
Reminders: 
• Tim’s office hours 11:20-11:50am PT today
• Final project presentations in person G01/G10 on Monday, June 3, 

10:30am-12:30pm (check Ed for links, schedule, details)
• Great opportunity to learn about each other’s projects. Lots of Q&A!
• Attendance is mandatory
• Active participation rewarded with extra credit

• Upload your deliverables on Gradescope by Sunday 23:59pm PT 
– no late periods so that we can prepare the session and give you 
feedback and grades quickly

• Project Report
• Presentation Video (and slides PDF)

• 6 minutes (no credit if longer – we need to be fair across groups)
• Metadata (primarily dataset info)



¡ When is prediction / big data not enough?
¡ What is causality?
¡ Potential Outcomes Framework (Rubin)
§ How can we define and compute causal effects?

¡ Unobserved Confounds & Simpson’s Paradox
§ Why we should always worry about confounding in decision making? 

¡ Structural Causal Model Framework (Pearl)
§ How can we make our assumptions explicit?
§ Given our assumptions, is causal inference feasible? Can we identify a 

causal effect?
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¡ We will learn today that more efficient estimators are needed.

¡ Effective estimation of causal effects 
§ Conditioning on Key Variables
§ Matching
§ Stratification
§ Weighting
§ Regression
§ Sensitivity Analyses
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¡ Recommender Systems: Predicting future rating/consumption
¡ Social Networks: Link prediction
¡ Course projects …

¡ We have increasing amounts of data and increasingly accurate 
predictions! Why do we need causal inference? When is more 
data not enough?
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Source: http://www.tylervigen.com/spurious-correlations

http://spurious-correlations/


¡ If it is a spurious correlation without underlying causal connection, we likely won’t be able 
to predict the future well!

¡ But wait! Wouldn’t we be able to predict shark attacks well next summer based on our ice 
cream sales model?

¡ Changes in the environment & interventions may cause your predictive model to fail
§ What if we move to southern hemisphere? July is winter now.

¡ Typically assume that train/test sets are drawn from same distribution in supervised 
learning - No such guarantee in real life!

¡ Problematic: Acting on a prediction changes distribution!
§ Echo chamber: Recommend political news – if we start recommending only certain articles, we 

will see less clicks on other articles in the future, even if someone might have read them if 
recommended. 

§ Incl. critical domains: healthcare or adversarial scenarios
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¡ “Look at how much data I had…”
¡ ”How could I be wrong? I used 3 billion data points!”
¡ “This is just noise. All the problems will cancel out…”

¡ Beware! You do need to worry about bias and variance! 
¡ More data does not help you reduce bias!

¡ This week: Sources of bias, how to model it, 
and what to do about it
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¡ Play on “The Unreasonable Effectiveness of Data”
§ By Alon Halevy, Peter Norvig, and Fernando Pereira at Google
§ Simple models + Lots of data work very well

¡ Now consider context of causal inference
§ Common threats to causal inference are independent of 

sample size (more details later) 
§ When we cannot observe counterfactuals, observing more 

data will not help us! (formal definition coming later)
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...common threats to causal inference, including:
1. Construct validity

§ E.g. measurement error

2. Internal Validity
§ E.g. confounding

3. External Validity
§ E.g. selection effects

5/27/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 13



¡ Def: Are you measuring what you think you are 
measuring?
§ Especially important operationalization of theoretical 

construct / new “sensor” 
(e.g. social media, linguistic construct such as empathy)

§ Measurement error (e.g. drift in accelerometer sensor)
¡ How to demonstrate?

§ Convergent validity: Simultaneous measures of same 
construct correlate

§ Discriminant validity: Doesn't measure what it shouldn’t

Big Data typically means little control 
over how anything was measured
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¡ Def: Soundness of research design
§ Are you able to appropriately answer your 

research question with the right level of evidence? 
(e.g., correlational, causal)

¡ What potential selection effects / 
confounding are there?
§ Is data missing non-randomly?
§ Could measurement be biased across key groups?

(e.g. phone steps count for women vs. pockets)
§ Does population change across multiple analyses 

(complicating comparisons)?
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¡ How robust are findings across different analytic 
choices along the way?
§ How robust are results with respect to 

inclusion/exclusion of outliers?
¡ How many hypotheses are being tested?
§ May need to control false discovery rate 

(cf. Bonferroni and Benjamini-Hochberg correction) 
¡ Are distributional / parametric assumptions valid? 
§ Consider non-parametric models incl. bootstrapping

Big Data typically means observational data, 
convenience samples, and no pre-registration
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¡ Def: Can findings be generalized to other 
situations and to other people?

¡ How biased is the study population?
§ Ex: “Internet Explorer users”
§ Ex: “Chrome latest beta users” 
§ Ex: “Smartphone owner + health app installed”
§ Convenience samples can be WEIRD, especially 

motivated, lack key groups of interest, …

Big Data typically means more data, 
but more of the same!
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• Unclear, predictive algorithms provide no insight on effects of decisions

Do they lead us to the right decision? Not necessarily





¡ Questions of cause and effect common in 
biomedical and social sciences

¡ Such questions form the basis of almost all 
scientific inquiry
§ Medicine: drug trials, effect of a drug
§ Social sciences: effect of a certain policy
§ Genetics: effect of genes on disease

§ So what is causality?
§ What does it mean to cause something?
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¡ A fundamental question
¡ Surprisingly, until very recently---maybe the last 30+ years---

we have not had a mathematical language of causation.  We 
have not had an arithmetic for representing causal 
relationships.  

“More has been learned about causal inference in the last few decades 
than the sum total of everything that had been learned about it in all 
prior recorded history.”
     --Gary King, Harvard University
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Level Typical Activity Typical Question Examples

1. Association
𝑃 𝑦	 𝑥)

Seeing What is?
How would seeing 𝑋 
change my belief in 
𝑌?

What does a symptom tell me 
about a disease?
What does a survey tell us about the 
election results?

2. Intervention
𝑃 𝑦	 𝑑𝑜 𝑥 , 𝑧)

Doing, 
Intervening

What if?
What if I do 𝑋?

What if I take aspirin, will my 
headache be cured?
What if we ban cigarettes?

3. Counterfactuals
𝑃 𝑦!	 𝑥", 	𝑦"	)

Imagining, 
Retrospection

Why?
Was it 𝑋 that caused 
𝑌?
What if I had acted 
differently?

Was it the aspirin that stopped my 
headache?
Would Kennedy be alive had 
Oswald not shot him?
What if I had not been smoking the 
past 2 years?
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Definition: T causes Y iff 
 changing T leads to a change in Y, 
 keeping everything else constant.

The causal effect is the magnitude by which Y is changed by a unit 
change in T.

T is often binary, but can be categorical, ordinal, continuous.

Called the “interventionist” definition of causality.

http://plato.stanford.edu/entries/causation-mani/
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“What-if” questions
Reason about a world that does not exist.

¡ What if a system intervention was not done?
¡ What if an algorithm had been changed?
¡ What if we give a drug to a patient?
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Alice Treatment
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Alice
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Alice

X
  X
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X
  X

𝑌!"# 𝑌!"$

Causal effect of 
treatment = 
𝐸[𝑌!"# − 𝑌!"$]

Average Treatment Effect (ATE)
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Person T 𝒀𝑻"𝟏 𝒀𝑻"𝟎
P1 1 0.4 0.3
P2 0 0.8 0.6
P3 1 0.3 0.2
P4 0 0.3 0.1
P5 1 0.5 0.5
P6 0 0.6 0.5
P7 0 0.3 0.1

Causal effect: 𝐸 𝑌!"# − 𝑌!"$

Fundamental problem of causal 
inference: For any person, observe 
only one: either 𝑌!"#or 𝑌!"$
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¡ Causal inference is really a “missing data” problem
¡ Estimate missing data values using various methods
¡ 𝑌%"$ now becomes an estimated quantity, based on 

outcomes of other people who did not receive treatment

X
  X

𝑌!"#"𝑌!"$
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One way to estimate counterfactual.

5/27/24
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Simple: sample mean difference gives you unbiased ATE estimate



In many cases, we cannot randomize / intervene / A-B test (cf. 
offline evaluation).
¡ Practicality: Exposure to treatment may be hard to manipulate
§ Ex: Environmental effects (air pollution)

¡ Ethical concerns: Known negative effects
§ Ex: Smoking with known negative effect (today known; more on Thu)
§ Extreme Ex: Is suicide contagious? 

¡ Efficiency: Experimental science is expensive and takes time
§ Ex: Studying impact on mortality 10 years later

¡ …

5/27/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 36



In many cases, we cannot randomize / intervene / A-B test (cf. 
offline evaluation).
¡ Practicality: Exposure to treatment may be hard to manipulate
§ Ex: Environmental effects (air pollution)

¡ Ethical concerns: Known negative effects
§ Ex: Smoking with known negative effect (today known; more on Thu)
§ Extreme Ex: Is suicide contagious? 

¡ Efficiency: Experimental science is expensive and takes time
§ Ex: Studying impact on mortality 10 years later

¡ …

5/27/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 37

What can we do when an 

experiment is not possible?

More on Thursday!



¡ So far: ATE – Average Treatment Effect
§ 𝐸[𝑌!"# − 𝑌!"$]: This is average causal effect across entire population 

¡ ATE could be different on treated vs untreated group
§ Often we care about particular populations!
§ Ex: Hip Surgery -> Walking Ability

§ Doctors are not interested in effect of hip surgery on healthy population. What does it 
change for someone who has difficulty walking?

¡ ATT – Average Treatment Effect on the Treated
§ 𝐸[	𝑌!"#	−𝑌!"$ | T=1]
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¡ Potential outcomes reasons about causal effects by comparing 
outcome of treatment to outcome of no-treatment

¡ The Fundamental Problem of Causal Inference: 
For any individual, we cannot observe both treatment and no-
treatment.

¡ Randomized experiments are one elegant solution, but not 
always possible
§ We’ll discuss other solutions on Thursday that rely only on 

observational data
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¡ Which treatment should a doctor recommend for kidney stones?
¡ Simpson’s paradox: After accounting for the confounder (stone size) 

the best choice reverses.
¡ Critical for decision making 

Treatment A Treatment B

Small stones 93% (81/87) 87% (234/270)

Large stones 73% (192/263) 69% (55/80)
 

Both 78% (273/350)
 

83% (289/350)

Charig et al., BMJ 1986
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¡ What explains this “paradox”? Concretely, why did 
treatment B look so effective?

¡ What could researchers have done to fix this at the time?

Treatment A Treatment B

Small stones 93% (81/87) 87% (234/270)

Large stones 73% (192/263) 69% (55/80)
 

Both 78% (273/350)
 

83% (289/350)

Charig et al., BMJ 1986
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¡ Unobserved confounds are a threat to causal reasoning and to 
decision making
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¡ We observed that accounting for kidney stone size was critical
¡ Many other factors might influence the observed outcome

§ How do they affect treatment and outcome?
§ Which ones to include?

¡ How to we formalize all of our assumptions?
§ Causal inference cannot be done with data alone. It requires making 

assumptions about the world.
¡ How to identify the causal effect in such cases?

§ The task of causal identification is to determine an expression, the causal 
estimand, that expresses our target value as a function of the observable 
correlational relationships in our system. 

§ We can use graphical model framework to answer this
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Age

YT

𝑿 = {𝐴𝑔𝑒}

Age

YT

Gender

𝑿 = {𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟}

Age

YT

Stress

𝑿 = {𝐴𝑔𝑒}
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Age

YT

Stress

Occupation

X = ?

Age

YT

Exercise

Muscle 
Strength

X = ?
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Age

YT

Stress

Occupation

Structural Equation Models with Random Errors
u’s are “error variables” or “exogenous variables”
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Age

YT

Stress

Occupation

Age

YT

Exercise

Muscle 
Strength
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Age

YT

Stress

Occupation

Assumption 1: Occupation does not 
directly affect outcome Y.
Assumption 2: Age does not directly 
affect stress.
Assumption 3: Stress does not 
directly affect Occupation.
Assumption 4: Treatment does not 
directly affect stress.

..and so on.

Condition for validity: The graph reflects all relevant causal processes.
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If a person was given treatment, what is the probability that he 
would be cured if he was not given treatment?
  𝑷 𝒀 = 𝟏 𝑻 = 𝟏, 𝑻 = 𝟎
Non-sensical.

Can write it as:
𝑷 𝒀𝑻"𝟎 = 𝟏 𝑻 = 𝟏 , 𝒐𝒓

𝑷(𝒀 = 𝟏|𝑻 = 𝟏, 𝒅𝒐 𝑻 = 𝟎 )

𝑃(𝑌|𝑑𝑜(𝑇)) avoids confusion with 𝑃(𝑌|𝑇)
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do-calculus: A rule-based calculus that can help identify any 
counterfactual quantity (Pearl)

Age

YT

Stress

Occupation

E.g.,
𝑃 𝑌 𝑑𝑜 𝑇
= ⋯𝑑𝑜−𝑐𝑎𝑙𝑐𝑢𝑙𝑢𝑠	𝑟𝑢𝑙𝑒𝑠	 … 	

=2
𝒙

𝑃 𝑌 𝑇, 𝑿 = 𝑥 𝑃(𝑿 = 𝒙)

do-calculus is complete: If we cannot identify 
using do-calculus, causal effect is unidentifiable. 
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Three kinds of 
node-edges
Path is 
“blocked”

If conditioned on A

A

If conditioned on A

A

If not conditioned on A

A

“Back-door” path: Any undirected path that starts with                    and ends with 

Back-door criterion:  If conditioning on X blocks all back-door paths between treatment T 
and outcome Y, and X does not include any descendants of T, then

𝑷(𝒀|𝒅𝒐(𝑻)) 	= 	2
𝒙

𝑷 𝒀 𝑻,𝑿 = 𝒙 𝑷(𝑿 = 𝒙)

T Y

5/27/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 53



Age

YT

𝑿 = {𝐴𝑔𝑒}

Age

YT

Gender

𝑿 = {𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟}

Age

YT

Stress

𝑿 = {𝐴𝑔𝑒}

5/27/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 54



¡ Find a partner close to you. 
§ If watching recording: I invite you 

to pause now and try it out.

¡ Q: What variables do we need 
to condition on to block all 
backdoor paths?

¡ Too easy? Find all such sets
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Age

YT

Stress

Occupation

If conditioned on A

A
If conditioned on A

A
If not conditioned on A

A
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Age

YT

Stress

Occupation

X = {Age, Stress}
X = {Age, Occupation}
X = {Age, Stress, Occupation}
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Age

YT

Exercise

Muscle 
Strength

X = {} – Muscle Strength is a collider!
X = {MuscleStrength, Exercise}
X = {MuscleStrength, Age}
X = {MuscleStrength, Age, Exercise}

It is important to know about 
colliders! Controlling for more 
variables can even hurt!
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Raining

YT

Sprinkler on

Wet Lawn

X = ?

Q: Why are colliders 
special and we should not 
condition on them to 
block the backdoor path?

A: If you know that the 
lawn is wet, but sprinkler 
is not on. Now you know it 
must be raining.

Conditioning on collider 
induces correlation 
between parent nodes.



¡ Back-door criterion:  If conditioning on X blocks all back-door paths between 
treatment T and outcome Y, and X does not include any descendants of T, then

𝑷(𝒀|𝒅𝒐(𝑻)) 	= 	+
𝒙

𝑷 𝒀 𝑻,𝑿 = 𝒙 𝑷(𝑿 = 𝒙)

¡ This is a correct, unbiased estimator. But it can be so inefficient, essentially 
requiring “infinite” data, that it loses all practical utility.
§ This happens when X is high-dimensional and/or incl. continuous variables
§ Example: Say X is lots of sentences in the English Language and we want to identify the 

causal effect of my advising on how well my students are doing?
§ Example: X is your entire genome. How often will you observe this?
§ Example: X is continuous dosage amount of a drug

¡ More on Thu about effective estimation techniques
§ We will carefully make bias variance trade-offs that allow for more efficient estimation
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¡ https://uw.iasystem.org/survey/290650
§ Also available from Ed link.

¡ We take your feedback very seriously. It makes a difference! 

¡ Consider sharing what you liked about the course. What is 
working well? What should we keep?

¡ Thank you for participating!
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¡ Allow us to make causal assumptions explicit
§ Assumptions are the missing edges!

¡ Provide language for expressing counterfactuals
¡ Well-defined mechanisms for reasoning about causal 

relationships
§ E.g., Backdoor criterion
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structural causal model do-calculus

assumptions
identifying

potential outcomes
estimating

Page 63



¡ Causality is important for decision-making and study of effects

¡ Big Data does not necessarily address threats to causal inference

¡ Potential Outcomes Framework gives practical method for estimating 
causal effects. Translates causal inference into counterfactual estimation

¡ Unobserved confounds are a critical challenge – what might we miss?

¡ Structural Causal Model Framework gives language for expressing and 
reasoning about causal relationships: Causal Identification

¡ On Thursday: Methods for efficient Estimation of causal treatment effects 
in observational data

5/27/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 64



¡ Slides based in part on KDD 2018 Tutorial by Emre Kıcıman and 
Amit Sharma: http://causalinference.gitlab.io/kdd-tutorial/

¡ Courses
§ UW Econ 488: Causal Inference
§ UW Stat 566: Causal Modeling

¡ Books
§ Pearl. Book of Why
§ Rosenbaum. Design of Observational Studies
§ Kiciman & Sharma. https://causalinference.gitlab.io/ (free, in-progress) 
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