
What was it like in 1960? 

• IBM, DEC, Univac
• Cap transistors
• Tape I/O, punch cards, all that
• FORTRAN, Algor, Lisp, Assembly 

(machine code)



OOO – Why bother?

• Efficiency
• Different latency of operations
• Was not significant
• No good compilers



Secret Decoder Ring

• Fi – output register
• Fj – input register 1
• Fk – input register 2
• Qj – functional unit producing operand j
• Qk – functional unit producing operand k
• Rj – ready flags
• Rk – ready flag
• Xi – per register reservation tag identifying 

functional unit that will produce its result.



Conditions Mem -> Issue

• Wait For
– Wait for a free functional unit (of correct type)
– Need the output register to not be an output for 

any active instruction.

• Do
– Reserve the functional unit
– Reserve the output register
– If register is available, read it,
– If register is not available, register interest it



Conditions Issue -> Read

• Waitfor
– All operands to be available

• Do
– Unregister our reservation on the operands



Read -> Execute

• Let it fly



Execute -> Complete

• WaitFor
– End of latency on functional unit mem/etc
– No one cares about the old output register value

• Do
– Write the register
– Update Xi flags
– Un-reserve our functional unit
– Trigger waiting instructions



Complete



When does this work?

• Independence
– MUL R10, R11 -> R1
– ADD R1, R2 -> R3
– ADD R4, R5 -> R6



When does this not improve performance?

• Slim DFG
– ADD r1, r2, r3
– ADD r3, r4, r5
– ADD r5, r6, r7

• Fewer registers create more conflicts in the 
output registers
– ADD r1, r3, r4
– ADD r4, r2, r5
– ADD r7, r8, r4



Make this faster

MUL R1, R2, R3
SUB R10, R1, R13
ADD R1, R5, R6



Make this faster

• MUL R1, R2, R3
ADD R4, R5, R1



Make this faster

• MUL R1, R2, R3
MUL R15, R16, R17
SUB R7, R8, R15
ADD R1, R5, R6


