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Given some data:
¡ “Learn” a function to map from the 

input to the output

¡ Given: 
Training examples 𝒙𝒊, 𝒚𝒊 = 𝒇 𝒙𝒊  for some 
unknown function 𝒇

¡ Find:
A good approximation to 𝒇 
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¡ Supervised:
§ Given “labeled data” {𝑥, 𝑦}, learn 𝑓(𝑥) = 𝑦

¡ Unsupervised:
§ Given only “unlabeled data” {𝑥}, learn 𝑓(𝑥)

¡ Semi-supervised:
§ Given some labeled {𝑥, 𝑦} and some unlabeled data 
{𝑥}, learn 𝑓(𝑥) = 𝑦

¡ Active learning:
§ When we predict 𝑓 𝑥 = 𝑦, we then receive true y∗

¡ Transfer learning:
§ Learn 𝑓(𝑥) so that it works well on new domain 𝑓(𝑧)
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¡ Would like to do prediction: 
 estimate a function 𝒇(𝒙) so that 𝒚	 = 	𝒇(𝒙)

¡ Where y can be:
§ Continuous / Real number: Regression
§ Categorical: Classification
§ Complex object:

§ Ranking of items, Parse tree, etc.

¡ Data is labeled:
§ Have many pairs {(𝒙, 𝒚)}

§ x … vector of binary, categorical, real valued features 
§ y … class, or a real number
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¡ Task: Given data (𝑿, 𝒀) build a model 𝒇()  to 
predict 𝒀’ based on 𝑿’

¡ Strategy: Estimate 𝒚	 = 	𝒇 𝒙
on (𝑿, 𝒀)
Hope that the same 𝒇(𝒙) also 
works to predict unknown 𝒀’
§ The “hope” is called generalization

§ Overfitting: If 𝒇(𝒙)	predicts 𝒀 well, but is unable to 
predict 𝒀’ 

§ We want to build a model that generalizes 
well to unseen data
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1. Brawn or Brains?
§ In 2001, Microsoft researchers ran a test to evaluate 

4 of different approaches to ML-based language 
translation

2. Findings:
§ Size of the dataset used to 

train the model mattered
more than the model itself

§ As the dataset grew large,
performance difference between
the models became small

¡ Brawn or Brains?
§ In 2001, Microsoft researchers ran a test to evaluate 

4 of different approaches to ML-based language 
translation

¡ Findings:
§ Size of the dataset used to 

train the model mattered
more than the model itself

§ As the dataset grew large,
performance difference between
the models became small

Source: Banko, M. and Brill, E. (2001) , “Scaling to Very Very Large Corpora for Natural Language Disambiguation”
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1. The Unreasonable Effectiveness of Big Data
§ In 2017, Google revisited the same type of experiment with 

the latest Deep Learning models in computer vision

2. Findings:
§ Performance increases logarithmically

based on volume of training data 
§ Complexity of modern ML models (i.e., deep neural nets) 

allows for even further performance gains

3. Large datasets + large ML models => amazing results!!

¡ The Unreasonable Effectiveness of Big Data
§ In 2017, Google revisited the same type of experiment with 

the latest Deep Learning models in computer vision

¡ Findings:
§ Performance increases logarithmically

based on volume of training data 
§ Complexity of modern ML models 

(i.e., deep neural nets) allows for even
further performance gains

¡ Large datasets + large ML models => amazing results!!
“Revisiting Unreasonable Effectiveness of Data in Deep Learning Era”: https://arxiv.org/abs/1707.02968
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¡ Given one attribute (e.g., lifespan), try to predict the 
value of new people’s lifespans by means of some of 
the other available attribute

¡ Input attributes:
§ d features/attributes: 𝒙(𝟏), 𝒙(𝟐), … 	𝒙(𝒅)

§ Each 𝒙(𝒋) has domain 𝑶𝒋	
§ Categorical:  𝑶𝒋	 = 	 {𝑏𝑟𝑜𝑤𝑛, 𝑏𝑙𝑢𝑒, 𝑔𝑟𝑎𝑦}
§ Numerical: 𝑯𝒋	 = 	 (0, 10)

§ 𝒀 is output variable with domain 𝑶𝒀:
§ Categorical: Classification, Numerical: Regression

¡ Data D:
§ 𝒏 examples (𝒙𝒊, 𝒚𝒊)	where 𝒙𝒊 is a 𝒅-dim feature vector, 
𝒚𝒊 ∈ 𝑶𝒀 is output variable

¡ Task:
§ Given an input data vector 𝒙 predict output label 𝒚
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¡ A Decision Tree is 
a tree-structured 
plan of a set of 
attributes to test 
in order to predict 
the output
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Lecture today:
- Binary splits: 𝑿(𝒋) < 𝒗
- Numerical attributes
- Regression

¡ Decision trees:
§ Split the data at each

internal node
§ Each leaf node 

makes a prediction
¡ Lecture today:
§ Binary splits: 𝑿(𝒋) < 𝒗
§ Numerical attributes
§ Regression
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¡ Input: Example 𝒙𝒊
¡ Output: Predicted ,𝒚𝒊

¡ “Drop” 𝒙𝒊 down 
the tree until it 
hits a leaf node

¡ Predict the value
stored in the leaf
that 𝒙𝒊	hits
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¡ Alternative view:
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¡ Training dataset 𝑫∗, |𝑫∗| = 𝟏𝟎𝟎	examples¡ Training dataset 𝑫∗, |𝑫∗| = 𝟏𝟎𝟎	examples
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1. Imagine we are currently
at some node G

-Let D_G be the data that reaches G
2. There is a decision we have
to make: Do we continue 
building the tree?

a. If yes, which variable and which value 
do we use for a split?

- Continue building the tree recursively

b. If not, how do we make a prediction?
- We need to build a “predictor node”

¡ Imagine we are currently
at some node G
§ Let DG be the data that reaches G

¡ There is a decision we have
to make: Do we continue 
building the tree?
§ If yes, which variable and which value 

do we use for a split?
§ Continue building the tree recursively

§ If not, how do we make a prediction?
§ We need to build a “predictor node”
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¡ Requires at least a single pass over the data!

(1)
(2)
(3)

BuildSubtree

BuildSubtree

BuildSubtree
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(1) How to split? Pick 
attribute & value that 
optimizes some criterion
a. Regression: Purity

- Find split (X^(i), v) that 
creates D, D_L, D_R: parent, 
left, right child datasets 
and maximizes: 
 |D| \cdot Var(D) - (|D_L| \cdot Var(D_L) +  |D_R| \cdot Var(D_R)), 
where Var(D) = \frac{1}{n} \sum\limits_{i \in D} (y_i - \bar{y})^2 … 
varience of y_i in D.

(1) How to split? Pick 
attribute & value that 
optimizes some criterion
¡ Regression: Purity
§ Find split (𝑿(𝒊), 𝒗)	that 

creates 𝑫,𝑫𝑳, 𝑫𝑹: parent, 
left, right child datasets 
and maximizes: 
𝑫 ⋅ 𝑽𝒂𝒓 𝑫 − 𝑫𝑳 ⋅ 𝑽𝒂𝒓 𝑫𝑳 + 𝑫𝑹 ⋅ 𝑽𝒂𝒓 𝑫𝑹
§ 𝑽𝒂𝒓 𝑫 = 𝟏

𝒏
∑𝒊∈𝑫 𝒚𝒊 − 6𝒚 𝟐 … variance of 𝒚𝒊 in 𝑫
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(1) How to split? Pick 
attribute & value that 
optimizes some criterion
2. Classification:
Information Gain

- Measures how much
a given attribute 𝑿 tells us about the class 𝒀 
- IG(Y|X): We must transmit 𝒀 over a binary link. 
How many bits on average would it save us if both 
ends of the line knew 𝑿?

(1) How to split? Pick 
attribute & value that 
optimizes some criterion
¡ Classification:

Information Gain
§ Measures how much

a given attribute 𝑿 tells us about the class 𝒀 
§ 𝑰𝑮(𝒀	|	𝑿)	: We must transmit 𝒀 over a binary link. 

How many bits on average would it save us if both 
ends of the line knew 𝑿?
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Entropy: What’s the smallest possible number of bits, 
on average, per symbol, needed to transmit a stream 
of symbols drawn from X’s distribution?
The entropy of X: H(X) = -\sum\limits_{j=1}^m {p(X_j) \log p(X_j)}

1. “High Entropy”: X is from a uniform (flat) distribution
- A histogram of the frequency distribution of values of X is flat

2. “Low Entropy”: X is from a varied (peaks/valleys) distribution.
- A histogram of the frequency distribution of values of X would 
have many lows and one or two peaks

Entropy: What’s the smallest possible number of bits, 
on average, per symbol, needed to transmit a stream 
of symbols drawn from  𝑿’s distribution?
The entropy of 𝑿:  𝑯 𝑿 = −∑𝒋"𝟏𝒎 𝒑(𝑿𝒋) 𝒍𝒐𝒈𝒑(𝑿𝒋)

§ “High Entropy”: 𝑿 is from a uniform (flat) distribution
§ A histogram of the frequency distribution of values of 𝑿 is flat

§ “Low Entropy”: 𝑿 is from a varied (peaks/valleys) distrib.
§ A histogram of the frequency distribution of values of 𝑿 would 

have many lows and one or two peaks
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1. Suppose I want to predict Y and I have input X
- X = College Major
- Y = Likes Movie “Casablanca”

¡ Suppose I want to predict 𝒀 and I have input 𝑿
§ 𝑿 = College Major
§ 𝒀 = Likes Movie “Casablanca”

2. From this data we estimate
- P(Y=Yes) = 0.5 
- P(X=Math & Y=No) = 0.25
- P(X=Math) = 0.5
- P(Y=Yes|X=History) = 0

3. Note:
- H(Y) = -1/2 log_2(½) – ½ log_2(1/2) = 1
- H(X) = 1.5

¡ From this data we estimate
§ 𝑃(𝑌	 = 	𝑌𝑒𝑠) 	= 	0.5
§ 𝑃(𝑋	 = 	𝑀𝑎𝑡ℎ	&	𝑌	 = 	𝑁𝑜) 	= 	0.25
§ 𝑃(𝑋	 = 	𝑀𝑎𝑡ℎ) 	= 	0.5
§ 𝑃(𝑌	 = 	𝑌𝑒𝑠	|	𝑋	 = 	𝐻𝑖𝑠𝑡𝑜𝑟𝑦) 	= 	0

¡ Note:
§ 𝐻(𝑌) = −½log2(½) −½log2(½) 	= 	𝟏
§ 𝐻(𝑋) 	= 	1.5

X Y

Math Yes
History No
CS Yes
Math No
Math No
CS Yes
Math Yes
History No
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¡ Suppose I want to predict 𝒀 and I have input 𝑿
§ 𝑿 = College Major
§ 𝒀 = Likes Movie “Casablanca”

2. Definition: Specific Conditional Entropy¡ Def: Specific Conditional Entropy
§ 𝑯(𝒀	|	𝑿 = 𝒗) = The entropy of 𝒀 

among only those records in which 𝑿 
has value 𝒗

§ Example:
§ 𝐻(𝑌|𝑋 = 𝑀𝑎𝑡ℎ) 	= 	1
§ 𝐻(𝑌|𝑋 = 𝐻𝑖𝑠𝑡𝑜𝑟𝑦) 	= 	0
§ 𝐻(𝑌|𝑋 = 𝐶𝑆) 	= 	0

X Y

Math Yes
History No
CS Yes
Math No
Math No
CS Yes
Math Yes
History No
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¡ Suppose I want to predict 𝒀 and I have input 𝑿
§ 𝑿 = College Major
§ 𝒀 = Likes “Casablanca”

¡ Def: Conditional Entropy
§ 𝑯(𝒀	|	𝑿) 	= The average specific 

conditional entropy of 𝒀
§ = if you choose a record at random what 

will be the conditional entropy of 𝒀, 
conditioned on that row’s value of 𝑿

§ = Expected number of bits to transmit 𝒀 
if both sides will know the value of 𝑿

§ = ∑𝒋𝑷 𝑿 = 𝒗𝒋 𝑯(𝒀|𝑿 = 𝒗𝒋)

X Y

Math Yes
History No
CS Yes
Math No
Math No
CS Yes
Math Yes
History No
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¡ Suppose I want to predict 𝒀 and I have input 𝑿
¡ 𝑯(𝒀	|	𝑿) 	= The average specific 

conditional entropy of 𝒀

=2
𝒋

𝑷 𝑿 = 𝒗𝒋 𝑯(𝒀|𝑿 = 𝒗𝒋)

¡ Example:
Vj P(X=vj) H(Y|X=vj)

Math 0.5 1
History 0.25 0
CS 0.25 0

So: H(Y|X)=0.5*1+0.25*0+0.25*0 = 0.5

X Y

Math Yes
History No
CS Yes
Math No
Math No
CS Yes
Math Yes
History No
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¡ Suppose I want to predict 𝒀 and I have input 𝑿
¡ Def: Information Gain
§ 𝑰𝑮(𝒀|𝑿) 	= I must transmit 𝒀. How 

many bits on average would it save 
me if both ends of the line knew X?

𝑰𝑮(𝒀|𝑿) 	= 	𝑯(𝒀) 	− 	𝑯(𝒀	|	𝑿)

¡ Example:
§ H(Y) = 1
§ H(Y|X) = 0.5
§ Thus IG(Y|X) = 1 – 0.5 = 0.5

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

Math Yes

History No
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1. Suppose you are trying to predict whether 
someone is going to live past 80 years 
2. From historical data you might find:

3. IG tells us how much information about Y is 
contained in X

¡ Suppose you are trying to predict whether 
someone is going to live past 80 years 

¡ From historical data you might find:
§ 𝑰𝑮(𝑳𝒐𝒏𝒈𝑳𝒊𝒇𝒆	|	𝑯𝒂𝒊𝒓𝑪𝒐𝒍𝒐𝒓) 	= 	𝟎. 𝟎𝟏
§ 𝑰𝑮(𝑳𝒐𝒏𝒈𝑳𝒊𝒇𝒆	|	𝑺𝒎𝒐𝒌𝒆𝒓) 	= 	𝟎. 𝟒
§ 𝑰𝑮(𝑳𝒐𝒏𝒈𝑳𝒊𝒇𝒆	|	𝑮𝒆𝒏𝒅𝒆𝒓) 	= 	𝟎. 𝟐𝟓
§ 𝑰𝑮(𝑳𝒐𝒏𝒈𝑳𝒊𝒇𝒆	|	𝑳𝒂𝒔𝒕𝑫𝒊𝒈𝒊𝒕𝑶𝒇𝑺𝑺𝑵) 	= 	𝟎. 𝟎𝟎𝟎𝟎𝟏

¡ IG tells us how much information about 𝒀 is 
contained in 𝑿
§ So attribute X that has high 𝑰𝑮(𝒀|𝑿)	is a good split!
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(1)
(2)
(3)

BuildSubtree

BuildSubtree

BuildSubtree
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(2) When to stop?
¡ Many different heuristic 

options to avoid overfitting
¡ Two ideas:
§ (1) When the leaf is “pure”

§ The target variable does not
vary too much: 𝑽𝒂𝒓(𝒚) 	< 	e

§ (2) When # of examples in 
the leaf is too small
§ For example, |𝑫|£	𝟏𝟎𝟎

§ (3) Stop at a fixed depth
§ For example, max depth = 4.
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(3) How to predict?
¡ Many options 
§ Regression:

§ Typically: Predict average 𝒚𝒊 
of the examples in the leaf

§ Build a linear regression model
on the examples in the leaf

§ Classification: 
§ Predict most common 𝒚𝒊	of the 

examples in the leaf
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¡ Given a large dataset with 
hundreds of attributes

¡ Build a decision tree!

¡ General considerations:
§ Tree is small (can keep it memory):

§ Shallow (~10 levels)

§ Dataset too large to keep in memory (Petabytes)
§ Dataset too big to scan over on a single machine
§ MapReduce to the rescue!

BuildSubTree

BuildSubTree

BuildSubTree
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1. P

2. Setting:

Parallel Learner for Assembling Numerous 
Ensemble Trees [Panda et al., VLDB ‘09]
§ A sequence of MapReduce jobs that builds 

a decision tree
§ Spark MLlib Decision Trees are based on PLANET

¡ Setting:
§ Hundreds of numerical (discrete & continuous, 

but not categorical) attributes
§ Target variable is numerical: Regression
§ Splits are binary: X(j)

 < v
§ Decision tree is small enough for each 

Mapper to keep it in memory
§ Data too large to keep in memory
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A

B C

D E

F G H I

Input 
data

Model Attribute 
metadata

Master

MapReduce: Given a set of split
candidates compute their quality

Intermediate 
results

MapReduce

Keeps track of the model 
and decides how to grow the tree



¡ The tree will be built in levels
§ One level at a time: A

B C

D E

F G H I

Steps:
¡ 1) Master decides candidate splits (n, X(j), v)
¡ 2) MapReduce computes quality of those splits
¡ 3) Master then grows the tree for a level
¡ 4) Goto (1)

j
DRDL

D

X(j)
 < v
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Hard part: Computing “quality” of a split
1) Master tells the Mappers which 
splits (n, X(j), v) to consider
2) Each Mapper gets a subset of data and
computes partial statistics for a given split
3) Reducers collect partial statistics and
output the final quality for a given split (n, X(j), v)
4) Master makes final decision where to split
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¡ We build the tree level by level
§ One MapReduce step builds one level of the tree

¡ Mapper 
§ Considers a number of candidate splits (node, 

attribute, value) on its subset of the data
§ For each split it stores partial statistics
§ Partial split-statistics is sent to Reducers

¡ Reducer 
§ Collects all partial statistics and determines best split

¡ Master grows the tree for one level

A

B C

D E

F G H I
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¡ Mapper loads the DT model and info 
about which attribute splits (split is a tuple 
<NodeID, Attribute, Value>) to consider
§ Each mapper sees a subset of the data D*
§ Mapper “drops”/classifies each datapoint d using 

the tree to find the leaf node L where d lands
§ For each leaf node L mapper keeps statistics about

§ (1) the data reaching L
§ (2) the data in left/right subtree under some split S

¡ Reducer aggregates the statistics (1), (2) and 
determines the best split for each tree node

A

B C

D E

F G H I
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¡ Master
§ Monitors everything (runs multiple MapReduce jobs)

¡ Three types of MapReduce jobs:
§ (1) MapReduce Initialization (run once first)

§ For each attribute identify values to be considered for splits
§ (2) MapReduce FindBestSplit (run multiple times)

§ MapReduce job to find best split (when there 
is too much data to fit in memory)

§ (3) MapReduce InMemoryBuild (run once last)
§ Similar to BuildSubTree (but for small data)
§ Grows an entire sub-tree once the data fits in memory

¡ Model file
§ A file describing the state of the model

A

B C

D E

F G H I
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(1) Master Node
(2) MapReduce Initialization (run once first)
(3) MapReduce FindBestSplit (run multiple times)
(4) MapReduce InMemoryBuild (run once last)



¡ Master controls the entire process 
¡ Determines the state of the tree and grows it:
§ (1) Decides if nodes should be split 
§ (2) If there is little data entering a tree node, Master 

runs an InMemoryBuild MapReduce job to grow 
the entire subtree below that node

§ (3) For larger nodes, Master launches MapReduce 
FindBestSplit to evaluate candidates for best split 
§ Master also collects results from FindBestSplit and 

chooses the best split for a node 

§ (4) Updates the model
5/6/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 40

A

B C

D E

F G H I



(1) Master Node
(2) MapReduce Initialization (run once first)
(3) MapReduce FindBestSplit (run multiple times)
(4) MapReduce InMemoryBuild (run once last)



¡ Initialization job: Identifies all the attribute 
values which need to be considered for splits
§ Initialization process generates “attribute 

metadata” to be loaded in memory by other tasks

¡ Main question: 
Which splits to even consider?

¡ A split is defined by a triple: 
(node n, attribute X(j), value v)
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n

X(j)
 < v

D



¡ Which splits to even consider?
§ For small data we can sort the values along a 

particular feature and consider every possible split
§ But data values may not be uniformly populated 

so many splits may not really make a difference

X(j): 1.2  1.3  1.4  1.6  2.1  7.2  8.1  9.8  10.1  10.2  10.3  10.4  11.5  11.7  12.8  12.9

¡ Idea: Consider a limited number of splits such 
that splits “move” about the same amount of 
data (e.g. percentiles)
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j

Xj < v

D*

¡ Splits for numerical attributes:
§ For attribute X(j) we would like to consider 

every possible value vÎOj

§ Compute an approx. equi-depth histogram on D*
§ Idea: Select buckets such that counts per bucket are equal

Count for
bucket

Domain values1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

§ Use boundary points of histogram as splits
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Count in
bucket

Domain values1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

¡ Goal:  Equal number of elements per bucket  
(B buckets total)

¡ Construct by first sorting and then taking 
B-1 equally-spaced splits

1  2  2  3  4  7  8  9 10 10 10 10 11 11 12 12 14 16 16 18 19 20 20 20
¡ Faster construction: 

Sample & take equally-spaced splits in the sample
§ Nearly equal buckets
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(1) Master Node
(2) MapReduce Initialization (run once first)
(3) MapReduce FindBestSplit (run multiple times)
(4) MapReduce InMemoryBuild (run once last)



¡¡ Goal: For a particular split node n find attribute 
X(j) and value v that maximize Purity:
§ 𝑫 ⋅ 𝑽𝒂𝒓 𝑫 − 𝑫𝑳 ⋅ 𝑽𝒂𝒓 𝑫𝑳 + 𝑫𝑹 ⋅ 𝑽𝒂𝒓 𝑫𝑹

§ D … training data (xi, yi) reaching the node n
§ DL … training data xi, where xi

(j) < v
§ DR … training data xi, where xi

(j) ³ v

§ 𝑽𝒂𝒓(𝑫) 	= 𝟏
𝒏
∑𝒊∈𝑫𝒚𝒊𝟐 −

𝟏
𝒏
∑𝒊∈𝑫𝒚𝒊

𝟐
n

DRDL

D

X(j)
 < v
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combines the statistics and computes global 

¡ To compute Purity we need

§ 𝑽𝒂𝒓(𝑫) 	= 𝟏
𝒏
∑𝒊∈𝑫 𝒚𝒊𝟐 −

𝟏
𝒏
∑𝒊∈𝑫 𝒚𝒊

𝟐

¡ Important observation: Variance can be 
computed from sufficient statistics: 
N,  S=Σyi,  Q=Σyi2
§ Each Mapper m processes subset of data Dm, and 

computes Nm, Sm, Qm for its own Dm

§ Reducer combines the statistics and computes global 
variance and then Purity:

§ 𝑽𝒂𝒓(𝑫) 	= 𝟏
∑𝒎 𝑵𝒎

∑𝒎𝑸𝒎 −
𝟏

∑𝒎 𝑵𝒎
∑𝒎𝑺𝒎

𝟐

j
DRDL

D

X(j)
 < v
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¡ Mapper:
§ Initialized by loading results of Initialization task

§ Current model (to find which node each datapoint xi ends up)
§ Attribute metadata (all split points for each attribute)
§ Load the set of candidate splits: {(node, attribute, value)}

§ For each data record run the Map algorithm:
§ For each tree node store statistics of the data entering 

the node and at the end emit (to all reducers):
§ <NodeID,  { S=Σy, Q=Σy2, N=Σ1 } >

§ For each split store statistics and at the end emit:
§ <SplitID,  { S, Q, N } >
§ SplitID = (node id, attribute X(j), split value v)

A

B C

D E

F G H I
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Reducer:
¡ (1) Load all the <NodeID, List {Sm, Qm, Nm}> 

pairs and aggregate the per node statistics
¡ (2) For all the <SplitID, List {Sm, Qm, Nm}> 

aggregate the statistics 

§ 𝑽𝒂𝒓(𝑫) 	= 𝟏
∑𝒎𝑵𝒎

∑𝒎𝑸𝒎 − 𝟏
∑𝒎𝑵𝒎

∑𝒎 𝑺𝒎
𝟐

¡ For each NodeID, output the best 
split found

A

B C

D E

F G H I
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¡ Master gives the mappers: (1) Tree
                                                          (2) Set of nodes

                                                              (3) Set of candidate splits

Data

Mapper

Mapper

Mapper

A

B C

D E

F G H I

Nodes: F, G, H, I
Split candidates: (G, X(1),v(1)), 
(G, X(1),v(2)), (H, X(3),v(3)), (H, X(4),v(4))

Mappers output 2 types of key-value pairs:
(NodeID: S,Q,N)
(Split: S,Q,N)

Reducer
For every (NodeID, Split)
Reducer(s) compute the
Purity and output 
the best split
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¡ Example: Need to split nodes F, G, H, I
¡ Map and Reduce:

§ FindBestSplit::Map (each mapper) 
§ Load the current model M
§ Drop every example xi down the tree
§ If it hits F/G/H/I, update in-memory hash tables: 

§ For each node: Tn: (Node)®{S, Q, N} 
§ For each (Split, Node): Tn,j,s: (Node, Attribute, SplitValue)®{S, Q, N}

§ Map::Finalize: output the key-value pairs from above hashtables
§ FindBestSplit::Reduce (each reducer)

§ Collect: 
§ T1:<Node, List{S, Q, N} > ® <Node, {Σ S, Σ Q, Σ N} >
§ T2:<(Node, Attr., Val), List{S, Q, N}> ® <(Node, Attr., Val), {ΣS, ΣQ, ΣN}>

§ Compute Purity for each node using T1, T2
§ Return best split to Master (which then decides on globally best split)

A

B C

D E

F G H I

D1 D2 D3 D4
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¡ Collects outputs from FindBestSplit reducers
<Split.NodeID, Attribute, Value, Purity>

¡ For each node decides the best split
§ If data in DL/DR is small enough,

later run a MapReduce job 
InMemoryBuild on the node

§ Else run MapReduce 
FindBestSplit job for both
nodes
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¡ Characteristics
§ Classification & Regression

§ Multiple (~10) classes
§ Real valued and categorical features
§ Few (hundreds) of features
§ Usually dense features
§ Complicated decision boundaries

§ Early stopping to avoid overfitting!
¡ Example applications
§ User profile classification
§ Landing page bounce prediction
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¡ Decision trees might be the single most 
popular data mining tool:
§ Easy to understand
§ Easy to implement
§ Easy to use
§ Computationally cheap
§ Easy to parallelize
§ It’s possible to mitigate overfitting (i.e., with 

ensemble methods or early stopping)
§ They do classification as well as regression!
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¡ Learn multiple trees and combine their 
predictions
§ Gives better performance in practice

¡ Bagging: 
§ Learns multiple trees over independent 

samples of the training data
§ For a dataset D on n data points: Create dataset D’ of n 

points but sample from D with replacement
§ Dataset D’ will include duplicate data points

§ Predictions from each tree are averaged to compute 
the final model prediction
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¡ Train a Bagged Decision Tree
¡ But use a modified tree learning algorithm that 

selects (at each candidate split) a random 
subset of the features
§ If we have 𝑑 features, consider 𝑑 random features

¡ This is called: Feature bagging
§ Benefit: Breaks correlation between trees

§ Otherwise, if one feature is very strong predictor, then every 
tree will select it, causing trees to be correlated.

¡ Random Forests achieve state-of-the-art 
results in many classification problems!
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