-

————

Graphics Subsystem Emulation

Aseem Agarwala
Antoine McNamara
February 26 2002

"“ Goals

Fully smulate a graphics accelerator card
Hook It into ssmplescalar-alpha
Service to research community

— Researchers can tweak various subsystems, see
how they affect performance

L earn about graphics hardware

AMBITIOUS!

. Why?

 Market leading accelerator cards like
Geforce3 are proprietary: no detailed
descriptions of functionings exist

* Huge variety of different ways these things
piece together!

L et’s examine this abit deeper...

memory
(graphics)
(disk)

(misc i/o)

How does everything talk?

e CPU/GPU communication over shared bus
e PCIl bandwidth: 133 MB/s

UMA: SGI O2

Main Memory

m (2.1 GB/sec)
) o Monitor
Y ¢ . UMA A
r . E . - !.ll — = .

I Image & Flat Panel
— = Compression Display

Graphics

 Memory shared between all components, so less need to
send data around

Intel PC’'s

 Bandwidth: 512 MB/s or 1024 MB/s

Other Detalls

* Which graphics library?
— OpenGL
— DirectX

* Programmable engines
— Vertex shaders
— Pixel shaders

Asynchronous Execution

GPU and CPU have different clocks, and
execute asynchronoudly

Communicate through FIFO

If FIFO fills up, GPU sends interrupt to
CPU and process is GPU-bound

Otherwise, process is CPU bound

How the heck do we emulate this? Multi-thread SimpleScalar?

-

S

How much?

e How much functionality gets put into
hardware?

C/ Alright, let’s stop complaining
and start making assumptions

e Memory architectures? Punt...

— Just copy triangles from graphics application to GPU in
ncycles

— UMA, AGP-like, but won’'t account for bandwidth,

latency

« Asynchronous execution? Punt...

— We will do synchronous execution, measure CPU and
GPU throughput separately

— CPU timing equivalent to assuming CPU-bound, and
VICe-versa; no covariance.

e

More specifics...

e Use OpenGL, but only SMALL subset
(enough to render 3D triangles and lines)

» Concentrate on accurate simulation of
graphics pipeline architecture

 Model sad pipeine after SGI Indigo, since
SGI likes to publish details

e Detail: how to pass OpenGL caIIsthrouh simplescalar?

— Add severa syscallsto SimpleScalar, compile pipeline
right into SimpleScalar

— Build driver to take OpenGL calls and execute syscalls
through GCC's ASM command

— Use Mark’s Alpha cross-compiler

The Hardware
Rendering Pipeline

-

————

Rendering

» For agraphics card, rendering is the process of
drawing triangles from a 3D coordinate system
onto a 2D screen.

e Thisconsists of:
— LIGHTING
— PROJECTING
— CLIPPING
— SHADING
— RASTERIZING

e How much do we do on chip?

»

————

Viewing Transformation

o Aswesimulate it, our chip gets vertices for triangles or

linesin 3D world coordinates, with per-vertex color
Information.

o |t also gets a matrix that transforms an arbitrary view
volume onto the “canonical” view volume:

-

S

Clipping

* Next, al thetriangles and lines are clipped to the
canonical view volume (to avoid unnecessary

calculation).

» Clipped triangles may not be triangles anymore!

»

e

Rasterization

o After projecting and clipping triangles to
the viewing plane, we need to draw 2D
triangles to the frame buffer.

o Wefirst break triangles into scan lines:

For each line, record:

* gtart position and color
* end position and color

-

————

Rasterization (cont.)

e Next each line must be processed and drawn
to the screen.

* Colors are interpolated between end points
(Gouraud Shading).

-

S

Pipeline

e Modern chipsdo it all.
« The SGI chip starts with lighting. ..
o Tosmplify it, we're starting with the viewing projection:

Doing it al in hardware...

e ThisisA LOT of computation!
— Modern graphics chip are huge!
— Some rival CPUs In complexity.

e But, thereisA LOT of paralleism...
— Same basic set of steps for each triangle
— Some calculate in parallel: SIMD, MIMD
— Others pipeline the hell out of It...

-

————

SGI chip

e The approach the chip we are ssimulating
takes is divided into two:

e Front-end.

— Handles all geometric calculations

— SIMD (single-instruction multiple data)
e Back-end:

— Rasterization

— 26 level pipeline

'““ Front End

e Primitives are put into a FIFO by the CPU
— Pulled out in groups and handled by ...

e 8 SIMD parallel Geometry Engines (GES)

— Each has microcode instructions for
o Matrix multiply

e Clipping
 Lighting (which we don’t implement)

— A GE has an adder and a multiplier, which can both be
used in aclock cycle (the math has ~ equal +sand *).

o All GEsneed work on the same type of primitive;
— If we have only triangles or only lines, we get ~8x.

Back End

o After coming out the GESs vertices are in screen coords
o 26 stage pipeline

GE/RE bus
ping pong buffer

Edge Processor
R G B A £ X5Y COUNT

YYYYYVYY

Span Processor % W

10 cycles

A RED GREEM BLUE

v ¥

Z buffer controller

l!¢r+—|

Blend | Blend | Blend 32 desp ¥

multiplier| multiplier| multiplisr destination
pixal

ALU i L S
| Color buffer controller

Y ¥

Color buffer data latches

Z buffer address latches

'y

control £ buffer banks 0-9
address buses

Z buffer data latches

revvivTITY

Z buffer banks 0-9
data buses

Color buffer address latches

YIYLY '

Color buffer banks 0-4
data buses

control

YYYYY

address buses

Color buffer banks 0-4

Overview

 There are actually two Rasterizers one generates even scan
lines, the other odd, writing to interleaved memory.

CP-GE BUS

¥
¥ ¥ ¥ ¥ ¥

png pong| ([Ema pen png pond| ([Fng oo
o bufferE] buﬁerE‘ [I:uﬁeri [buﬁeri buffer =

Parallel ety Gmmaty SRty G“”_‘E'” Micnozode
Processor Engns Engine Engne Engine Store

[FFo] | | [FFO] [FFo] | | LFFQ]
¥ - ¥ : B CE-RE BUSK

| PING-PONG EIUFFER| | PING-PONG E-UFFER|

Per

Wertex

and

Slop
Calculations

|:::|rr|l.":|zmn:|::-ml’.-'.-|

lterators

RASTER ENGINE [CDCY) RASTER EMNGINE (EVEN)

£ z Color Frame Buffer
Buffer Buffer Buffer Pisxal

FOR it
DI=PL AY Bandwith

The Interface

e Currently, we're using syscalls, but we
might switch to memory-mapped |/O

e The basic instructions to the chip are:
Define Projection Matrices

Define Triangle

Define Line

— Start Drawing!

e

The Driver

* Thefirst stages of the pipeline are handled by our

driver, translating OpenGL callsinto syscalls (or
MMIQO instructions) to the chip.

* The most basic subset we support is.
— gIBegin(GL_LINEYS), giBegin(GL_POLY GON)

e Thedriver must create multiple single lines and triangles.

_ glScalef(), gl Trangatef(), glRotatef()

e These all affect the viewing transformation matrix.

gluLookAt() callsthese functionsto set up arbitrary camera
viewpoints and directions.

e

Early Results!

o Wedll, it draws triangles (Gouraud) ...

e |tems completed (mostly): | l

— System call interface
— Rasterizer back-end (takes 2D triangles)

 Still do be done:
— SIMD front-end (Geometry Engines)
E
— Extras. Memory mapped 1O, Lighting, who knows...

e

Conclusion

o So far, we' ve learned lots about graphics
subsystems and hardware rendering.

 We provide a general framework that can be
extended to accurately simulate a graphics card.

e Possible uses:

— Tweak parameters to see performance gains with
different numbers of GEs or pipeline stages.

— Extend to support lighting
— Extend to model asynchronous execution (hard!)

— Reorganize to ssmulate more modern cards, like the
nVidia GeForce 4, as specs become available.

