Announcements:
- Project Milestone feedback this week.
- Today: HW3 due / HW4 released (start early 😊)
- Next two weeks: Guest speakers & project office hours

Large-Scale Machine Learning (2)
Supervised Learning

- Would like to do **prediction**: estimate a function \(f(x) \) so that \(y = f(x) \)

- Where \(y \) can be:
 - **Real number**: Regression
 - **Categorical**: Classification
 - **Complex object**:
 - Ranking of items, Parse tree, etc.

- **Data is labeled**:
 - Have many pairs \(\{(x, y)\} \)
 - \(x \) ... vector of binary, categorical, real valued features
 - \(y \) ... class: \{+1, -1\}, or a real number
Supervised Learning

- **Task:** Given data (X,Y) build a model $f()$ to predict Y' based on X'
- **Strategy:** Estimate $y = f(x)$ on (X,Y).
 Hope that the same $f(x)$ also works to predict unknown Y'
 - The “hope” is called generalization
 - **Overfitting:** If $f(x)$ predicts well Y but is unable to predict Y'
 - We want to build a model that generalizes well to unseen data
Formal Setting

1) Training data is drawn independently at random according to unknown probability distribution \(P(x, y) \)

2) The learning algorithm analyzes the examples and produces a classifier \(f \)

Given new data \((x, y)\) drawn from \(P \), the classifier is given \(x \) and predicts \(\hat{y} = f(x) \)

The loss \(\mathcal{L}(\hat{y}, y) \) is then measured

Goal of the learning algorithm:
Find \(f \) that minimizes expected loss \(E_P[\mathcal{L}] \)
Formal Setting

Why is it hard?
We estimate f on training data but want the f to work well on unseen future (i.e., test) data.

$P(x, y)$
Training set S
Learning algorithm
f
loss function
$L(\hat{y}, y)$
Minimizing the Loss

- **Goal:** Minimize the expected loss
 \[
 \min_f \mathbb{E}_P[\mathcal{L}]
 \]

- But, we don’t have access to \(P \) but only to training sample \(D \):
 \[
 \min_f \mathbb{E}_D[\mathcal{L}]
 \]

- So, we minimize the average loss on the training data:
 \[
 \min_f J(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(x_i), y_i)
 \]

Problem: Just memorizing the training data gives us a perfect model (with zero loss)
Given:

- A set of \(N \) training examples
 - \(\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \)
- A loss function \(\mathcal{L} \)

Choose the model: \(f_w(x) = w \cdot x + b \)

Find:

- The weight vector \(w \) that minimizes the expected loss on the training data

\[
J(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(w \cdot x_i + b, y_i)
\]
Problem: Loss

- **Problem**: Step-wise Constant 0-1-Loss function

Derivative is either 0 or not differentiable
Approximating the Expected Loss by a Smooth Function

- Replace the original objective function by a surrogate loss function. E.g., hinge loss:

\[
\tilde{J}(w) = \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y^{(i)} f(x^{(i)}))
\]

When \(y = 1 \):
Support Vector Machines
Support Vector Machines

Want to separate “+” from “−” using a line

Data:
- Training examples:
 - \((x_1, y_1) \ldots (x_n, y_n)\)
- Each example \(i\):
 - \(x_i = (x_i^{(1)}, \ldots, x_i^{(d)})\)
 - \(x_i^{(j)}\) is real valued
 - \(y_i \in \{-1, +1\}\)
- Inner product:
 \[w \cdot x = \sum_{j=1}^{d} w^{(j)} \cdot x^{(j)} \]

Which is best linear separator (defined by \(w, b\))?
Maximum Margin

- Distance from the separating hyperplane corresponds to the “confidence” of prediction
- Example:
 - We are more sure about the class of A and B than of C
Maximum Margin

- **Margin γ:** Distance of closest example from the decision line/hyperplane

The reason we define margin this way is due to theoretical convenience and existence of generalization error bounds that depend on the value of margin.
Why maximizing γ a good idea?

- **Remember: The Dot product**

$$A \cdot B = ||A|| \cdot ||B|| \cdot \cos \theta$$

$$||A|| = \sqrt{\sum_{j=1}^{d} (A(j))^2}$$
Why maximizing γ a good idea?

- **Dot product**
 \[A \cdot B = ||A|| ||B|| \cos \theta \]
- What is $w \cdot x_1$, $w \cdot x_2$?

In this case
\[\gamma_1 \approx ||w||^2 \]

In this case
\[\gamma_2 \approx 2||w||^2 \]

- So, γ roughly corresponds to the margin
 - **Bottom line:** Bigger γ, bigger the separation
What is the margin?

Let:

- **Line L**: \(w \cdot x + b = 0 \)
 - \(w^{(1)}x^{(1)} + w^{(2)}x^{(2)} + b = 0 \)
 - \(w = (w^{(1)}, w^{(2)}) \)
 - **Point A** = \((x_A^{(1)}, x_A^{(2)}) \)
 - **Point M** on a line = \((x_M^{(1)}, x_M^{(2)}) \)

\[
\begin{align*}
\text{d}(A, L) &= |AH| \\
&= |(A-M) \cdot w| \\
&= |(x_A^{(1)} - x_M^{(1)}) w^{(1)} + (x_A^{(2)} - x_M^{(2)}) w^{(2)}| \\
&= |x_A^{(1)} w^{(1)} + x_A^{(2)} w^{(2)} + b| \\
&= |w \cdot A + b|
\end{align*}
\]

Remember \(x_M^{(1)} w^{(1)} + x_M^{(2)} w^{(2)} = -b \) since \(M \) belongs to line \(L \)
Largest Margin

- Prediction = \(\text{sign}(w \cdot x + b) \)
- “Confidence” = \((w \cdot x + b) \, y\)
- For i-th datapoint:
 \[
 \gamma_i = (w \cdot x_i + b) y_i
 \]
- Want to solve:
 \[
 \max_w \min_b \min_i \gamma_i
 \]
- Can rewrite as
 \[
 \max_{w, \gamma, b} \gamma
 \]
 \[
 \text{s.t. } \forall i, y_i (w \cdot x_i + b) \geq \gamma
 \]
Support Vector Machine

- Maximize the margin:
 - Good according to intuition, theory (c.f. “VC dimension”) and practice

\[
\begin{align*}
\max_{w, \gamma, b} \ & \gamma \\
\text{s.t.} \ & \forall i, y_i (w \cdot x_i + b) \geq \gamma
\end{align*}
\]

- \(\gamma \) is margin ... distance from the separating hyperplane
Support Vector Machines: Deriving the margin
Support Vector Machines

- **Separating hyperplane is defined by the support vectors**
 - Points on +/- planes from the solution
 - If you knew these points, you could ignore the rest
 - Generally, \(d+1\) support vectors (for \(d\) dim. data)
Canonical Hyperplane: Problem

- **Problem:**
 - Let \((w \cdot x + b)y = \gamma\) then \((2w \cdot x + 2b)y = 2\gamma\)
 - Scaling \(w\) increases margin!

- **Solution:**
 - Work with normalized \(w\):
 \[\gamma = \left(\frac{w}{||w||} \cdot x + b \right) y \]
 - Let’s also require **support vectors** \(x_j\) to be on the plane defined by:
 \[w \cdot x_j + b = \pm 1 \]
Want to maximize margin!
What is the relation between x_1 and x_2?

- $x_1 = x_2 + 2\gamma \frac{w}{||w||}$
- We also know:
 - $w \cdot x_1 + b = +1$
 - $w \cdot x_2 + b = -1$
- So:
 - $w \cdot x_1 + b = +1$
 - $w \left(x_2 + 2\gamma \frac{w}{||w||} \right) + b = +1$
 - $w \cdot x_2 + b + 2\gamma \frac{w \cdot w}{||w||} = +1$

$\Rightarrow \gamma = \frac{||w||}{w \cdot w} = \frac{1}{||w||}$

Note: $w \cdot w = ||w||^2$
Maximizing the Margin

- We started with
 \[\max_{w,\gamma} \gamma \]
 \[s.t. \forall i, y_i(w \cdot x_i + b) \geq \gamma \]
 But \(w \) can be arbitrarily large!
- We normalized and...
 \[\arg \max \gamma = \arg \max \frac{1}{\|w\|} = \arg \min \|w\| = \arg \min \frac{1}{2} \|w\|^2 \]
- Then:
 \[\min_{w,b} \frac{1}{2} \|w\|^2 \]
 \[s.t. \forall i, y_i(w \cdot x_i + b) \geq 1 \]

This is called SVM with “hard” constraints
Non-linearly Separable Data

- If data is **not separable** introduce **penalty**:

 $$
 \min_{w, b} \frac{1}{2} \|w\|^2 + C \cdot (\# \text{ number of mistakes})
 $$

 $$
 s.t. \forall i, y_i (w \cdot x_i + b) \geq 1
 $$

- Minimize $\|w\|^2$ plus the number of training mistakes

- Set C using cross validation

- **How to penalize mistakes?**
 - All mistakes are not equally bad!

Support Vector Machines

- **Introduce slack variables** ξ_i

 $$\min_{w, b, \xi \geq 0} \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^{n} \xi_i$$

 $$s.t. \forall i, y_i (w \cdot x_i + b) \geq 1 - \xi_i$$

- **If point** x_i **is on the wrong side of the margin then get penalty** ξ_i

 For each data point:

 If margin ≥ 1, don’t care
 If margin < 1, pay linear penalty
Slack Penalty C

$$\min_{w, b, \xi_i \geq 0} \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^{n} \xi_i$$

s.t. $\forall i, y_i (w \cdot x_i + b) \geq 1 - \xi_i$

- **What is the role of slack penalty C:**
 - $C=\infty$: Only want to w, b that separate the data
 - $C=0$: Can set ξ_i to anything, then $w=0$ (basically ignores the data)
How do we obtain the Natural Form?

Previously

\[
\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i
\]

\[s.t. \forall i, y_i \cdot (w \cdot x_i + b) \geq 1 - \xi_i\]

Solve for \(\xi \):

\[
\begin{align*}
\xi_i & \geq 1 - y_i \cdot (w \cdot x_i + b) \\
\xi_i & \geq 0 \\
\Rightarrow \quad \xi_i & \geq \max(0, 1 - y_i \cdot (w \cdot x_i + b))
\end{align*}
\]

Natural form:

\[
\arg \min_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max\{0, 1 - y_i (w \cdot x_i + b)\}
\]
Support Vector Machines

- **SVM in the “natural” form**

\[
\arg\min_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max\{0, 1 - y_i (w \cdot x_i + b)\}
\]

Margin

Empirical **loss L** (how well we fit training data)

Regularization parameter

- **SVM uses “Hinge Loss”:**

\[
\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i
\]

s.t. \(\forall i, y_i \cdot (w \cdot x_i + b) \geq 1 - \xi_i\)

\[
Hinge\ loss: \ max\{0, 1-z\}
\]

0/1 loss

penalty

-1 0 1 2

z = y_i \cdot (x_i \cdot w + b)
Support Vector Machines: How to estimate the parameters?
SVM: How to estimate \(w \)?

\[
\begin{align*}
\min_{w,b} & \quad \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \xi_i \\
\text{s.t.} & \quad \forall i, y_i \cdot (x_i \cdot w + b) \geq 1 - \xi_i
\end{align*}
\]

- **Want to estimate \(w \) and \(b \)!**
 - **Standard way:** Use a solver!
 - **Solver:** software for finding solutions to “common” optimization problems
 - **Use a quadratic solver:**
 - Minimize quadratic function
 - Subject to linear constraints
 - **Problem:** Solvers are inefficient for big data!
SVM: How to estimate w?

- **Want to minimize** $J(w,b)$:

$$J(w,b) = \frac{1}{2} \sum_{j=1}^{d} (w^{(j)})^2 + C \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i \left(\sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b \right) \right\}$$

 - **Empirical loss** $L(x_i, y_i)$

- **Compute the gradient** $\nabla(j)$ w.r.t. $w^{(j)}$

$$\nabla J^{(j)} = \frac{\partial J(w, b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

$$\frac{\partial L(x_i, y_i)}{\partial w^{(j)}} = 0 \quad \text{if } y_i (w \cdot x_i + b) \geq 1$$

$$= -y_i x_i^{(j)} \quad \text{else}$$
SVM: How to estimate \(w \)?

- **Gradient descent:**

 Iterate until convergence:
 - For \(j = 1 \ldots d \)
 - **Evaluate:** \(\nabla J^{(j)} = \frac{\partial f(w, b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}} \)
 - **Update:** \(w^{(j)}' \leftarrow w^{(j)} - \eta \nabla J^{(j)} \)
 - \(w \leftarrow w' \)

- **Problem:**
 - Computing \(\nabla J^{(j)} \) takes \(O(n) \) time!
 - \(n \ldots \) size of the training dataset
SVM: How to estimate \(w \)?

- **Stochastic Gradient Descent**
 - Instead of evaluating gradient over all examples, evaluate it for each *individual* training example

\[
\nabla J^{(j)}(x_i) = w^{(j)} + C \cdot \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}
\]

- **Stochastic gradient descent:**

Iterate until convergence:
- For \(i = 1 \ldots n \)
 - For \(j = 1 \ldots d \)
 - Compute: \(\nabla J^{(j)}(x_i) \)
 - Update: \(w^{(j)} \leftarrow w^{(j)} - \eta \nabla J^{(j)}(x_i) \)

We just had:

\[
\nabla J^{(j)} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}
\]

Notice: no summation over \(i \) anymore.
Other variations of GD

- **Batch Gradient Descent**
 - Calculates error for each example in the training dataset, but updated model **only after** all examples have been evaluated (i.e., end of training epoch)
 - **PROS**: fewer updates, more stable error gradient
 - **CONS**: usually requires whole dataset in memory, slower than SGD

- **Mini-Batch Gradient Descent**
 - Like BGD, but using smaller batches of training data. Balance between robustness of SGD, and efficiency of BGD.
Support Vector Machines: Example
Example: Text categorization

- **Dataset:**
 - **Reuters RCV1** news document corpus
 - Predict a category of a document
 - One vs. the rest classification
 - \(n = 781,000 \) training examples (documents)
 - 23,000 test examples
 - \(d = 50,000 \) features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words
Example: Text categorization

Questions:

1. Is SGD successful at minimizing $J(w,b)$?
2. How quickly does SGD find the min of $J(w,b)$?
3. What is the error on a test set?

<table>
<thead>
<tr>
<th></th>
<th>Training time</th>
<th>Value of $J(w,b)$</th>
<th>Test error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard SVM</td>
<td>23,642 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
<tr>
<td>“Fast Linear SVM”</td>
<td>66 secs</td>
<td>0.2278</td>
<td>6.03%</td>
</tr>
<tr>
<td>SGD-SVM</td>
<td>1.4 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
</tbody>
</table>

1. SGD-SVM is successful at minimizing the value of $J(w,b)$
2. SGD-SVM is super fast
3. SGD-SVM test set error is comparable
Optimization “Accuracy”

For optimizing $J(w,b)$ within reasonable quality

SGD-SVM is super fast
What about multiple classes?

- **Idea 1:**
 - One against all
 - Learn 3 classifiers
 - $+$ vs. $\{0, -\}$
 - $-$ vs. $\{0, +\}$
 - 0 vs. $\{+, -\}$

Obtain:

$$w_+ b_+, \quad w_- b_-, \quad w_0 b_0$$

- **How to classify?**
 - Return class c
 - $$\text{arg max}_c w_c x + b_c$$
Learn 1 classifier: Multiclass SVM

- **Idea 2:** Learn 3 sets of weights simultaneously!
 - For each class c estimate w_c, b_c
 - Want the correct class y_i to have highest margin:
 $$w_{y_i} x_i + b_{y_i} \geq 1 + w_c x_i + b_c \quad \forall c \neq y_i, \forall i$$
Multiclass SVM

- **Optimization problem:**

\[
\begin{align*}
\min_{w,b} & \quad \frac{1}{2} \sum_c \|w_c\|^2 + C \sum_{i=1}^{n} \xi_i \\
\text{s.t.} & \quad w_{y_i} \cdot x_i + b_{y_i} \geq w_c \cdot x_i + b_c + 1 - \xi_i \quad \forall c \neq y_i, \forall i \\
& \quad \xi_i \geq 0, \forall i
\end{align*}
\]

- To obtain parameters \(w_c, b_c\) (for each class \(c\)) we can use similar techniques as for 2 class SVM

- SVM is widely perceived a very powerful learning algorithm
ML Parallelization
Why Large-Scale ML?

- **The Unreasonable Effectiveness of Data**
 - In 2017, Google revisited a 15-year-old experiment on the effect of data and model size in ML, focusing on the latest Deep Learning models in computer vision.

- **Findings:**
 - Performance increases logarithmically based on volume of training data.
 - Complexity of modern ML models (i.e., deep neural nets) allows for even further performance gains.

- **Large datasets + large ML models => amazing results!!**

Recap

- Last lecture: Decision Trees (and PLANET) as a prime example of **Data Parallelism** in ML

- Today’s lecture: Multiclass SVMs, Neural Networks (especially Deep ones), etc. can leverage both **Data Parallelism and Model Parallelism**
 - State-of-the-art Deep Neural Networks for visual recognition tasks (e.g., ImageNet challenge) or NLP can have **more than 1 billion trillion parameters**!
Parallelization overview

M2 and M4 must wait for the 1st stage to complete!
Parallelization overview

- Unsupervised or Supervised Objective
- Minibatch Stochastic Gradient Descent (SGD)
- Model parameters sharded by partition
- 10s, 100s, or 1000s of cores per model
Parameter Server

Parameter Server: Key/Value store
- Keys index the model parameters (e.g., weights)
- Values are the parameters of the ML model (e.g., a neural network)

Systems challenges:
- High bandwidth
- Synchronization
- Fault tolerance
Parameter Server

Parameter Server \(p' = p + \Delta p \)

Why do parallel updates work?
Async SGD

- **Key idea:** don’t synchronize, just *overwrite* parameters opportunistically from multiple workers (i.e., servers)
 - Same implementation as SGD, **just without locking!**

- In theory, Async SGD converges, but a slower rate than the serial version.
- In practice, **when gradient updates are sparse** (i.e., high dimensional data), **same convergence!**

- Recht et al. “HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent”, 2011

RR is a super optimized version of online Gradient Descent, but with synchronization.
HOGWILD!

1. Initialize w in shared memory // in parallel, do
2. for $i = \{1, \ldots, p\}$ do
3. while TRUE do
4. if stopping criterion met then
5. break
6. end
7. end
8. Sample j from 1, \ldots, n uniformly at random.
9. Compute $f_j(w)$ and $\nabla f_j(w)$ using whatever w is currently available.
10. Let e_j denote non-zero indices of x_i
11. for $k \in e_j$ do
12. $w(k) \leftarrow w(k) - \alpha \left[\nabla f_j(w) \right]_{(k)}$
13. end
14. end

$\leq P$ is the number of partitions / processors

Component-wise gradient updates (relies on sparsity)
Asynchronous Distributed SGD

- Google, "Large Scale Distributed Deep Networks" [2012]
- All ingredients together:
 - Model and Data parallelism
 - Async SGD
- Dawn of modern Deep Learning

From an engineering standpoint, this is much better than a single model with the same number of total machines:

- Synchronization boundaries involve fewer machines
- Better robustness to individual slow machines
- Makes forward progress even during evictions/restarts
Example Implementations

- **Google: Tensorflow Distributed Training**
- **Uber: Horovod**
- **Ray (UC Berkeley)**
 - Ray is a general-purpose framework for parallel and distributed Python.
 - Spark isn’t optimized for these low latency communication workflow.
 - 15 lines of python for parameter server
- **Mu Li et al.** Scaling Distributed Machine Learning with the Parameter Server. OSDI 2014