
Remember: No lecture next Tuesday – extra TA office hours for projects instead

 More algorithms for streams:

▪ (1) Filtering a data stream: Bloom filters

▪ Select elements with property x from stream

▪ (2) Counting distinct elements: Flajolet-Martin

▪ Number of distinct elements in the last k elements
of the stream

▪ (3) Estimating moments: AMS method

▪ Estimate std. dev. of last k elements

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 2

 Each element of data stream is a tuple
 Given a list of keys S
 Determine which tuples of stream are in S

 Obvious solution: Hash table

▪ But suppose we do not have enough memory to
store all of S in a hash table

▪ E.g., we might be processing millions of filters
on the same stream

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 4

 Example: Email spam filtering
▪ We know 1 billion “good” email addresses

▪ Or, each user has a list of trusted addresses

▪ If an email comes from one of these, it is NOT spam
 Publish-subscribe systems

▪ You are collecting lots of messages (news articles)
▪ People express interest in certain sets of keywords
▪ Determine whether each message matches user’s interest

 Content filtering:
▪ You want to make sure the user does not see the same ad

multiple times
 Web cache filtering:

▪ Has this piece of content been requested before? If so,
then cache it now.

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 5

Given a set of keys S that we want to filter
 Create a bit array B of n bits, initially all 0s
 Choose a hash function h with range [0,n)
 Hash each member of s S to one of

n buckets, and set that bit to 1, i.e., B[h(s)]=1
 Hash each element a of the stream and

output only those that hash to bit that was
set to 1

▪ Output a if B[h(a)] == 1

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 6

 Creates false positives but no false negatives

▪ If the item is in S we surely output it, if not we may
still output it

Item

0010001011000

Output the item since it may be in S.

Item hashes to a bucket that at least

one of the items in S hashed to.

Hash
func h

Drop the item.

It hashes to a bucket set

to 0 so it is surely not in S.

Bit array B

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 7

 |S| = 1 billion email addresses
|B|= 1GB = 8 billion bits

 If the email address is in S, then it surely
hashes to a bucket that has the bit set to 1,
so it always gets through (no false negatives)

 Approximately 1/8 of the bits are set to 1, so
about 1/8th of the addresses not in S get
through to the output (false positives)
▪ Actually, less than 1/8th, because more than one

address might hash to the same bit

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 8

 More accurate analysis for the number of
false positives

 Consider: If we throw m darts into n equally
likely targets, what is the probability that
a target gets at least one dart?

 In our case:

▪ Targets = bits/buckets

▪ Darts = hash values of items

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 9

 We have m darts, n targets
 What is the probability that a target gets at

least one dart?

(1 – 1/n)

Probability some
target X not hit

by a dart

m

1 -

Probability at
least one dart
hits target X

n(/ n)

Equivalent
Equals 1/e
as n →∞

1 – e–m/n

Approximation is

especially accurate

when n is large
5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 10

 Fraction of 1s in the array B =
= probability of false positive = 1 – e-m/n

 Example: 109 darts, 8∙109 targets

▪ Fraction of 1s in B = 1 – e-1/8 = 0.1175

▪ Compare with our earlier estimate: 1/8 = 0.125

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 11

 Consider: |S| = m, |B| = n
 Use k independent hash functions h1 ,…, hk

 Initialization:

▪ Set B to all 0s

▪ Hash each element s S using each hash function hi,
set B[hi(s)] = 1 (for each i = 1,.., k)

 Run-time:

▪ When a stream element with key x arrives

▪ If B[hi(x)] == 1 for all i = 1,..., k then declare that x is in S
▪ That is, x hashes to a bucket set to 1 for every hash function hi(x)

▪ Otherwise discard the element x

(note: we have a

single array B!)

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 12

 What fraction of the bit vector B are 1s?

▪ Throwing k∙m darts at n targets

▪ So fraction of 1s is (1 – e-km/n)

 But we have k independent hash functions
and we only let the element x through if all k
hash element x to a bucket of value 1

 So, false positive probability = (1 – e-km/n)k

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 13

 m = 1 billion, n = 8 billion

▪ k = 1: (1 – e-1/8) = 0.1175

▪ k = 2: (1 – e-1/4)2 = 0.0493

 What happens as we
keep increasing k?

 Optimal value of k: n/m ln(2)

▪ In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6

▪ Error at k = 6: (1 – e-3/4)6 = 0.0216

Optimal k: k which gives the lowest false positive probability

0 2 4 6 8 10 12 14 16 18 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of hash functions, k

F
a
ls

e
 p

o
s
it

iv
e
 p

ro
b

.

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 14

 Bloom filters allow for filtering / set membership
 Bloom filters guarantee no false negatives, and

use limited memory

▪ Great for pre-processing before more
expensive checks

 Suitable for hardware implementation

▪ Hash function computations can be parallelized

 Is it better to have 1 big B or k small Bs?

▪ It is the same: (1 – e-km/n)k vs. (1 – e-m/(n/k))k

▪ But keeping 1 big B is simpler

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 15

 Problem:

▪ Data stream consists of a universe of elements
chosen from a set of size N

▪ Maintain a count of the number of distinct
elements seen so far

 Obvious approach:
Maintain the set of elements seen so far

▪ That is, keep a hash table of all the distinct
elements seen so far

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 17

 How many different words are found among
the Web pages being crawled at a site?

▪ Unusually low or high numbers could indicate
artificial pages (spam?)

 How many different Web pages does each
customer request in a week?

 How many distinct products have we sold in
the last week?

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 18

 Real problem: What if we do not have space
to maintain the set of elements seen so far?

 Estimate the count in an unbiased way

 Accept that the count may have a little error,
but limit the probability that the error is large

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 19

 Pick a hash function h that maps each of the
N elements to at least log2 N bits

 For each stream element a, let r(a) be the
number of trailing 0s in h(a)

▪ r(a) = position of first 1 counting from the right

▪ E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2

 Record R = the maximum r(a) seen

▪ R = maxa r(a), over all the items a seen so far

 Estimated number of distinct elements = 2R

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 20

 Rough intuition why Flajolet-Martin works:

▪ h(a) hashes a with equal prob. to any of N values

▪ Then h(a) is a sequence of log2 N bits,
where 2-r fraction of all as have a tail of r zeros

▪ About 50% of as hash to ***0

▪ About 25% of as hash to **00

▪ So, if we saw the longest tail of r=2 (i.e., item hash
ending *100) then we have probably seen
about 4 distinct items so far

▪ So, it takes to hash about 2r items before we
see one with zero-suffix of length r

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 21

 Now we show why Flajolet-Martin works

 Formally, we will show that all hash values,
probability of finding a tail of r zeros from:

▪ Goes to 1 if 𝒎 ≫ 𝟐𝒓

▪ Goes to 0 if 𝒎 ≪ 𝟐𝒓

where 𝒎 is the number of distinct elements
seen so far in the stream

 Thus, 2R will almost always be around m!

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 22

 What is the probability that a given h(a) ends
in at least r zeros? It is 2-r

▪ h(a) hashes elements uniformly at random

▪ Probability that a random number ends in
at least r zeros is 2-r

 Then, the probability of NOT seeing a tail
of length r among m distinct elements:

𝟏 − 𝟐−𝒓 𝒎

Prob. that given h(a) ends

in fewer than r zerosProb. all m elements

end in fewer than r zeros.

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 23

 Note:
 Prob. of NOT finding a tail of length r is:

▪ If m << 2r, then prob. tends to 1

▪ as m/2r→ 0

▪ So, the probability of finding a tail of length r tends to 0

▪ If m >> 2r, then prob. tends to 0

▪ as m/2r →

▪ So, the probability of finding a tail of length r tends to 1

 Thus, 2R will almost always be around m!

1)21(2 =−
−−− rmmr e

0)21(2 =−
−−− rmmr e

rrr mmrmr e
−− −−− −=− 2)2(2)21()21(

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 24

 E[2R] is actually infinite
▪ Observing R has some probability

▪ Probability halves when R → R+1, but value doubles

▪ Each possible large R contributes to expectation value
 Workaround involves using many hash functions hi

and getting many samples of Ri
 How are samples Ri combined?

▪ Average? What if one very large value 𝟐𝑹𝒊?

▪ Median? All estimates are a power of 2

▪ Solution:
▪ Partition your samples into small groups

▪ Take the median of groups

▪ Then take the average of the medians
5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 25

 Suppose a stream has elements chosen
from a set A of N values

 Let mi be the number of times value i occurs
in the stream

 The kth (frequency) moment is

 Ai

k

im)(

This is the same way as moments are defined in statistics. But

there one typically “centers” the moment by subtracting the mean.
5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 27

 Ai

k

im)(

 0thmoment = number of distinct elements

▪ The problem just considered

 1st moment = count of the numbers of
elements = length of the stream

▪ Easy to compute, so not particularly useful

 2nd moment = surprise number S =
a measure of how uneven the distribution is

▪ Very useful
5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 28

 Third Moment is Skew:

 Fourth moment: Kurtosis
▪ peakedness (width of peak), tail weight, and lack

of shoulders (distribution primarily peak and tails,
not in between).

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 29

 Measure of how uneven the distribution is

 Stream of length 100
 11 distinct values

 Item counts mi: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Surprise S = 910

 Item counts mi : 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1
Surprise S = 8,110

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 31

 AMS method works for all moments
 Gives an unbiased estimate
 We will just concentrate on the 2nd moment
▪ Will generalize later

 We pick and keep track of many variables X:
▪ For each variable X we store X.el and X.val

▪ X.el corresponds to the item i

▪ X.val corresponds to the count 𝑚𝑖 of item i

▪ Note this requires a count in main memory,
so number of Xs is limited

 Our goal is to compute 𝑺 = σ𝒊 𝒎𝒊
𝟐

[Alon, Matias, and Szegedy]

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 32

 How to set X.val and X.el?

▪ Assume stream has length n (we relax this later)

▪ Pick some random time t (t<n) to start,
so that any time is equally likely

▪ Let at time t the stream have item i. We set X.el = i

▪ Then we maintain count c (X.val = c) of the number
of is in the stream starting from the chosen time t

 Then the estimate of the 2nd moment (σ𝒊 𝒎𝒊
𝟐) is:

𝑺 = 𝒇(𝑿) = 𝒏 (𝟐 · 𝒄 – 𝟏)

▪ Note, we will keep track of multiple Xs, (X1, X2,… Xk)

and our final estimate will be 𝑺 = 𝟏/𝒌 σ𝒋
𝒌 𝒇(𝑿𝒋)

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 33

a a a a

1 32 ma

b b b b

Count:

Stream:

1 2 3

 2nd moment is 𝑺 = σ𝒊 𝒎𝒊
𝟐

 ct … number of times item at time t appears
from time t onwards (c1=ma , c2=ma-1, c3=mb)

 𝑬 𝒇(𝑿) =
𝟏

𝒏
σ𝒕=𝟏

𝒏 𝒏(𝟐𝒄𝒕 − 𝟏)

 =
𝟏

𝒏
σ𝒊 𝒏 (𝟏 + 𝟑 + 𝟓 + ⋯ + 𝟐𝒎𝒊 − 𝟏)

Group times
by the value
seen

Time t when
the last i is
seen (ct=1)

Time t when
the penultimate
 i is seen (ct=2)

Time t when
the first i is
seen (ct=mi)

mi … total count of

item i in the stream

(we are assuming

stream has length n)

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 34

a a a a

1 32 ma

b b b bStream:

Count:

 𝐸 𝑓(𝑋) =
1

𝑛
σ𝑖 𝑛 (1 + 3 + 5 + ⋯ + 2𝑚𝑖 − 1)

▪ Little side calculation: 1 + 3 + 5 + ⋯ + 2𝑚𝑖 − 1 =

σ
𝑖=1
𝑚𝑖 (2𝑖 − 1) = 2

𝑚𝑖 𝑚𝑖+1

2
− 𝑚𝑖 = (𝑚𝑖)2

 Then 𝑬 𝒇(𝑿) =
𝟏

𝒏
σ𝒊 𝒏 𝒎𝒊

𝟐

 So, 𝐄 𝐟(𝐗) = σ𝒊 𝒎𝒊
𝟐 = 𝑺

 We have the second moment (in expectation)!

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 35

 For estimating kth moment we essentially use the
same algorithm but change the estimate f(X):

▪ For k=2 we used n (2·c – 1)

▪ For k=3 we use: n (3·c2 – 3c + 1) (where c=X.val)

 Why?

▪ For k=2: Remember we had 1 + 3 + 5 + ⋯ + 2𝑚𝑖 − 1
and we showed terms 2c-1 (for c=1,…,m) sum to m2

▪ σ𝑐=1
𝑚 (2𝑐 − 1) = σ𝑐=1

𝑚 𝑐2 − σ𝑐=1
𝑚 𝑐 − 1 2 = 𝑚2

▪ So: 𝟐𝒄 − 𝟏 = 𝒄𝟐 − 𝒄 − 𝟏 𝟐

▪ For k=3: c3 - (c-1)3 = 3c2 - 3c + 1

 Generally: Estimate f(X) = 𝑛 (𝑐𝑘 − 𝑐 − 1 𝑘)

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 36

 In practice:
▪ Compute 𝒇(𝑿) = 𝒏(𝟐 𝒄 – 𝟏) for

as many variables X as you can fit in memory

▪ Average them in groups

▪ Take median of averages

 Problem: Streams never end
▪ We assumed there was a number n,

the number of positions in the stream

▪ But real streams go on forever, so n is
a variable – the number of inputs seen so far

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 37

 (1) The variables X have n as a factor –
keep n separately; just hold the count in X

 (2) Suppose we can only store k counts.
We must throw some Xs out as time goes on:
▪ Objective: Each starting time t is selected with

probability k/n

▪ Solution: (fixed-size / reservoir sampling!)
▪ Choose the first k times for k variables

▪ When the nth element arrives (n > k), choose it with
probability k/n

▪ If you choose it, throw one of the previously stored
variables X out, with equal probability

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 38

 Filtering a data stream
▪ Select elements with property x from the stream

 Counting distinct elements
▪ Number of distinct elements in the last k elements

of the stream
 Estimating moments
▪ Estimate avg./std. dev. of elements in stream

 Remember: No lecture next Tuesday –
Project Group meetings instead

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 39

https://bit.ly/CSE547feedback2024

5/16/2024 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 50

https://bit.ly/CSE547feedback2024
https://bit.ly/CSE547feedback2024

	Slide 1: Mining Data Streams (Part 2)
	Slide 2: Today’s Lecture
	Slide 3: (1) Filtering Data Streams
	Slide 4: Filtering Data Streams
	Slide 5: Applications
	Slide 6: First Cut Solution (1)
	Slide 7: First Cut Solution (2)
	Slide 8: First Cut Solution (3)
	Slide 9: Analysis: Throwing Darts (1)
	Slide 10: Analysis: Throwing Darts (2)
	Slide 11: Analysis: Throwing Darts (3)
	Slide 12: Bloom Filter
	Slide 13: Bloom Filter – Analysis
	Slide 14: Bloom Filter – Analysis (2)
	Slide 15: Bloom Filter: Wrap-up
	Slide 16: (2) Counting Distinct Elements
	Slide 17: Counting Distinct Elements
	Slide 18: Applications
	Slide 19: Using Small Storage
	Slide 20: Flajolet-Martin Approach
	Slide 21: Why It Works: Intuition
	Slide 22: Why It Works: More formally
	Slide 23: Why It Works: More formally
	Slide 24: Why It Works: More formally
	Slide 25: Why It Doesn’t Work
	Slide 26: (3) Computing Moments
	Slide 27: Generalization: Moments
	Slide 28: Special Cases
	Slide 29: Moments
	Slide 31: Example: Surprise Number
	Slide 32: AMS Method
	Slide 33: One Random Variable (X)
	Slide 34: Expectation Analysis
	Slide 35: Expectation Analysis
	Slide 36: Higher-Order Moments
	Slide 37: Combining Samples
	Slide 38: Streams Never End: Fixups
	Slide 39: Problems on Data Streams
	Slide 50: Please give us feedback https://bit.ly/CSE547feedback2024

