
Increasing Confidence in
Proper Execution through
Invariant Checking

Kim, Miryung
Petersen, Andrew Kinoshita

Outline

Motivation
Invariants
Related Work
Overview of a Self Verifying Architecture
Experiment
Current Results
Future Work

Motivation : why does this need to be done?

Processors make errors.
n The size of processors is increasing.
n The distance between components is decreasing.
n Thus, the probability of transient errors occurring

during execution is increasing.

Are we OK with this trend towards higher
error rates? – NO!
n For safety-critical and high reliability systems,

errors are not acceptable.
n For simulations that take days or weeks to

complete, this is simply not tolerable.

Motivation : how should this be done?

What cost are we willing to pay?
n Increased hardware complexity or redundant hardware?
n Static analysis to prove correctness?

Hardware Solutions
n Hardware is already very complex.
n Proving the correctness of redundant hardware may be just

as difficult a problem.

Software Solutions
n Developing “proofs” of correctness is not possible…and

economically infeasible.
n Static techniques don’t work well on run-time problems.

Invariants : what are they?

in·var·i·ant adj.
1. Not varying; constant.
2. Mathematics. Unaffected by a designated

operation, as a transformation of
coordinates.

n.
An invariant quantity, function,

configuration, or system.
(Dictionary.com, February 25, 2002)

Invariants : why use them?

Programmers are already using them
(implicitly) during development. (e.g. ASSERT)

An invariant is what a programmer wants to
guarantee at a certain point in program
execution.
Thus, invariants are used for program
verification, code documentation, test suite
validation, etc.
Why wouldn’t they be applicable in dynamic
verification?

Invariants : how do we find them?

Manual static analysis:
n Hoare Triples
w Pre-conditions / Post-conditions

n Loop Invariants
n The Drawback:
w You’ll only live about 100 years…

Invariants : Static vs. Dynamic Detectors

Static Invariant Detector
n “Houdini” performs static analysis and

suggest candidate invariants.
n “ESC/JAVA” analyzes the code and proves

the correctness of asserted invariants.
Dynamic Invariant Detector
n “Daikon”, given a large test suite, runs the

program and detects invariant properties,
with respect to the test suite.

Invariants : what is the state of the art?

Discovering a complete set of invariants is
undecidable.
“Daikon” looks for invariants related either to
function parameters or return values.
n Thus, “Daikon” cannot detect invariants at the

statement level or within in-line macros.
A large test suite is needed to remove data
dependencies.
Despite of these shortcomings, we chose to
use Daikon.

Related Work

Diva, Todd M. Austin, et al : Redundant
processor
n Verifies every instruction with a second processor
n Hardware costs are increased

HAT(Hardware access table)
n Accelerates table lookup for safe pointer checking
n Is yet another additional piece of hardware

Related Work, Continued

Self-Verifying Architecture, Jeong
and Jamison :
n Derived from Necula’s “proof-carrying

code”
n Features a fast primary processor and

slower secondary processor
n The secondary processor verifies

groups of instructions by computing
invariants inserted by the
programmer.

n Drawbacks: Additional hardware
(including means for inter-processor
communications). Invariant
generation is time consuming.

In Queue

In QueueOut Queue

Out Queue

Registers, Invariant

Registers, Status

Primary
Processor

Secondary
Processor

Overview of a Self-Verifying
Architecture

Moves the problem to
software
n Invariants are detected

and checks are added to
the source code.

n If an invariant is violated,
either:
w The processor made a

mistake.
w The invariant is

incorrect.
w The program is

incorrect.

No additional hardware
is required.

Processor
4 Way

SuperScalar

In
stru

ctio
n

 stream
 -à

Invariant checking instruction

Original instruction

If an Error is Detected…

The Processor Erred…
n The processor needs to

load an earlier, verified
state.

n The code must be re-
executed from the last
successful invariant
check.

Or The Invariant or
Program is Incorrect
n The offending section of

code will never pass the
invariant check.

n Execution must
terminate.

Processor
4 Way

SuperScalar

In
stru

ctio
n

 stream
 -à

Processor
4 Way

SuperScalar

In
stru

ctio
n

 stream
 -à

Invariant Broken !! Rolled Back

Check
Point

Experiments: Invariant
Granularity

Objective:
n To contrast performance differences between invariants at the function

level and those at the statement level.
Experiment
n Function version , Macro version program with the same functionality and

same iterations.
n Add the same complexity of invariants for function version and in-line

version.
Result
n Even though, they had a same functionality and same complexity(e.g # of

iteration, scope of variable), adding invariant checking for function version
was slightly slower than macro.

Comparison between function version and macro version

Loop Intensive? Invariant location? Inv complexity sim_num_insn sim_cycle sim_IPC il1.miss_rate dl1.missrate
Function Version yes 2456388 1448689 1.6956 0.0001 0.0002
Function Version
Invariant Checking yes outside of function O(n) 2854093 1643839 1.7362 0.0014 0.0002
Macro Version yes 2454185 1437715 1.707 0.0001 0.0002
Macro Version
Invariant Checking yes outside of macro O(n) 2851990 1632594 1.7469 0.0014 0.0002

?sim_cycle=195150

?sim_cycle=194879

Experiments : Location of Checks

Objective:
To contrast performance between programs instrumented with
invariants inside functions versus those instrumented outside functions.
Example:

void foo(int cnt,int *c, int* a,int* b)
{

int i;
for (i=0;i<cnt;i++){

c[i]=a[i]+b[i];
}

}
int main ()
{ …..

//Check before
if (sizeof(a)!=sizeof(b)) i_flag=1;
if (sizeof(a)!=sizeof(c)) i_flag=1;
foo(100,c,a,b);
//Check after
for (j=0;j<100;j++{

if (c[j]!=a[j]+b[j]) i_flag=1;
}

……
}

void foo(int cnt,int *c, int* a,int* b)
{

int i;
//Check before
if (sizeof(a)!=sizeof(b)) i_flag=1;
if (sizeof(a)!=sizeof(c)) i_flag=1;
for (i=0;i<cnt;i++){

c[i]=a[i]+b[i];
}
//Check after
for (i=0;i<cnt;i++){

if (c[i]!=a[i]+b[i]) i_flag=1;
}

}
int main ()
{ …..

foo(100,c,a,b);
…..

}

Vector Addition Function: Invariant Checking
Outside of Function.

Vector Addition Function: Invariant Checking Inside Function

Experiments : Location Check - continued

Comparison of Invariant checking inside function and outside of function

Static Vector Addtion Invariant location? Inv complexity sim_num_insn sim_cycle delta sim_cycle sim_IPC il1.miss_rate dl1.missrate
Original file 2456388 1448689 1.6956 0.0001 0.0002
outside of function O(1) 2537493 1510387 61718 1.68 0.0016 0.0002
inside of function O(1) 2474158 1464732 17770 1.6892 0.0005 0.0002
outside of function O(n) 2854093 1643839 195150 1.7362 0.0014 0.0002
inside of function O(n) 2788458 1603996 155307 1.7384 0.0001 0.0002

Comparison of Invariant Checking inside function and outside of function
for different programs

Result
n Inserting invariant checking outside of function has less

performance sacrifice.

Program Vector addition Vector Multiply Vector division
Invariant Checking Inside Outside Inside Outside Inside Outside
Cycle 1464732 1510387 1508036 1520287 1855598 1856132
IL1. Miss 1162 4135 1364 4135 1780 1947
DL1. Miss 181 191 193 191 311 313
L2 Cache look up time 1343 4326 1557 4326 2093 2262
Branch prediction miss 344 1531 1531 1531 11404 11405

A Concern : Complexity

Checking some code for invariants can be
expensive!
n Checking a list’s size is O(1) (hopefully).
n Checking that two lists are identical is O(n + m).
n Checking sometimes need to allocate extra

variables.
How exhaustive must we be?
n Must we test the value of each element of an

array, for example?
n Or, can we test a random selection of the array

and get almost the same confidence of success?

In Summary : Current Results

Statement vs. Functional Granularity
n Adding invariants to macros is less expensive than adding

invariants to functions.
n Current invariant detection technology does not support the

less costly alternative.
n For object oriented programming, we can’t avoid using

method call.

Location of Checks
n Placing checks as close as possible to the code being verified

reduces the execution penalty.
n Most of the difference comes from instruction cache misses.

Consideration of Complexity of Invariant Checking

Future Work : This quarter, we hope?

Measuring Invariant Checking Penalties
n Our current results are misleading, as they depend on too

wide a set of factors.
n We are searching for a metric (or set of metrics) that

adequately account for the most important factors.

Implementing Safe Pointer Checking
n Invariant checking can be used to catch illegal memory

accesses (array out of bounds, unallocated memory).

Measure Invariant Benefits when Errors Occur
n We will modify SimpleScalar so it periodically miscomputes

some instruction(s).
n Using this version of SimpleScalar, we hope to get an idea of

the “break-even” point for our technique.

