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¡ https://uw.iasystem.org/survey/290650
§ Also available from Ed link.

¡ We take your feedback very seriously. It makes a difference! 

¡ Consider sharing what you liked about the course. What is 
working well? What should we keep?

¡ Thank you for participating!
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Observational Studies
How to simulate randomized experiments?

Sensitivity Analyses
How to consider violations of assumptions?
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Goal: Estimate effect of a treatment 𝑇 on an 
outcome 𝑌
But, confound 𝑋 influences both 𝑇 and 𝑌
To estimate 𝑇 → 𝑌, break the dependence 
𝑋 → 𝑇  (that is, 𝑇	 ⫫ 	𝑋 )

Randomized experiments actively assign 
treatment 𝑇 independent of any confound 𝑋
Thus, by construction: 𝑇	 ⫫ 	𝑋  

X

YT
X

YT
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Running example

actively assign   

Goal: Estimate effect of exercise on 
cholesterol
But, one’s age influences both exercise 
and cholesterol
To estimate exercise→cholesterol, break 
the dependence age→exercise (that is, 
exercise ⫫ age)

Randomized experiments actively assign   
exercise independent of any age
Thus, by construction: exercise ⫫ age  

CholesterolExercise

Age

But what if we cannot actively intervene?
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Conditioning on Key Variables

Matching and Stratification

Weighting

Regression
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Conditioning on Key Variables

Matching and Stratification

Weighting

Regression
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¡ At first, more stationary biking seems to lead to higher 
cholesterol

¡ But we realize that there is a confounder, age, that influences 
both stationary biking and cholesterol

¡ We condition on age (by analyzing each age group separately)
¡ And find stationary biking now seems to lead to lower 

cholesterol

Conditioning:

𝑃 𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙	 𝑑𝑜 𝑆_𝐵𝑖𝑘𝑖𝑛𝑔 ) = =
!"#

𝑃 𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙	 𝑆_𝐵𝑖𝑘𝑖𝑛𝑔, 𝑎𝑔𝑒)	𝑃(𝑎𝑔𝑒)
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¡ Assumption: age is the only confounder
§ “Ignorability” or “selection on observables” assumption
§ How do we know what we must condition on?

¡ Assumption: effect of stationary biking doesn’t depend on friends’ 
exercise
§ Stable Unit Treatment Value (SUTVA) assumption
§ Are there network effects?

¡ Assumption: our observations of exercise/no-exercise cover similar 
people
§ “Common support” or “Overlap” assumption

¡ Also: data is not covering all combinations of age and levels of exercise
§ Will our lessons generalize beyond the observed region?
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¡ Conditional Independence Assumption (CIA)
§ Under random experiments, 𝑇 ⊥ 𝑋 for both observed and 

unobserved covariates
§ But conditioning and related techniques can only construct 𝑇 ⊥ 𝑋 for 

observed covariates (and not for unobserved covariates!)
¡ So we have to assume that after conditioning on observed 

covariates, any unmeasured covariates are irrelevant. 
Everything we need to know about T is captured in X. 

¡ Ignorability
§ 𝑌1, 𝑌0 ⊥ 𝑇	|	𝑋 = 𝑥	 for all x   [𝑤ℎ𝑒𝑟𝑒	Y! = Y|𝑑𝑜 𝑇 ]

5/27/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 17



The  effect of treatment on an individual is independent of whether or not 
others are treated.
I.e., no spillover or network effects

SUTVA
𝑃 𝑌- 𝑑𝑜(𝑇-, 𝑇.)) = 𝑃(𝑌-|𝑑𝑜 𝑇- )

Example: What is the effect of giving a fax machine to an individual?
It depends on whether or not other people have fax machines!
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¡ The treated and untreated populations 
have to be similar.

¡ That is, there should be overlap on 
observed covariates between treated 
and untreated individuals.

¡ Otherwise, cannot estimate 
counterfactual outcomes.

Common	support
0 < 𝑃 𝑇 = 1 𝑋 = 𝑥 < 1							for	all	x
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1. Use domain knowledge to build a model of the causal graph
2. Condition on enough variables to cover all backdoor paths

Caveat: Causal effect only if assumed graphical model is correct

Age

CholesterolExercise

Occupation

Diet
Income
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Definition Conditioning calculates treatment effects by identifying groups of 
individuals with the same covariates, where individuals in one group are 
treated and in the other group are not.

Intuition Conditioning our analysis of 𝑇 → 𝑌 on 𝑋 breaks the dependence 
between confounds 𝑋 and the treatment 𝑇

Example In the cartoon relationship between exercise and cholesterol, age is a 
confounder, as it influences both levels of exercise and cholesterol.
By conditioning analysis on age, we can identify the effect of exercise.

Keep in 
mind

How do we know what to condition on?
Grouping becomes harder as dimensionality of 𝑋 increases
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Conditioning on Key Variables

Matching and Stratification

Weighting

Regression
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Avg Cholesterol = 200 Avg Cholesterol = 206
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Identify pairs of treated and untreated 
individuals who are very similar or even 
identical to each other
 Very similar ::=  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋! , 𝑋" < 𝜖

Paired individuals provide the counterfactual 
estimate for each other.

Average the difference in outcomes within 
pairs to calculate the average-treatment-
effect on the treated (ATT)

:i j
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Simple:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 �⃑�! , �⃑�" = 3
0, �⃑�! = �⃑�"
∞, �⃑�! ≠ �⃑�"

Use this in low-dimensional settings when overlap is abundant

But in most cases, there will be too few exact matches …
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Mahalanobis distance accounts for unit 
differences by normalizing each dimension by 
the standard deviation.

𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 𝑥! , 𝑥"

= 𝑥! − 𝑥"
#𝑆$%(𝑥! − 𝑥")	

And 𝑆 is the covariance matrix.
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Propensity score is an individual’s propensity to be treated

�̂� 𝑋 = 	𝑃(𝑇 = 1|𝑋)

¡ Propensity scores are estimated or modeled, not observed.
¡ Rare exception is if you know likelihood of randomized treatment 

assignment

Propensity scores subdivide observational data s.t.  𝑇	 ⫫ 	𝑋	|	�̂� 𝑋

à Conditioning on propensity score breaks influence of confound X,
 allowing estimate of 𝑻 → 𝒀
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1. Train a machine learning model to predict treatment status
§ Supervised learning: We are trying to predict a known label (treatment 

status) based on observed covariates.
§ Conventionally, use a logistical regression model, but SVM, GAM, NN are fine
§ But score must be well-calibrated.  I.e., (100 ∗ 𝑝)% of individuals with score 

of 𝑝 are observed to be treated

2. Distance is the difference between propensity scores
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥-, 𝑥. = |�̂� 𝑥- − �̂� 𝑥. |
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Q: Wait, why does this work?
A: Individuals with similar covariates get similar scores, and all individuals mapped 
to a similar score have similar treatment likelihoods.

Q: What if my propensity score is not accurate? (i.e., can’t tell who is treated)
A: That’s ok.  The role of the model is to balance covariates given a score; not to 
actually identify treated and untreated.

Q: What if my propensity score is very accurate? (i.e., can tell who is treated)
A: Big problem! Means we cannot disentangle covariates from treatment status. 
Treated and untreated units are too different.  Any effect we observe could be 
due either to the treatment or to the correlated covariate. 
Consider redefining the treatment or general problem statement.  Don’t dumb 
down model!
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¡ When matching, should we allow replacement?
§ It’s a bias / variance trade-off

¡ When matching, what if nearest neighbor is far away?
§ Use a caliper threshold to limit acceptable distance

¡ What if not all treated individuals are matched to untreated?
§ This will bias results.  Consider redefining original cohort / population 

to cleanly exclude treated who won’t have matches in untreated 
population.

¡ What if treatment is not binary?
§ Advanced variants allow multi-dose, and other treatment regimens
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Definition Matching calculates treatment effects by identifying pairs of similar 
individuals, where one is treated and the other is not.

Intuition The paired individuals stand-in as the counterfactual observations 
for one another.

Example In our cartoon, we create pairs of individuals matched exactly on 
their age.  More generally, we can use Mahalanobis distance or 
propensity score matching to find similar individuals to be matched.

Keep in mind Matching calculates the treatment effect on the treated population 
(ATT; extensions exist).  We do not know what might happen if 
people who would never get treatment are suddenly treated.
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¡ 1: 1 matching generalizes to many:many matching.
¡ Stratification identifies paired subpopulations whose covariate 

distributions are similar.
¡ There can still be error, if strata are too large.
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We can use propensity score to stratify 
populations
1. Calculate propensity scores per 

individual as in matching 
(supervised ML problem)

2. But instead of matching, stratify 
based on score.

3. Calculate average treatment effect 
as weighted average of outcome 
differences per strata.

4. Weight by number of treated in the 
population for ATT

Propensity = 0.0

Propensity = 1.0
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𝐴𝑇𝑇

= C
/∈/12313

1
𝑁/,567

	( E𝑌/,567 − E𝑌/,568)	

where,
E𝑌/,5 is the average outcome at strata 𝑠 
and treatment status 𝑇
And 𝑁/,567 is the number of treated 
individuals in strata 𝑠

Propensity = 0.0

Propensity = 1.0
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¡ How many strata do we pick?
§ Scale will depend on data.  Want each stratum to have enough data in it. 
§ Conventional, small-data literature (e.g., ~100 data points) picked 5.
§ With 10k to 1m or more data points, can pick 100 to 1000 strata.
§ Set strata boundaries to split observed population evenly
§ Aside: why not always pick a small number of strata? 

¡ What if there aren’t enough treated or untreated individuals in some of 
my stratum to make a meaningful comparison?
§ This often happens near propensity score 0.0 and near 1.0
§ This challenges our “overlap” assumption.
§ You can drop (“clip”) these strata from analysis.  But technically, you are now 

calculating a local-average-treatment-effect.
§ Better: Redefine population to avoid this issue.
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Definition Stratification calculates treatment effects by identifying groups of 
individuals with similar distributions of covariates, where 
individuals in one group are treated and in the other group are not.

Intuition The difference in average outcome of paired groups tells us the 
effect of the treatment on that subpopulation.  Observed 
confounds are balanced, due to covariate similarity across paired 
groups.

Example In our cartoon example, we stratified based on propensity score 
into 3 strata. ATT is the weighted sum of differences in avg 
outcomes in each strata.

Keep in mind Make sure there are enough comparable individuals in each strata

5/27/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 39



Conditioning on Key Variables

Matching and Stratification

Weighting

Regression
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What if we assign weights to observations 
to simulate randomized experiment?
Stratification weights strata results by 
number of treated ~ 
Weighting by treated population  ~ 
weighting by propensity score.

Generalized weighting:  Calculate effect by 
weighted sum over all individual outcomes
Many weighting methods to generate a 
balanced dataset

Propensity = 0.0

Propensity = 1.0
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𝐴𝑇𝐸 =
1

𝑁#&%
R

!∈()*+(*,

𝑤!𝑌! 	−
1

𝑁#&-	
R

"∈./()*+(*,

𝑤"𝑌"

Inverse Probability of Treatment Weighting (IPTW) for ATE

𝑤! =
𝑇
𝑒
+
1 − 𝑇
1 − 𝑒

;	

N0&% =R
	

𝑇 ;	 𝑁#&- =R1− 𝑇

e is propensity score
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¡ High variance when propensity score 𝑒 is close to 0 or 1
A single value can derail the estimate! 

¡ Many heuristics for clipping weights; stabilizing weights; etc.
¡ Assumes propensity score model is correctly specified (i.e., that 
𝑒 is correctly estimated for all individuals)

¡ Variants of weighting: Calculate average treatment effect on 
treated (ATT) instead of ATE
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Definition Weighting calculates average treatment effect as the difference 
between the weighted sum of the treated and untreated 
populations

Intuition Weights on each individual act to balance the distribution of 
covariates in the treated and untreated groups.  (i.e., break the 
dependence between treatment status and covariates)

Keep in mind High variance when propensity scores are very high or very low
Many variants of weighting schemes
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Conditioning on Key Variables

Matching and Stratification

Weighting

Regression
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In regression analysis, we build a model of 𝑌 as a function of 
covariates 𝑋 and 𝑇, and interpret coefficients of 𝑋 and 𝑇 causally:

𝐸(𝑌|𝑋, 𝑇) = 𝛼#𝑋# + 𝛼$𝑋$ +⋯𝛼%𝑋% + 𝛼&𝑇
Example:

𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 = 𝛼'()𝐴𝑔𝑒 + 𝛼)*)+,!-)𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒

Model is fit with standard methods (e.g., MLE)

The bigger 𝛼 is, the stronger the causal relationship to 𝑌
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Causal interpretation of regressions requires many assumptions.
Threats to validity include:
¡ Model correctness: e.g., what if we use a linear model and 

causal relationship is non-linear
¡ Multicollinearity: if covariates are correlated, can’t get 

accurate coefficients
¡ Ignorability (Omitted variables): Omission of confounds will 

invalidate findings
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Definition Use a regression-based causal analysis, we interpret coefficients as 
the strength of causal relationship

Example Modeling cholesterol as a function of exercise and age

Keep in mind Analysis must be carefully designed to ensure causal interpretability, 
avoiding collinearity and including all relevant confounds

AVOID unless you are absolutely sure about what you are doing.
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¡ There are many other causal inference methods 
§ with different assumptions (e.g. instrumental variables)
§ or for specific situations (e.g. time series)

¡ Examples
§ Natural experiments
§ Instrumental variables
§ Regression Discontinuity
§ Difference-in-Differences

¡ Check out UW Econ 488 or Stat 566 if you are interested!
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Why do observational studies fail? Most likely due to errors in identification. 
--Estimation is a statistical problem, and often easier than correct identification!
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Identifying assumption: All the arrows missing in the causal graphical model. 
E.g. No other common cause exists -> Untestable in general!
Estimating assumption: Overlap between treated and untreated population. 
Can be checked empirically. Can be solved by collecting more data. 
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Identifying assumption: All the arrows missing in the causal graphical 
model. E.g. No other common cause exists -> Untestable in general.
-- What happens when another common cause exists?
-- What happens when treatment is placebo?
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Smoking

Demographics

Lung Cancer

Genes
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¡ Many methods for statistical estimation of causal effects exist
§ Conditioning
§ Matching
§ Stratification
§ Weighting
§ Regression

¡ The main idea is to attempt to simulate a randomized 
experiment with observational data.

¡ Causal inference works through making assumptions
§ Make sure to check them and attempt to refute your models!
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