
What was it like in 1960?

• No cache

• Just started to pipeline

• Punch cards

• Core memory

• Fairly weak



OOO – Why bother?

• Runtime (dynamic-only) behavior
– Cache misses

• “Architectural” independence

• 1960 weak compiler



Conditions Mem -> Issue

• Wait for
– Room in the fetch buffer

• Do
– Put something there



Conditions Issue -> Read

• Wait for
– Functional unit available for execution of the

instruction in the front of the fetch buffer and
– All active instructions do not have the same destination

register.

• Do
– Reserve the functional unit
– Reserve the destination register
– Reserve the source registers (if available)

• Else register interest in their producer functional unit



Read -> Execute

• Wait for
– The operands to be valid in the register file

• Do
– Compute

– Unregister interest in your input operands



Execute -> Complete

• Wait for
– After latency of the functional unit

• Do



Complete

• Wait for
– Previous active instructions dependent on the

destination have read it

• Do
– Notify dependent scoreboard entries of this

completion

– Release the functional unit

– Write to, and release destination register



When does this work?

• Functions of different latencies
– Loads, stores, mult, div, rem, add, sub

• Instructions are interleaved “well”

• Works for read after write (RAW)

• Or no dependencies



When does this not improve performance?

• Waist of resources (maybe slower)
– ADD R1, r0, r3
– ADD R2, r4, r1
– ADD R10, R2, R12

• Worse:
– ADD R1, R2, R3
– ADD R1, R4, R5

• Structural limitations
– MUL
– MUL
– ADD



Make this faster

MUL R1, R2, R3
SUB R10, R1, R13
ADD R1, R5, R6



Make this faster

• MUL R1, R2, R3
ADD R4, R5, R1



Make this faster

• MUL R1, R2, R3
MUL R15, R16, R17
SUB R7, R8, R1
ADD R1, R5, R6


