
Graphics Subsystem Emulation

Aseem Agarwala
Antoine McNamara
February 26 2002

Goals

• Fully simulate a graphics accelerator card
• Hook it into simplescalar-alpha
• Service to research community

– Researchers can tweak various subsystems, see
how they affect performance

• Learn about graphics hardware

AMBITIOUS!

Why?

• Market leading accelerator cards like
GeForce3 are proprietary: no detailed
descriptions of functionings exist

• Huge variety of different ways these things
piece together!

•Let’s examine this a bit deeper…

How does everything talk?

Cheap

133 MB/s

• CPU/GPU communication over shared bus

• PCI bandwidth :

UMA: SGI O2

• Memory shared between all components, so less need to
send data around

Intel PC’s

• Bandwidth: 512 MB/s or 1024 MB/s

Other Details

• Which graphics library?
– OpenGL
– DirectX

• Programmable engines
– Vertex shaders
– Pixel shaders

Asynchronous Execution

• GPU and CPU have different clocks, and
execute asynchronously

• Communicate through FIFO
• If FIFO fills up, GPU sends interrupt to

CPU and process is GPU-bound
• Otherwise, process is CPU bound

How the heck do we emulate this? Multi-thread SimpleScalar?

How much?

• How much functionality gets put into
hardware?

Alright, let’s stop complaining
and start making assumptions

• Memory architectures? Punt…
– Just copy triangles from graphics application to GPU in

n cycles
– UMA, AGP-like, but won’t account for bandwidth,

latency
• Asynchronous execution? Punt…

– We will do synchronous execution, measure CPU and
GPU throughput separately

– CPU timing equivalent to assuming CPU-bound, and
vice-versa; no covariance.

More specifics…

• Use OpenGL, but only SMALL subset
(enough to render 3D triangles and lines)

• Concentrate on accurate simulation of
graphics pipeline architecture

• Model said pipeline after SGI Indigo, since
SGI likes to publish details

System Overview

• Detail: how to pass OpenGL calls through simplescalar?
– Add several syscalls to SimpleScalar, compile pipeline

right into SimpleScalar
– Build driver to take OpenGL calls and execute syscalls

through GCC’s ASM command
– Use Mark’s Alpha cross-compiler

The Hardware
Rendering Pipeline

Rendering

• For a graphics card, rendering is the process of
drawing triangles from a 3D coordinate system
onto a 2D screen.

• This consists of:
– LIGHTING
– PROJECTING
– CLIPPING
– SHADING
– RASTERIZING

• How much do we do on chip?

Viewing Transformation

• As we simulate it, our chip gets vertices for triangles or
lines in 3D world coordinates, with per-vertex color
information.

• It also gets a matrix that transforms an arbitrary view
volume onto the “canonical” view volume:

x

y

z

x

y

z

Clipping

• Next, all the triangles and lines are clipped to the
canonical view volume (to avoid unnecessary
calculation).

• Clipped triangles may not be triangles anymore!

Bad Worse!!

Rasterization

• After projecting and clipping triangles to
the viewing plane, we need to draw 2D
triangles to the frame buffer.

• We first break triangles into scan lines:

For each line, record:

* start position and color
* end position and color

Rasterization (cont.)

• Next each line must be processed and drawn
to the screen.

• Colors are interpolated between end points
(Gouraud Shading).

Pipeline

• Modern chips do it all.
• The SGI chip starts with lighting…
• To simplify it, we’re starting with the viewing projection:

Doing it all in hardware…

• This is A LOT of computation!
– Modern graphics chip are huge!
– Some rival CPUs in complexity.

• But, there is A LOT of parallelism…
– Same basic set of steps for each triangle
– Some calculate in parallel: SIMD, MIMD
– Others pipeline the hell out of it…

SGI chip

• The approach the chip we are simulating
takes is divided into two:

• Front-end:
– Handles all geometric calculations
– SIMD (single-instruction multiple data)

• Back-end:
– Rasterization
– 26 level pipeline

Front End

• Primitives are put into a FIFO by the CPU
– Pulled out in groups and handled by...

• 8 SIMD parallel Geometry Engines (GEs)
– Each has microcode instructions for

• Matrix multiply
• Clipping
• Lighting (which we don’t implement)

– A GE has an adder and a multiplier, which can both be
used in a clock cycle (the math has ~ equal +s and *s).

• All GEs need work on the same type of primitive:
– If we have only triangles or only lines, we get ~8x.

Back End

• After coming out the GEs, vertices are in screen coords
• 26 stage pipeline

Overview

• There are actually two Rasterizers, one generates even scan
lines, the other odd, writing to interleaved memory.

The Interface

• Currently, we’re using syscalls, but we
might switch to memory-mapped I/O

• The basic instructions to the chip are:
– Define Projection Matrices
– Define Triangle
– Define Line
– Start Drawing!

The Driver

• The first stages of the pipeline are handled by our
driver, translating OpenGL calls into syscalls (or
MMIO instructions) to the chip.

• The most basic subset we support is:
– glBegin(GL_LINES), glBegin(GL_POLYGON)

• The driver must create multiple single lines and triangles.

– glScalef(), glTranslatef(), glRotatef()
• These all affect the viewing transformation matrix.

gluLookAt() calls these functions to set up arbitrary camera
viewpoints and directions.

Early Results!

• Well, it draws triangles (Gouraud) …

• Items completed (mostly):
– System call interface
– Rasterizer back-end (takes 2D triangles)

• Still do be done:
– SIMD front-end (Geometry Engines)
– Driver
– Extras: Memory mapped IO, Lighting, who knows…

Conclusion

• So far, we’ve learned lots about graphics
subsystems and hardware rendering.

• We provide a general framework that can be
extended to accurately simulate a graphics card.

• Possible uses:
– Tweak parameters to see performance gains with

different numbers of GEs or pipeline stages.
– Extend to support lighting
– Extend to model asynchronous execution (hard!)
– Reorganize to simulate more modern cards, like the

nVidia GeForce 4, as specs become available.

