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Motivation : why does this need to be done?

Processors make errors.
n The size of processors is increasing.
n The distance between components is decreasing.
n Thus, the probability of transient errors occurring 

during execution is increasing. 

Are we OK with this trend towards higher 
error rates? – NO!
n For safety-critical and high reliability systems, 

errors are not acceptable.
n For simulations that take days or weeks to 

complete, this is simply not tolerable.



Motivation : how should this be done?

What cost are we willing to pay?
n Increased hardware complexity or redundant hardware?
n Static analysis to prove correctness?

Hardware Solutions
n Hardware is already very complex.
n Proving the correctness of redundant hardware may be just 

as difficult a problem.

Software Solutions
n Developing “proofs” of correctness is not possible…and 

economically infeasible.
n Static techniques don’t work well on run-time problems.



Invariants : what are they?

in·var·i·ant adj.
1. Not varying; constant. 
2. Mathematics. Unaffected by a designated 

operation, as a transformation of 
coordinates. 

n.
An invariant quantity, function, 

configuration, or system.
(Dictionary.com, February 25, 2002)



Invariants : why use them?

Programmers are already using them 
(implicitly) during development.  (e.g. ASSERT)

An invariant is what a programmer wants to 
guarantee at a certain point in program 
execution. 
Thus, invariants are used for program 
verification, code documentation, test suite 
validation, etc.
Why wouldn’t they be applicable in dynamic 
verification?



Invariants : how do we find them?

Manual static analysis:
n Hoare Triples
w Pre-conditions / Post-conditions

n Loop Invariants
n The Drawback:
w You’ll only live about 100 years…



Invariants : Static vs. Dynamic Detectors

Static Invariant Detector
n “Houdini” performs static analysis and 

suggest candidate invariants.
n “ESC/JAVA” analyzes the code and proves 

the correctness of asserted invariants. 
Dynamic Invariant Detector 
n “Daikon”, given a large test suite, runs the 

program and detects invariant properties, 
with respect to the test suite.



Invariants : what is the state of the art?

Discovering a complete set of invariants is 
undecidable.
“Daikon” looks for invariants related either to 
function parameters or return values.
n Thus, “Daikon” cannot detect invariants at the  

statement level or within in-line macros. 
A large test suite is needed to remove data 
dependencies. 
Despite of these shortcomings, we chose to 
use Daikon.



Related Work 

Diva, Todd M. Austin, et al : Redundant 
processor
n Verifies every instruction with a second processor
n Hardware costs are increased

HAT(Hardware access table) 
n Accelerates table lookup for safe pointer checking 
n Is yet another additional piece of hardware



Related Work, Continued

Self-Verifying Architecture, Jeong 
and Jamison : 
n Derived from Necula’s “proof-carrying 

code”
n Features a fast primary processor and 

slower secondary processor
n The secondary processor verifies 

groups of instructions by computing 
invariants inserted by the 
programmer.

n Drawbacks:  Additional hardware 
(including means for inter-processor 
communications).  Invariant 
generation is time consuming. 
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Overview of a Self-Verifying 
Architecture

Moves the problem to 
software
n Invariants are detected 

and checks are added to 
the source code.

n If an invariant is violated, 
either:
w The processor made a 

mistake.
w The invariant is 

incorrect.
w The program is 

incorrect.

No additional hardware 
is required.
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If an Error is Detected…

The Processor Erred…
n The processor needs to 

load an earlier, verified 
state.  

n The code must be re-
executed from the last 
successful invariant 
check.

Or The Invariant or 
Program is Incorrect
n The offending section of 

code will never pass the 
invariant check.

n Execution must 
terminate.
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Experiments:  Invariant 
Granularity

Objective:
n To contrast performance differences between invariants at the function 

level and those at the statement level.
Experiment
n Function version , Macro version program with the same functionality and 

same iterations.
n Add the same complexity of invariants for function version and in-line 

version.
Result 
n Even though, they had a same functionality and same complexity(e.g # of 

iteration, scope of variable), adding invariant checking for function version 
was slightly slower than macro. 

Comparison between function version and macro version

Loop Intensive? Invariant location? Inv complexity sim_num_insn sim_cycle sim_IPC il1.miss_rate dl1.missrate
Function Version yes 2456388 1448689 1.6956 0.0001 0.0002
Function Version
Invariant Checking yes outside of function O(n) 2854093 1643839 1.7362 0.0014 0.0002
Macro Version yes 2454185 1437715 1.707 0.0001 0.0002
Macro Version
Invariant Checking yes outside of macro O(n) 2851990 1632594 1.7469 0.0014 0.0002

?sim_cycle=195150

?sim_cycle=194879



Experiments :  Location of Checks

Objective:
To contrast performance between programs instrumented with 
invariants inside functions versus those instrumented outside functions.
Example:

void foo(int cnt,int *c, int* a,int* b)
{

int i;
for (i=0;i<cnt;i++){

c[i]=a[i]+b[i];
}

}
int main ()
{ …..

//Check before 
if (sizeof(a)!=sizeof(b)) i_flag=1;
if (sizeof(a)!=sizeof(c)) i_flag=1;
foo(100,c,a,b);
//Check after
for (j=0;j<100;j++{

if (c[j]!=a[j]+b[j]) i_flag=1;
}

……
}

void foo(int cnt,int *c, int* a,int* b)
{

int i;
//Check before 
if (sizeof(a)!=sizeof(b)) i_flag=1;
if (sizeof(a)!=sizeof(c)) i_flag=1;
for (i=0;i<cnt;i++){

c[i]=a[i]+b[i];
}
//Check after
for (i=0;i<cnt;i++){

if (c[i]!=a[i]+b[i]) i_flag=1;
}

}
int main ()
{   …..

foo(100,c,a,b);
…..

}

Vector Addition Function: Invariant Checking 
Outside of Function.

Vector Addition Function: Invariant Checking Inside Function



Experiments :  Location Check - continued

Comparison of Invariant checking inside function and outside of function

Static Vector Addtion Invariant location? Inv complexity sim_num_insn sim_cycle delta sim_cycle sim_IPC il1.miss_rate dl1.missrate
Original file 2456388 1448689 1.6956 0.0001 0.0002
outside of function O(1) 2537493 1510387 61718 1.68 0.0016 0.0002
inside of function O(1) 2474158 1464732 17770 1.6892 0.0005 0.0002
outside of function O(n) 2854093 1643839 195150 1.7362 0.0014 0.0002
inside of function O(n) 2788458 1603996 155307 1.7384 0.0001 0.0002

Comparison of Invariant Checking inside function and outside of function
for different programs

Result
n Inserting invariant checking outside of function has less 

performance sacrifice.  

Program Vector addition Vector Multiply Vector division
Invariant Checking Inside Outside Inside Outside Inside Outside
Cycle 1464732 1510387 1508036 1520287 1855598 1856132
IL1. Miss 1162 4135 1364 4135 1780 1947
DL1. Miss 181 191 193 191 311 313
L2 Cache look up time 1343 4326 1557 4326 2093 2262
Branch prediction miss 344 1531 1531 1531 11404 11405



A Concern :  Complexity

Checking some code for invariants can be 
expensive!
n Checking a list’s size is O(1) (hopefully).
n Checking that two lists are identical is O(n + m).
n Checking sometimes need to allocate extra 

variables.
How exhaustive must we be?
n Must we test the value of each element of an 

array, for example?
n Or, can we test a random selection of the array 

and get almost the same confidence of success?



In Summary :  Current Results

Statement vs. Functional Granularity
n Adding invariants to macros is less expensive than adding 

invariants to functions.
n Current invariant detection technology does not support the 

less costly alternative.
n For object oriented programming, we can’t avoid using 

method call. 

Location of Checks
n Placing checks as close as possible to the code being verified 

reduces the execution penalty.
n Most of the difference comes from instruction cache misses.

Consideration of Complexity of Invariant Checking



Future Work :  This quarter, we hope?

Measuring Invariant Checking Penalties
n Our current results are misleading, as they depend on too 

wide a set of factors.
n We are searching for a metric (or set of metrics) that 

adequately account for the most important factors.

Implementing Safe Pointer Checking
n Invariant checking can be used to catch illegal memory 

accesses (array out of bounds, unallocated memory).

Measure Invariant Benefits when Errors Occur
n We will modify SimpleScalar so it periodically miscomputes 

some instruction(s).
n Using this version of SimpleScalar, we hope to get an idea of 

the “break-even” point for our technique.


