ID | Busy | V| Vk Q) | Qk |Index| Ready
Store R1, (A4); 0 | Yes RIALRI[RI] 99 | Yes
1 | Yes ADD1MUL1| 101 No
Load R3, (A); 2 | Yes R [A]R[R3] 102 | No

Our Result

m Unlimited hardware resources, no delay

optimal ©
-~ m With transmission delay — optimal ©
m With limited instruction window
—optimal © |

m With Load/Store — not optimal ®

m With limited hardware resources

— not optimal ®
Hﬂi”‘

m ISsue one instruction per cycle
— not optimal ®

The last-ditch of the optimality of Tomasulo
\

m Resource competition forces you to
make choice.
— Finite RS,FU, CDB

— Scheduling under resource competition is
an NPC problem. (It's impossible to get the
optimal result in polynomial time.)

— Tomasulo is actually a greedy algorithm.

— Tomasulo uses simple FIFO strategy to to
solve ties in competition.

Counterexamples (Sorry, Tomasulo) :
" Resource Competition

(1) ADD Al, A2, A3 2 cycles Competeif these two
Instructions get ready
(2) ADD A4, A5, A6 2cycles [

at sametime.
(3) MUL A7,A8, A4 20cycles 1IN
A 1 Tomasulo
ssume we have only
one multiply FU and MULREE]_
sty

Thesmilar situation vy 11pLy F
for finite RSand CDB ADD ;

22 24

If 1t can be smarter further more.

(1)
(2)
3
(4)
(5)

ADD A1, A2, A3

oS

MUL A4, A5, Al

ADD Alo‘,\ll,ﬁm

ADD A12, A13, A4

MUL A7,48, A9

2 cycles

20 cycles

20 cycles

P

Thereisno competition
here. But if wejust let FU
Idle one cycle, we can get
better outcome.

2 cycles .
A
C@®2> Tomasulo
Critical Path m MULTIPY F h
ADD |
Better way
MULTIPLY F

—

42 44

|mprovement

m So far, only “previous information” Is used.
— Enough to deal with dependence problem.
— Far less for wise scheduling.

= “Following information” is valuable for scheduling
previous instruction.
— Construct the critical path information in RS
— Instructions in the critical path should get higher priority.

— Following instruction entered RS should affect previous
Instructions’ priority in some way.

— Introducing earliest possible finish time and latest necessary
finish time to recode the information of critical path.
m Again, scheduling under resource competition is an
NP-complete problem. It's still true for our
Improvement.

|mprovement(cont.)

(1) ADD AL A2, A3

(2) ADD M,{Af

(3) MUL A7, A8, Ad

Z

(2) ADD(2,2)
@4a0D> (B)MUD (22,22)

(2,22)

(1)
(2)
3)
(4)
(5)

ADD A1, A2, A3
MUL A7, A9
MUL A4, A5, Al

ADD A10, A],

ADD A12, A13,

4

|mprovement(cont.)
H

m |s this always better than Tomasulo’s
when facing single FU? (LIKELY)

Is it optimal in this condition?
(HOPEFULLY)

m |s this always better than Tomasulo’s
when facing multiple FUs? (NOT SURE)

m |s it optimal in this condition? ()

Our Result

m Unlimited hardware resources, no delay
— optimal ©

m With transmission delay — optimal ©

m With limited instruction window
— optimal ©

m With Load/Store — not optimal ®

m With limited hardware resources
— not optimal ®
= g

m [ssue one instruction per cycle
“ — not optimal ®

AnNswers to our previous questions.
m IS it optimal?
— The essence of the problem underlying is NP-
Complete.

m Is there any room for improvement if it is not

| optimal?

— Yes, some problem comes from Tomasulo
algorithm itself.

e Conservative Load and store buffer.

o Greedy dispatch.
* FIFO strategy to solve ties in competition.

— Two ways to verify the our improvement.
m [s it a wise trade-off between time and

complexity?

— Parallelism, SMT, ILP

— Cost-efficient.

|, L WL
\|T VD W

JIE-“ OR DINNE
I JINNER.

- <

