
Remember: No lecture next Tuesday – extra TA office hours for projects instead



 More algorithms for streams:

▪ (1) Filtering a data stream: Bloom filters

▪ Select elements with property x from stream

▪ (2) Counting distinct elements: Flajolet-Martin

▪ Number of distinct elements in the last k elements 
of the stream

▪ (3) Estimating moments: AMS method

▪ Estimate std. dev. of last k elements
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 Each element of data stream is a tuple
 Given a list of keys S
 Determine which tuples of stream are in S

 Obvious solution: Hash table

▪ But suppose we do not have enough memory to 
store all of S in a hash table

▪ E.g., we might be processing millions of filters 
on the same stream
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 Example: Email spam filtering
▪ We know 1 billion “good” email addresses

▪ Or, each user has a list of trusted addresses

▪ If an email comes from one of these, it is NOT spam
 Publish-subscribe systems

▪ You are collecting lots of messages (news articles)
▪ People express interest in certain sets of keywords
▪ Determine whether each message matches user’s interest

 Content filtering:
▪ You want to make sure the user does not see the same ad 

multiple times
 Web cache filtering:

▪ Has this piece of content been requested before? If so, 
then cache it now.
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Given a set of keys S that we want to filter
 Create a bit array B of n bits, initially all 0s
 Choose a hash function h with range [0,n) 
 Hash each member of s S to one of 

n buckets, and set that bit to 1, i.e., B[h(s)]=1
 Hash each element a of the stream and 

output only those that hash to bit that was 
set to 1

▪ Output a if B[h(a)] == 1
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 Creates false positives but no false negatives

▪ If the item is in S we surely output it, if not we may 
still output it

Item

0010001011000

Output the item since it may be in S.

Item hashes to a bucket that at least 

one of the items in S hashed to.

Hash 
func h

Drop the item.

It hashes to a bucket set 

to 0 so it is surely not in S.

Bit array B
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 |S| = 1 billion email addresses
|B|= 1GB = 8 billion bits

 If the email address is in S, then it surely 
hashes to a bucket that has the bit set to 1, 
so it always gets through (no false negatives)

 Approximately 1/8 of the bits are set to 1, so 
about 1/8th of the addresses not in S get 
through to the output (false positives)
▪ Actually, less than 1/8th, because more than one 

address might hash to the same bit
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 More accurate analysis for the number of 
false positives 

 Consider: If we throw m darts into n equally 
likely targets, what is the probability that 
a target gets at least one dart?

 In our case:

▪ Targets = bits/buckets

▪ Darts = hash values of items
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 We have m darts, n targets
 What is the probability that a target gets at 

least one dart?

(1 – 1/n)

Probability some
target X not hit

by a dart

m

1 -

Probability at
least one dart
hits target X

n( / n)

Equivalent
Equals 1/e
as n →∞

1 – e–m/n

Approximation is

especially accurate 

when n is large
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 Fraction of 1s in the array B =
= probability of false positive = 1 – e-m/n

 Example: 109 darts, 8∙109 targets

▪ Fraction of 1s in B = 1 – e-1/8 = 0.1175

▪ Compare with our earlier estimate: 1/8 = 0.125
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 Consider: |S| = m, |B| = n
 Use k independent hash functions h1 ,…, hk

 Initialization:

▪ Set B to all 0s

▪ Hash each element s S using each hash function hi, 
set B[hi(s)] = 1   (for each i = 1,.., k)

 Run-time:

▪ When a stream element with key x arrives

▪ If B[hi(x)] == 1 for all i = 1,..., k then declare that x is in S
▪ That is, x hashes to a bucket set to 1 for every hash function hi(x)

▪ Otherwise discard the element x

(note: we have a 

single array B!)
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 What fraction of the bit vector B are 1s?

▪ Throwing k∙m darts at n targets

▪ So fraction of 1s is (1 – e-km/n)

 But we have k independent hash functions
and we only let the element x through if all k 
hash element x to a bucket of value 1

 So, false positive probability = (1 – e-km/n)k
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 m = 1 billion, n = 8 billion

▪ k = 1: (1 – e-1/8) = 0.1175

▪ k = 2: (1 – e-1/4)2 = 0.0493

 What happens as we 
keep increasing k?

 Optimal value of k: n/m ln(2)

▪ In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6

▪ Error at k = 6: (1 – e-3/4)6 = 0.0216

Optimal k: k which gives the lowest false positive probability
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 Bloom filters allow for filtering / set membership
 Bloom filters guarantee no false negatives, and 

use limited memory

▪ Great for pre-processing before more 
expensive checks

 Suitable for hardware implementation

▪ Hash function computations can be parallelized

 Is it better to have 1 big B or k small Bs?

▪ It is the same: (1 – e-km/n)k  vs. (1 – e-m/(n/k))k

▪ But keeping 1 big B is simpler
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 Problem:

▪ Data stream consists of a universe of elements 
chosen from a set of size N

▪ Maintain a count of the number of distinct 
elements seen so far

 Obvious approach: 
Maintain the set of elements seen so far

▪ That is, keep a hash table of all the distinct 
elements seen so far
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 How many different words are found among 
the Web pages being crawled at a site?

▪ Unusually low or high numbers could indicate 
artificial pages (spam?)

 How many different Web pages does each 
customer request in a week?

 How many distinct products have we sold in 
the last week?
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 Real problem: What if we do not have space 
to maintain the set of elements seen so far?

 Estimate the count in an unbiased way

 Accept that the count may have a little error, 
but limit the probability that the error is large
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 Pick a hash function h that maps each of the 
N elements to at least  log2 N  bits

 For each stream element a, let r(a) be the 
number of trailing 0s in h(a)

▪ r(a) = position of first 1 counting from the right

▪ E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2

 Record R = the maximum r(a) seen

▪ R = maxa r(a),  over all the items a seen so far

 Estimated number of distinct elements = 2R

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 20



 Rough intuition why Flajolet-Martin works:

▪ h(a) hashes a with equal prob. to any of N values

▪ Then h(a) is a sequence of log2 N bits, 
where 2-r fraction of all as have a tail of r zeros 

▪ About 50% of as hash to ***0

▪ About 25% of as hash to **00

▪ So, if we saw the longest tail of r=2 (i.e., item hash 
ending *100) then we have probably seen 
about 4 distinct items so far

▪ So, it takes to hash about 2r items before we 
see one with zero-suffix of length r
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 Now we show why Flajolet-Martin works

 Formally, we will show that all hash values, 
probability of finding a tail of r zeros from:

▪ Goes to 1 if 𝒎 ≫ 𝟐𝒓

▪ Goes to 0 if 𝒎 ≪ 𝟐𝒓

where 𝒎 is the number of distinct elements 
seen so far in the stream

 Thus, 2R  will almost always be around m!
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 What is the probability that a given h(a) ends 
in at least r zeros? It is 2-r

▪ h(a) hashes elements uniformly at random

▪ Probability that a random number ends in 
at least r zeros is 2-r

 Then, the probability of NOT seeing a tail 
of length r among m distinct elements: 

𝟏 − 𝟐−𝒓 𝒎

Prob. that given h(a) ends 

in fewer than r zerosProb. all m elements

end in fewer than r zeros.
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 Note: 
 Prob. of NOT finding a tail of length r is:

▪ If m << 2r, then prob. tends to 1

▪                                                   as  m/2r→ 0

▪ So, the probability of finding a tail of length r tends to 0 

▪ If m >> 2r, then prob. tends to 0 

▪                                                  as  m/2r →  

▪ So, the probability of finding a tail of length r tends to 1

 Thus, 2R  will almost always be around m!
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 E[2R] is actually infinite
▪ Observing R has some probability

▪ Probability halves when R → R+1, but value doubles

▪ Each possible large R contributes to expectation value 
 Workaround involves using many hash functions hi 

and getting many samples of Ri
 How are samples Ri combined?

▪ Average? What if one very large value 𝟐𝑹𝒊?

▪ Median? All estimates are a power of 2

▪ Solution:
▪ Partition your samples into small groups

▪ Take the median of groups

▪ Then take the average of the medians
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 Suppose a stream has elements chosen 
from a set A of N values

 Let mi be the number of times value i occurs 
in the stream

 The kth (frequency) moment  is

 Ai

k

im )(

This is the same way as moments are defined in statistics. But 

there one typically “centers” the moment by subtracting the mean.
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k

im )(

 0thmoment = number of distinct elements

▪ The problem just considered

 1st moment = count of the numbers of 
elements = length of the stream

▪ Easy to compute, so not particularly useful

 2nd moment = surprise number S = 
a measure of how uneven the distribution is

▪ Very useful
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 Third Moment is Skew:

 Fourth moment: Kurtosis
▪ peakedness (width of peak), tail weight, and lack 

of shoulders (distribution primarily peak and tails, 
not in between).
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 Measure of how uneven the distribution is

 Stream of length 100
 11 distinct values

 Item counts mi: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9  
Surprise S = 910

 Item counts mi : 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1  
Surprise S = 8,110
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 AMS method works for all moments
 Gives an unbiased estimate
 We will just concentrate on the 2nd moment
▪ Will generalize later

 We pick and keep track of many variables X:
▪ For each variable X we store X.el and X.val

▪ X.el corresponds to the item i

▪ X.val corresponds to the count 𝑚𝑖 of item i 

▪ Note this requires a count in main memory, 
so number of Xs is limited

 Our goal is to compute 𝑺 = σ𝒊 𝒎𝒊
𝟐

[Alon, Matias, and Szegedy]
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 How to set X.val and X.el?

▪ Assume stream has length n (we relax this later)

▪ Pick some random time t (t<n) to start, 
so that any time is equally likely

▪ Let at time t the stream have item i. We set X.el = i

▪ Then we maintain count c (X.val = c) of the number 
of is in the stream starting from the chosen time t

 Then the estimate of the 2nd moment (σ𝒊 𝒎𝒊
𝟐) is: 

𝑺 = 𝒇(𝑿)  =  𝒏 (𝟐 · 𝒄 –  𝟏)

▪ Note, we will keep track of multiple Xs, (X1, X2,… Xk)

and our final estimate will be 𝑺 = 𝟏/𝒌 σ𝒋
𝒌 𝒇(𝑿𝒋)
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a a a a

1 32 ma

b b b b

Count:

Stream:

1 2 3

 2nd moment is 𝑺 = σ𝒊 𝒎𝒊
𝟐

 ct … number of times item at time t appears 
from time t onwards (c1=ma , c2=ma-1, c3=mb)

 𝑬 𝒇(𝑿) =
𝟏

𝒏
σ𝒕=𝟏

𝒏 𝒏(𝟐𝒄𝒕 − 𝟏)

   =
𝟏

𝒏
σ𝒊 𝒏 (𝟏 + 𝟑 + 𝟓 + ⋯ + 𝟐𝒎𝒊 − 𝟏)

Group times
by the value
seen

Time t when
the last i is 
seen (ct=1)

Time t when
the penultimate
 i is seen (ct=2)

Time t when
the first i is 
seen (ct=mi)

mi … total count of 

item i in the stream 

(we are assuming 

stream has length n)
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a a a a

1 32 ma

b b b bStream:

Count:

 𝐸 𝑓(𝑋) =
1

𝑛
σ𝑖 𝑛 (1 + 3 + 5 + ⋯ + 2𝑚𝑖 − 1)

▪ Little side calculation: 1 + 3 + 5 + ⋯ + 2𝑚𝑖 − 1 =

σ
𝑖=1
𝑚𝑖 (2𝑖 − 1) = 2

𝑚𝑖 𝑚𝑖+1

2
− 𝑚𝑖 = (𝑚𝑖 )2 

 Then 𝑬 𝒇(𝑿) =
𝟏

𝒏
σ𝒊  𝒏 𝒎𝒊

𝟐

 So, 𝐄 𝐟(𝐗) = σ𝒊 𝒎𝒊
𝟐 = 𝑺

 We have the second moment (in expectation)!
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 For estimating kth moment we essentially use the 
same algorithm but change the estimate f(X):

▪ For k=2 we used n (2·c – 1)

▪ For k=3 we use: n (3·c2 – 3c + 1)       (where c=X.val)

 Why?

▪ For k=2: Remember we had 1 + 3 + 5 + ⋯ + 2𝑚𝑖 − 1  
and we showed terms 2c-1 (for c=1,…,m) sum to m2

▪ σ𝑐=1
𝑚 (2𝑐 − 1) = σ𝑐=1

𝑚 𝑐2 − σ𝑐=1
𝑚 𝑐 − 1 2 = 𝑚2

▪ So: 𝟐𝒄 − 𝟏 = 𝒄𝟐 − 𝒄 − 𝟏 𝟐

▪ For k=3: c3 - (c-1)3 = 3c2 - 3c + 1

 Generally: Estimate f(X) = 𝑛 (𝑐𝑘 − 𝑐 − 1 𝑘)
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 In practice:
▪ Compute 𝒇(𝑿)  =  𝒏(𝟐 𝒄 –  𝟏) for 

as many variables X as you can fit in memory

▪ Average them in groups

▪ Take median of averages

 Problem: Streams never end
▪ We assumed there was a number n, 

the number of positions in the stream

▪ But real streams go on forever, so n is 
a variable – the number of inputs seen so far
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 (1) The variables X have n as a factor – 
keep n separately; just hold the count in X

 (2) Suppose we can only store k counts.  
We must throw some Xs out as time goes on:
▪ Objective: Each starting time t is selected with 

probability k/n 

▪ Solution: (fixed-size / reservoir sampling!)
▪ Choose the first k times for k variables

▪ When the nth element arrives (n > k), choose it with 
probability k/n

▪ If you choose it, throw one of the previously stored 
variables X out, with equal probability
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 Filtering a data stream
▪ Select elements with property x from the stream

 Counting distinct elements
▪ Number of distinct elements in the last k elements 

of the stream
 Estimating moments
▪ Estimate avg./std. dev. of elements in stream

 Remember: No lecture next Tuesday – 
Project Group meetings instead
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