
"Intel Inside!,"

Intel vied,

with ample pride

world wide

in guide

"Proven and tried!".

"Intel Inside!"

Budgets sighed;

millions buyed;

RISC sales dried

like ancient bride.

"Intel Inside?"

Can't divide!

Scientists cried,

fit to be tied,

and numbers fried.

"Intel Inside?"

Can't divide!!

Pi's pied

then FDIV died

and accuracy denied.

"Intel Inside?"

Can't divide?

Executives hide

from "outside"

during Intel bide

on warranty decide.

"Intel Inside?"

Can't divide?!!

See "Thalidomide".

(Taken for a ride.)
Intel lied.

CSE548 Project
Proof of Optimality of
Tomasulo’s Algorithm

Amol Prakash
Sumit Sanghai

Presentation Layout

• Introduction
• Problem Description
• Related Work

– Correctness
• Project Plan
• Early Results

– 5 assumptions, performance loss
• Conclusion

Introduction

• Tomasulo’s Algorithm : 1967
– Classic Scheduler algorithm
– Out-of-order execution
– Virtual Register Renaming, Common Data Bus

• Current situation
– Tomasulo’s algorithm still there
– Are the architectures the same ?

What changes have happened?
• Cycle Speed

– Way much faster processors !!
– So, what ?

• Memory
– Faster access, caches

• Hardware : cheaper, faster
• Communication

– Better, but seems to be turning into a bottleneck
– Global Bus ??

Is Tomasulo the best ?

• We need to answer the following :
– What can we assume so as to make it the best ?
– “Now” if the assumptions fail, does it still

remain the best ?
– If no, then :

• How much worse are we doing ?
• What better can we do ?

• We TRY and answer few of the above.

What is best ?

• Optimal.
• For a set of instructions, the algorithm

requires minimum number of cycles to
execute

• Assume best possible “out-of-order issue”

Problem Description

• Under a necessary and sufficient set of
assumptions about the hardware that we are
working with, prove Tomasulo optimal.

• Give worst case bounds on performance
loss if assumptions do not hold.

• Analyse performance over future
architectures.

Related Work

Related Work

• Optimality vs Correctness
– Recent work focussed on correctness

• Pipelined Processor Verification
– Increasingly complex designs
– Need for formal verification

• Formal Verification task
• Does this circuit implement the specified

instruction set ?

Formal Verification

• To verify large, complex designs
– Automation
– Decomposition

• Problem definition
– Need a verification methodology that

• Is amenable to decomposition
• Uses decision procedures

• Desirable Properties
– Independent of configuration and operations
– Should handle out-of-order executions, interrrupts etc

Approach

• Refinement
– Mapping between a abstract system (specification)

and concrete system (algorithm)
– Prove this mapping

• Manual work involved in finding mapping
• Subsequent approaches minimize manual work

– Compositional Model Checking
– Incremental Flushing
– Completion Functions Approach

• Long term Verification challenge
– Widening gap between abstract specification and

algorithm

Project Plan

• Tomasulo Algorithm non-optimal without
certain assumptions

• Find these assumptions
– Infinite reservation stations, functional units etc

• Performance Analysis when assumption
fails
– Find worst case
– Quantify the degradation

Project Plan [contd…]

• Prove optimality under the given
assumption set
– Iterative process ?

• Analysis of Tomasulo Algorithm over
future architectures
– Wire delay

Early Results

Assumption 1 :
Infinite Functional Units

• Tomasulo’s approach :
– Instructions not dispatched till dependency resolved

(both operands ready).
– Functional Unit available.

• Intuition :
– In the above two requirements, second could be the

cause of instruction stalling in reservation station.
– More instructions waiting to get dispatched than the

number of functional units available.

An example

DIV R1, R2, R3
DIV R4, R1, R5
DIV R6, R1, R7
DIV R8, R1, R9
.
.
.
DIV Ri, R1, Rj

m+1

Assume m DIV functional units

DIV takes >m cycles

“Worst” Case Analysis

• Let there be n independent instructions all of
same type each taking k cycles.

• If infinite functional units, #cycles = n+k
• If ‘m’ functional units, #cycles = [n/m]*k +m

– Assuming k > m
– Each m-instruction block gets executed in k cycles
– #blocks : [n/m]
– Scaleup of [k/m]

Assumption 2 :
Infinite Reservation Stations

• Tomasulo’s approach :
– Instructions wait in reservation station if operands

are not available (dependency, memory)
– Issued if there is space in reservation station.

• Intuition :
– Dependent Instructions hog the Reservation Station.
– More instructions waiting to get issued than the size

of reservation stations.

An example

DIV R1, R2, R3
DIV R4, R1, R5
DIV R6, R1, R7
DIV R8, R1, R9
.
.
.
DIV Ri, R1, Rj

m+1

Assume m Reservation Stations.

DIV takes > m cycles

Assume >m functional units.

“Worst” Case Analysis

n2

n1
Each instruction takes k cycles

n2 = n1*(k-1)

If infinite RS, #cycles = (n1* k) + k

If m RS, #cycles = (n1*k) + k + (n2-m)

Substituting for n2, scaleup of 2

Assumption 3 :
Global Communication

• Tomasulo’s approach :
– Common Data Bus
– In case of contention, priority resolution

• Units with more delay have higher priority.

• Intuition :
– Multiple instructions can finish execution at the

same time.
– But only one result can be put on the CDB.

An example

DIV R1, R2, R3
DIV R4, R1, R5
DIV R6, R1, R7
DIV R8, R1, R9
.
.
.
DIV Ri, R1, Rj
ADD Rm, Ri, Rk

k

DIV takes k cycles.

reservation stations > k

#functional units > k

All k instructions finish at the same time

ADD gets dispatched k cycles after last
DIV instruction finished execution.

(assume worst case)

Scaleup : 1.5

Conclusion

• Given some necessary assumptions
– Infinite functional units, reservation stations,

Instant Global communication

• Gut Feeling
– Assumption set is also sufficient
– nearly ready with a proof of optimality

• Wish us luck !!

