Announcements:

- Homework late periods
- Two late periods across four homeworks
- No(!) credit if late a $3^{\text {rd }}$ time. Submit on time ()
- Project Milestone \& Final Report: We expect that everyone in a group fairly contributes to the group project. We will have a description of individual contributions at the end of the report. We reserve the right to give different grades across the group. Discuss this in your groups and create a fair solution.
- Project Milestone grading and feedback: will be released today.
- Tue May 21 - Extra Project Office Hours with TAs (highly encouraged)
- Only helpful if prepared and on time
- This replaces lecture and Tim's OH on May 21
- Thu May 23: Guest lecture.

Mining Data Streams (Part 1)

CS547 Machine Learning for Big Data

 Tim Althoff TT PAUL G. ALLEN SCHOOL
OF COMPUTER SCIENCE \& ENGINEERING

New Topic: Infinite Data

High dim. data

Locality

 sensitive hashing

Dimensional ity reduction

Graph data

Infinite data

Machine learning

Apps

Recommen der systems

Association
Rules

Duplicate document detection

Data Streams

- In many data mining situations, we do not know the entire data set in advance
- Stream Management is important when the input rate is controlled externally:
- Google queries
- Twitter or Facebook status updates
- We can think of the data as infinite and non-stationary (the distribution changes over time)
- This is the fun part and why interesting algorithms are needed

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
- We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make critical calculations about the stream using a limited amount of (secondary) memory?

Side note: SGD is a Streaming Alg.

- Stochastic Gradient Descent (SGD) is an example of a stream algorithm
- In Machine Learning we call this: Online Learning
- Allows for modeling problems where we have a continuous stream of data
- We want an algorithm to learn from it and slowly adapt to the changes in data
- Idea: Do small updates to the model
- SGD (SVM, Perceptron) makes small updates
- So: First train the classifier on training data
- Then: For every example from the stream, we slightly update the model (using small learning rate)

General Stream Processing Model

Problems on Data Streams

- Types of queries one wants to answer on a data stream: (we'll do these today)
- Sampling data from a stream
- Construct a random sample
- Queries over sliding windows
- Number of items of type \boldsymbol{x} in the last \boldsymbol{k} elements of the stream

Problems on Data Streams

- Types of queries one wants to answer on a data stream: (we'll do these on Thu)
- Filtering a data stream
- Select elements with property \boldsymbol{x} from the stream
- Counting distinct elements
- Number of distinct elements in the last \boldsymbol{k} elements of the stream
- Estimating moments
- Estimate avg./std. dev. of elements in stream
- Finding frequent elements

Applications (1)

- Mining query streams
- Google wants to know what queries are most frequent today
- Mining click streams
- Wikipedia wants to know which of its pages are getting an unusual number of hits in the past hour
- Mining social network news feeds
- Look for trending topics on Twitter, Facebook

Applications (2)

- Sensor Networks
- Many sensors feeding into a central controller
- Telephone call records
- Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
- Gather information for optimal routing
- Detect denial-of-service attacks
- Large-scale machine learning models
- Get summary statistics of data for candidate splits in decision tree model (e.g. Xgboost)

Sampling from a Data Stream: Sampling a fixed proportion

As the stream grows the sample also gets bigger

Sampling from a Data Stream

- Since we can not store the entire stream, one obvious approach is to store a sample - Two different problems:
- (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
- (2) Maintain a random sample of fixed size over a potentially infinite stream
- At any "time" \boldsymbol{k} we would like a random sample of s elements
- What is the property of the sample we want to maintain? For all time steps \boldsymbol{k}, each of \boldsymbol{k} elements seen so far has equal prob. of being sampled

Sampling a Fixed Proportion

- Problem 1: Sampling fixed proportion
- Scenario: Search engine query stream
- Stream of tuples: (user, query, time)
- Answer questions such as: How often did a user run the same query in a single day
- Have space to store 1/10th of query stream
- Naïve solution:
- Generate a random integer in [0...9] for each query
- Store the query if the integer is $\mathbf{0}$, otherwise discard

Problem with Naïve Approach

- Simple question: What fraction of unique queries by an average search engine user are duplicates?
- Suppose each user issues \boldsymbol{x} queries once and \boldsymbol{d} queries twice (total of $x+2 d$ query instances)
- Correct answer: $d /(x+d)$
- Proposed solution: We keep 10\% of the queries
- Sample will contain $\mathbf{x / 1 0}$ of the singleton queries and $2 d / 10$ of the duplicate queries
- But only d/100 pairs of duplicates
- $d / 100=1 / 10 \cdot 1 / 10 \cdot d$
" Of \boldsymbol{d} "duplicates" in the full stream, 18d/100 queries appear exactly once
- $18 \mathrm{~d} / 100=((1 / 10 \cdot 9 / 10)+(9 / 10 \cdot 1 / 10)) \cdot d$
- So the sample-based answer is $\frac{\frac{d}{100}}{\frac{x}{10}+\frac{d}{100}+\frac{18 d}{100}}=\frac{d}{10 x+19 d}$

Solution: Sample Users

Solution:

- Pick 1/10th of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into 10 buckets (0-9). If the user hashes to bucket 0, then accept this search query for the sample, and if not, then not. (reading 4.2.2)

Generalized Solution

- Stream of tuples with keys:
- Key is some subset of each tuple's components
- e.g., tuple is (user, query, time); key is user
- Choice of key depends on application
- To get a sample of a / b fraction of the stream:
- Hash each tuple's key uniformly into \boldsymbol{b} buckets
- Pick the tuple if its hash value is at most \boldsymbol{a}

Hash table with \mathbf{b} buckets, pick the tuple if its hash value is at most \mathbf{a}.
How to generate a 30\% sample?
Hash into $b=10$ buckets, take the tuple if it hashes to one of the first 3 buckets

Sampling from a Data Stream: Sampling a fixed-size sample

As the stream grows, the sample is of fixed size

Sampling from a Data Stream

- Since we can not store the entire stream, one obvious approach is to store a sample
- Two different problems:
- (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
(2) Maintain a random sample of fixed size over a potentially infinite stream
" At any "time" \boldsymbol{k} we would like a random sample of s elements
- What is the property of the sample we want to maintain? For all time steps \boldsymbol{k}, each of \boldsymbol{k} elements seen so far has equal prob. of being sampled

Maintaining a fixed-size sample

- Problem 2: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
- E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose by time n we have seen n items
- Each item is in the sample S with equal prob. s / n How to think about the problem: say $s=2$ Stream ax cy zjk gd e g...
At $\mathrm{n}=5$, each of the first 5 tuples is included in the sample \mathbf{S} with equal prob.
At $\mathbf{n}=\mathbf{7}$, each of the first 7 tuples is included in the sample \mathbf{S} with equal prob.
Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

Solution: Fixed Size Sample

- Algorithm (a.k.a. Reservoir Sampling)

- Store all the first \boldsymbol{s} elements of the stream to \boldsymbol{S}
- Suppose we have seen \boldsymbol{n} - $\mathbf{1}$ elements, and now the $\boldsymbol{n}^{\text {th }}$ element arrives ($\boldsymbol{n}>\boldsymbol{s}$)
- With probability $\boldsymbol{s} / \boldsymbol{n}$, keep the $\boldsymbol{n}^{\text {th }}$ element, else discard it
- If we picked the $\boldsymbol{n}^{\text {th }}$ element, then it replaces one of the \boldsymbol{s} elements in the sample \boldsymbol{S}, picked uniformly at random
- Claim: This algorithm maintains a sample S with the desired property:
- After \boldsymbol{n} elements, the sample contains each element seen so far with probability s / n

Proof: By Induction

- We prove this by induction (reading 4.5.5):
- Assume that after \boldsymbol{n} elements, the sample contains each element seen so far with probability s / n
- We need to show that after seeing element $\boldsymbol{n + 1}$ the sample maintains the property
- Sample contains each element seen so far with probability $s /(n+1)$
- Base case:
- After we see $\mathbf{n}=\mathbf{s}$ elements the sample \mathbf{S} has the desired property
- Each out of $\mathbf{n}=\mathbf{s}$ elements is in the sample with probability $s / s=1$

Proof: By Induction

- Inductive hypothesis: After \boldsymbol{n} elements, the sample \boldsymbol{S} contains each element seen so far with prob. $\boldsymbol{s} / \boldsymbol{n}$
- Now element $n+1$ arrives
- Inductive step: For each element already in S, probability that the algorithm keeps it in S is:

$$
\left(1-\frac{s}{n+1}\right)+\left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right)=\frac{n}{\substack{s}}
$$

- So, at time \boldsymbol{n}, tuples in S were there with prob. \mathbf{s} / \mathbf{n}
- Time $\boldsymbol{n} \boldsymbol{\rightarrow} \boldsymbol{n + 1}$, tuple stayed in \boldsymbol{S} with prob. $\mathbf{n} /(\mathbf{n + 1})$
- So prob. tuple is in S at time $n+1=\frac{s}{n} \cdot \frac{n}{n+1}=\frac{s}{n+1}$

Queries over a (long) Sliding Window

Sliding Windows

- A useful model of stream processing is that queries are about a window of length \boldsymbol{N} the \boldsymbol{N} most recent elements received
- Interesting case: \boldsymbol{N} is so large that the data cannot be stored in memory, or even on disk
- Or, there are so many streams that windows for all cannot be stored
- Amazon example:
- For every product \mathbf{X} we keep 0/1 stream of whether that product was sold in the n-th transaction
- We want answer queries, how many times have we sold \mathbf{X} in the last \mathbf{N} sales

Sliding Window: 1 Stream

- Sliding window on a single stream: $\quad N=6$

$$
\begin{aligned}
& \text { qwertyuiopasdfghjkIzxcvbnm } \\
& \text { quertyuiopasdfghjkIzxcvbnm } \\
& \text { qwertyuiopas dfghjklzxcvbnm } \\
& \text { quertyuiopasdfghjkIzxcvbnm } \\
& \text { Future } \longrightarrow
\end{aligned}
$$

Counting Bits (1)

- Problem (reading 4.6):
- Given a stream of 0s and 1s
- Be prepared to answer queries of the form How many 1s are in the last \boldsymbol{k} bits? For any $\boldsymbol{k} \leq \boldsymbol{N}$, where N is the window size.
- Obvious solution:

Store the most recent \boldsymbol{N} bits

- When new bit comes in, discard the $(\mathbf{N}+1)^{\text {st }}$ bit

| 010011011101010110110110 | Future \longrightarrow |
| ---: | :--- |\quad Suppose $N=6$

Counting Bits (2)

- You can not get an exact answer without storing the entire window (details of proof is in reading 4.6.1)
- Real Problem:

What if we cannot afford to store \mathbf{N} bits?

- Say we're processing many such streams and for each $N=1$ billi8月 00110111010101101 1

- But we are happy with an approximate answer

An attempt: Simple solution

- Q: How many 1s are in the last N bits?
- A simple solution that does not really solve our problem: Uniformity assumption

- Maintain 2 counters:
- S: number of 1 s from the beginning of the stream
- Z: number of Os from the beginning of the stream
- How many 1s are in the last N bits? $N \cdot \frac{s}{s+Z}$
- But, what if stream is non-uniform?
- What if distribution changes over time?

DGIM Method

- DGIM solution that does not assume uniformity
- We store $\boldsymbol{O}\left(\log ^{2} N\right)$ bits per stream
- Solution gives approximate answer, never off by more than 50\%
- Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits
- Error: If we have 10 1s then 50\% error means 10 +/- 5

Idea: Exponential Windows

- Solution that doesn't (quite) work:
- Summarize exponentially increasing regions of the stream, looking backward
- Drop small regions if they begin at the same point as a larger region

We can reconstruct the count of the last \boldsymbol{N} bits, except we are not sure how many of the last $\mathbf{6}$ 1s are included in the \boldsymbol{N}

What's Good?

- Stores only O($\log ^{2} N$) bits
- $\mathrm{O}(\log N)$ counts of $\log _{2} N$ bits each (similar to reading 4.6.3)
- Easy update as more bits enter
- Error in count no greater than the number of 1 s in the "unknown" area

What's Not So Good?

- As long as the 1 s are fairly evenly distributed, the error due to the unknown region is small - no more than 50\%
- But it could be that all the 1 s are in the unknown area at the end
- In that case, the relative error is unbounded!

Fixup: DGIM method

- Idea: Instead of summarizing fixed-length blocks, summarize blocks with specific number of $\mathbf{1 s}$:
- Let the block sizes (number of 1s) increase exponentially
- When there are few 1 s in the window, block sizes stay small, so errors are small
\square
1001010110001011 Q10101010101011010101010101110101010111010100 0 10110 10 \longleftarrow ~ N

DGIM: Timestamps

- Each bit in the stream has a timestamp, starting 1, 2, ...
- Record timestamps modulo \mathbf{N} (the window size), so we can represent any relevant timestamp in $\boldsymbol{O}\left(\boldsymbol{\operatorname { l o g }}_{2} N\right)$ bits

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
- (A) The timestamp of its right (most recent) end [O(log N) bits]
- (B) The number of 1 s between its left beginning and right end [$\mathrm{O}(\log \log N)$ bits]
- Constraint on buckets:

Number of $1 \mathbf{s}$ must be a power of 2
That explains the $O(\log \log N)$ in (B) above

1001010110001011 d10101010101011010101010101110101010111010100010110010

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
- Earlier buckets are not smaller than later buckets
- Buckets disappear when their end-time is $\boldsymbol{>} \boldsymbol{N}$ time units in the past

Example: Bucketized Stream

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

Updating Buckets (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to \mathbf{N} time units before the current time
- $\mathbf{2}$ cases: Current bit is $\mathbf{0}$ or $\mathbf{1}$
- If the current bit is 0 : no other changes are needed

Updating Buckets (2)

If the current bit is 1 :

- (1) Create a new bucket of size $\mathbf{1}$, for just this bit
- End timestamp = current time
- (2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2
- (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
- (4) And so on ...

Example: Updating Buckets

Current state of the stream:
1001010110001011010101010101011010101010111010101011010100010110010
Bit of value 1 arrives
0010101100010110101010101010110101010101011101010101110101000101100101
Two orange buckets get merged into a yellow bucket
001010110001011010101010101011010101010101110101010110101000101100101
Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:
0101100010110101010101010110101010101011101010101110101000101100101101
Buckets get merged...
0101100010110101010101010110101010101011101010101110101000101100101101
State of the buckets after merging
0101100010110101010101010110101010101011101010101110101000101100101101

How to Query?

To estimate the number of 1 s in the most

 recent N bits:1. Sum the sizes of all buckets but the last
(note "size" means the number of 15 in the bucket)
2. Add half the size of the last bucket

Remember: We do not know how many 1s of the last bucket are still within the wanted window

Example: Bucketized Stream

Estimate for the number of ones in window of size N is:

$$
1+1+2+4+4+8+8+16 / 2
$$

Error Bound: Proof Sketch

- Why is error at most 50\%? Let's prove it!
- Suppose the last bucket has size 2^{r}
- Worst case overestimate: All the 1 s in the bucket are outside of window (except rightmost) - we make an error of at most $\mathbf{2}^{\text {r-1 }} \mathbf{- 1}$
- Since there is at least one bucket of each of the sizes less than $\mathbf{2}^{r}$, the true sum is at least
$\mathbf{1 + 2 + 4 + . . + 2 ^ { r - 1 } = \mathbf { 2 } ^ { r } \mathbf { - 1 } , ~}$
- Thus, error at most $50 \%\left[=2^{r-1} / 2^{r}>\left(2^{r-1}-1\right) /\left(2^{r}-1\right)\right]$ At least 16-1 1 s
1111111000000001101010101011010101010101110101010111010100010110010

Further Reducing the Error

- Instead of maintaining 1 or $\mathbf{2}$ of each size bucket, we allow either r-1 or r buckets ($r>2$)
- Except for the largest size buckets; we can have any number between 1 and r of those
- Error is at most $O(1 / r)$
- see MMDS book for details (4.6.6)
- By picking r appropriately, we can tradeoff between number of bits we store and the error

Extensions

- Can we use the same trick to answer queries How many 1 's in the last k ? where $k<N$?
- A: Find earliest bucket \mathbf{B} that at overlaps with \boldsymbol{k}. Number of 1 s is the sum of sizes of more recent buckets $+1 / 2$ size of B

1001010110001011010101010101011010101010101110101010111010100010110010
k

- How can we handle the case where the stream is not bits, but integers, and we want the sum of the last k elements?

Extensions

- Stream of positive integers
- We want the sum of the last k elements
- Amazon: Avg. price of last \mathbf{k} sales
- Solution:
- (1) If you know all have at most m bits
- Treat \boldsymbol{m} bits of each integer as a separate stream
- Use DGIM to count 1s in each integer/stream
- The sum is $=\sum_{i=0}^{m-1} c_{i} 2^{i}$
$c_{i} \ldots$ estimated
count for i-th bit
- (2) Use buckets to keep partial sums
- Sum of elements in size bucket is at most $2^{\boldsymbol{b}}$

Idea: Sum in each bucket is at most $2^{\text {b }}$ (unless bucket has only 1 integer) Max bucket sum: 168421

Summary

- Sampling a fixed proportion of a stream
- Sample size grows as the stream grows
- Sampling a fixed-size sample
- Reservoir sampling
- Counting the number of 1 s in the last N elements
- Exponentially increasing windows
- Extensions:
- Number of 1 s in any last $k(k<N)$ elements
- Sums of integers in the last N elements

Counting Itemsets

Counting Itemsets

- New Problem: Given a stream, which items appear more than s times in the window?
- Possible solution: Think of the stream of baskets as one binary stream per item
- $\mathbf{1}=$ item present; $\mathbf{0}=$ not present
- Use DGIM to estimate counts of 1 s for all items

At least 1 of	2 of	2 of	1 of 2 of
size 16. Partially			
beyond window.	size 8		

Extension to Itemsets

- In principle, you could count frequent pairs or even larger sets the same way
- One stream per itemset
- Drawbacks:
- Only approximate
- Number of itemsets is way too big

Exponentially Decaying Windows

- Exponentially decaying windows: A heuristic for selecting likely frequent item(sets)
- What are "currently" most popular movies?
- Instead of computing the raw count in last \boldsymbol{N} elements
- Compute a smooth aggregation over the whole stream
- If stream is $\boldsymbol{a}_{1}, a_{2}, \ldots$ and we are taking the sum of the stream, take the answer at time t to be:
$=\sum_{i=1}^{t} a_{i}(1-c)^{t-i}$
- c is a constant, presumably tiny, like $\mathbf{1 0}^{\mathbf{- 6}}$ or $\mathbf{1 0}^{-9}$
- When new $\mathrm{a}_{\mathrm{t}+1}$ arrives:

Multiply current sum by (1-c) and add $\mathrm{a}_{\mathrm{t}+1}$

Example: Counting Items

- If each $\boldsymbol{a}_{\boldsymbol{i}}$ is an "item" we can compute the characteristic function of each possible item \boldsymbol{x} as an Exponentially Decaying Window
- That is: $\sum_{i=1}^{t} \boldsymbol{\delta}_{i} \cdot(\mathbf{1}-\boldsymbol{c})^{t-i}$ where $\boldsymbol{\delta}_{\mathrm{i}}=\mathbf{1}$ if $\mathrm{a}_{\mathrm{i}}=\mathbf{x}$, and $\mathbf{0}$ otherwise
- Imagine that for each item x we have a binary stream ($\mathbf{1}$ if \boldsymbol{x} appears, $\mathbf{0}$ if \boldsymbol{x} does not appear)
- New item \boldsymbol{x} arrives:
- Multiply all counts by (1-c)
- Add +1 to count for element \boldsymbol{x}
- Call this sum the "weight" of item x

Sliding Versus Decaying Windows

- Important property: Sum over all weights
$\sum_{t}(1-c)^{t}$ is $1 /[1-(1-c)]=1 / c$

$$
\sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}
$$

Example: Counting Items

- What are "currently" most popular movies?
- Suppose we want to find movies of weight > $1 / 2$
- Important property: Sum over all weights $\sum_{t}(1-c)^{t}$ is $1 /[1-(1-\mathrm{c})]=1 / \mathrm{c}$
- Thus:
- There cannot be more than $2 / \mathrm{c}$ movies with weight of $1 / 2$ or more
- So, $\mathbf{2 / c}$ is a limit on the number of movies being counted at any time

Extension to Itemsets

- Count (some) itemsets in an E.D.W.
- What are currently "hot" itemsets?
- Problem: Too many itemsets to keep counts of all of them in memory
- When a basket B comes in:
- Multiply all counts by (1-c)
- For uncounted items in B, create new count
- Add 1 to count of any item in B and to any itemset contained in \mathbf{B} that is already being counted
- Drop counts < $1 / 2$
- Initiate new counts (next slide)

Initiation of New Counts

- Start a count for an itemset $\boldsymbol{S} \subseteq \boldsymbol{B}$ if every proper subset of \boldsymbol{S} had a count prior to arrival of basket \boldsymbol{B}
- Intuitively: If all subsets of \boldsymbol{S} are being counted this means they are "frequent/hot" and thus S has a potential to be "hot"
- Example:
- Start counting $\boldsymbol{S}=\{\mathbf{i}, \mathbf{j}\}$ iff both \mathbf{i} and \mathbf{j} were counted prior to seeing B
- Start counting $S=\{\mathbf{i}, \mathbf{j}, \mathrm{k}\} \mathrm{iff}\{\mathbf{i}, \mathrm{j}\},\{\mathrm{i}, \mathrm{k}\}$, and $\{\mathbf{j}, \mathbf{k}\}$ were all counted prior to seeing \boldsymbol{B}

Summary: Counting Itemsets

- Task: Which were the most popular recent items?
- Can keep exponentially decaying counts for items and potentially larger itemsets
- Number of larger itemsets is very large
- But we are conservative about starting counts of large sets
- All subsets need to be counted currently
- If we counted every set we saw, one basket of $\mathbf{2 0}$ items would initiate $\mathbf{1 M}$ counts ($\mathbf{2}^{\wedge} 20$)

Please give us feedback (); https://bit.ly/CSE547feedback2024

