
What is (or why have) memory?

• Memory is a state

• Caches intermediate computation

• Finite processing resources

• Pointers give you indirection

• Convenient

Processor-M
em

ory
G

ap

1

10

100

1000
1980
1981

1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000

M
em

ory

C
P

U

1982

Performance

T
im

e
Patterson

H
otC

hips
96

What is the memory hierarchy
and why?

• What
– Registers

– Cache(s)

– Main memory

– Disk

– Tape?? / OceanStore

• Why?
– Cost-performance (now)

– Computation-Data locality

A Cache is a bet..

• What do you lose?
– If you miss it costs you more

• And you win because
– Locality

Stream buffers – implicit
prefetching

• His baseline was direct mapped
– Inflated results compared to today

Cache size/speed tradeoff

Where are we going from here?

• Problems
– Processors still are faster to memory access
– General laws of physics

• Can’t just keep making caches larger
• L2 caches are now the size of main memory
• IBM L3 cache: 64 MB!
• Diminishing returns to layering

• Ideas
– Continuous layers?
– Does RAM have to be R?
– More specialized hardware for application-domain

structure

Don’t Need to Pay Much for Your Miss (II)
-- Lockup-free Instruction Fetch/Prefetch

if (catch-hit)
get-from-cache

else if (catch-miss){
Judge the miss states from MSHR (in-
input-stack indicator, partial write codes,
valid indicator);
if (totally written)

read from cache;
else if (in-input-stack)

read from input stack;
else if (partially written || already-asked-
for)

by-pass;
else{

initiate MSHR;
when data available do 1, 2, 3

parallely; }

1. if (send-to-CPU)

send to CPU;

2. if (!totally written || !MSHR
obsolete){

if (input-stack full)

FIFO remove one;

write to input-stack;

set MSHR.in-input-stack;

}

3. write to catch and set
MSHR.partial-write-code

if (written || obsolete MSHR)

MSHR.num-of-words-
processed++;

if (MSHR.num-of-words
processed overflow)

clear MSHR.valid-indicator;

(swiped from Luna)

