Large-Scale Machine Learning (1)
New Topic: ML that scales!

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- PageRank, SimRank
- Community Detection
- Spam Detection

Infinite data
- Sampling data streams
- Filtering data streams
- Queries on streams

Machine learning
- Decision Trees
- SVM / Max Margin
- Parallel SGD

Apps
- Recommender systems
- Association Rules
- Duplicate document detection
Supervised Learning

Given some data:

- “Learn” a function to map from the input to the output

- Given:

 Training examples \((x_i, y_i = f(x_i))\) for some unknown function \(f\)

- Find:

 A good approximation to \(f\)
Many Other ML Paradigms

- **Supervised:**
 - Given “labeled data” \(\{x, y\} \), learn \(f(x) = y \)

- **Unsupervised:**
 - Given only “unlabeled data” \(\{x\} \), learn \(f(x) \)

- **Semi-supervised:**
 - Given some labeled \(\{x, y\} \) and some unlabeled data \(\{x\} \), learn \(f(x) = y \)

- **Active learning:**
 - When we predict \(f(x) = y \), we then receive true \(y^* \)

- **Transfer learning:**
 - Learn \(f(x) \) so that it works well on new domain \(f(z) \)
Supervised Learning

- Would like to do prediction: estimate a function $f(x)$ so that $y = f(x)$

- Where y can be:
 - Continuous / Real number: Regression
 - Categorical: Classification
 - Complex object:
 - Ranking of items, Parse tree, etc.

- Data is labeled:
 - Have many pairs $\{(x, y)\}$
 - x ... vector of binary, categorical, real valued features
 - y ... class, or a real number
Supervised Learning

- **Task:** Given data \((X, Y)\) build a model \(f()\) to predict \(Y'\) based on \(X'\)
- **Strategy:** Estimate \(y = f(x)\) on \((X, Y)\)

Hope that the same \(f(x)\) also works to predict unknown \(Y'\)

- The "hope" is called generalization
 - **Overfitting:** If \(f(x)\) predicts \(Y\) well, but is unable to predict \(Y'\)

- We want to build a model that generalizes well to unseen data
Why Large-Scale ML?

- **Brawn or Brains?**
 - In 2001, Microsoft researchers ran a test to evaluate 4 different approaches to ML-based language translation.

- **Findings:**
 - **Size of the dataset** used to train the model **mattered more** than the model itself.
 - As the dataset grew large, performance difference between the models became small.

Why Large-Scale ML?

- The Unreasonable Effectiveness of Big Data
 - In 2017, Google revisited the same type of experiment with the latest Deep Learning models in computer vision

- Findings:
 - Performance increases logarithmically based on volume of training data
 - Complexity of modern ML models (i.e., deep neural nets) allows for even further performance gains

- Large datasets + large ML models => amazing results!!

Decision Trees
Given one attribute (e.g., lifespan), try to predict the value of new people’s lifespans by means of some of the other available attribute

Input attributes:
- **d** features/attributes: \(x^{(1)}, x^{(2)}, \ldots, x^{(d)} \)
- Each \(x^{(i)} \) has domain \(O_j \)
 - Categorical: \(O_j = \{\text{brown, blue, gray}\} \)
 - Numerical: \(H_j = (0, 10) \)
- \(Y \) is output variable with domain \(O_Y \):
 - Categorical: Classification, Numerical: Regression

Data D:
- \(n \) examples \((x_i, y_i)\) where \(x_i \) is a \(d \)-dim feature vector, \(y_i \in O_Y \) is output variable

Task:
- Given an input data vector \(x \) predict output label \(y \)
A Decision Tree is a tree-structured plan of a set of attributes to test in order to predict the output.
Decision Trees

- **Decision trees:**
 - Split the data at each internal node
 - Each leaf node makes a prediction

- **Lecture today:**
 - Binary splits: $X^{(i)} < v$
 - Numerical attributes
 - Regression
How to make predictions?

- **Input:** Example x_i
- **Output:** Predicted \hat{y}_i
- “Drop” x_i down the tree until it hits a leaf node
- Predict the value stored in the leaf that x_i hits
Decision Trees: feature space

- Alternative view:
How to construct a tree?

- **Training dataset** D^*, $|D^*| = 100$ examples
How to construct a tree?

- Imagine we are currently at some node G
 - Let D_G be the data that reaches G
- There is a decision we have to make: Do we continue building the tree?
 - If yes, which variable and which value do we use for a split?
 - Continue building the tree recursively
 - If not, how do we make a prediction?
 - We need to build a “predictor node”
3 steps in constructing a tree

Algorithm 1: BuildSubtree

Require: Node n, Data $D \subseteq D^*$

1: $(n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)$

2: if StoppingCriteria(D_L) then

3: $n \rightarrow \text{left_prediction} = \text{FindPrediction}(D_L)$

4: else

5: BuildSubtree ($n \rightarrow \text{left}, D_L$)

6: if StoppingCriteria(D_R) then

7: $n \rightarrow \text{right_prediction} = \text{FindPrediction}(D_R)$

8: else

9: BuildSubtree ($n \rightarrow \text{right}, D_R$)

- Requires at least a single pass over the data!
How to construct a tree?

(1) How to split? Pick attribute & value that optimizes some criterion

- **Regression: Purity**
 - Find split \((X^{(i)}, \nu)\) that creates \(D, D_L, D_R\): parent, left, right child datasets and maximizes:

\[
|D| \cdot Var(D) - (|D_L| \cdot Var(D_L) + |D_R| \cdot Var(D_R))
\]

- \(Var(D) = \frac{1}{n} \sum_{i \in D} (y_i - \bar{y})^2 \) ... variance of \(y_i\) in \(D\)
(1) How to split? Pick attribute & value that optimizes some criterion

Classification: Information Gain

- Measures how much a given attribute X tells us about the class Y
- $IG(Y \mid X)$: We must transmit Y over a binary link. How many bits on average would it save us if both ends of the line knew X?
Why Information Gain? Entropy

Entropy: What’s the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X’s distribution?

The entropy of X: $H(X) = -\sum_{j=1}^{m} p(X_j) \log p(X_j)$

- **“High Entropy”:** X is from a uniform (flat) distribution
 - A histogram of the frequency distribution of values of X is flat
- **“Low Entropy”:** X is from a varied (peaks/valleys) distrib.
 - A histogram of the frequency distribution of values of X would have many lows and one or two peaks
Why Information Gain? Entropy

- Suppose I want to predict \(Y \) and I have input \(X \)
 - \(X = \) College Major
 - \(Y = \) Likes Movie “Casablanca”

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
</tbody>
</table>

- From this data we estimate
 - \(P(Y = Yes) = 0.5 \)
 - \(P(X = Math \& Y = No) = 0.25 \)
 - \(P(X = Math) = 0.5 \)
 - \(P(Y = Yes \mid X = History) = 0 \)

- Note:
 - \(H(Y) = -\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\log_2(\frac{1}{2}) = 1 \)
 - \(H(X) = 1.5 \)
Why Information Gain? Entropy

- Suppose I want to predict Y and I have input X
 - $X = \text{College Major}$
 - $Y = \text{Likes Movie “Casablanca”}$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
</tbody>
</table>

- **Def: Specific Conditional Entropy**
 - $H(Y \mid X = v) = \text{The entropy of } Y \text{ among only those records in which } X \text{ has value } v$

- **Example:**
 - $H(Y \mid X = \text{Math}) = 1$
 - $H(Y \mid X = \text{History}) = 0$
 - $H(Y \mid X = \text{CS}) = 0$
Why Information Gain?

Suppose I want to predict Y and I have input X

- $X = \text{College Major}$
- $Y = \text{Likes “Casablanca”}$

Def: Conditional Entropy

- $H(Y | X) = \text{The average specific conditional entropy of } Y$
- = if you choose a record at random what will be the conditional entropy of Y, conditioned on that row’s value of X
- = Expected number of bits to transmit Y if both sides will know the value of X
- $= \sum_j P(X = v_j)H(Y|X = v_j)$
Why Information Gain?

- Suppose I want to predict \(Y \) and I have input \(X \)
 - \(H(Y \mid X) \) = The average specific conditional entropy of \(Y \)
 \[
 = \sum_{j} P(X = v_j) H(Y \mid X = v_j)
 \]
- Example:

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(v_j)</th>
<th>(P(X=v_j))</th>
<th>(H(Y \mid X=v_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>History</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>CS</td>
<td>0.25</td>
<td>0</td>
</tr>
</tbody>
</table>

So: \(H(Y \mid X) = 0.5 \times 1 + 0.25 \times 0 + 0.25 \times 0 = 0.5 \)
Suppose I want to predict Y and I have input X.

Def: Information Gain

- $IG(Y|X) = I$ must transmit Y. How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

Example:

- $H(Y) = 1$
- $H(Y|X) = 0.5$
- Thus $IG(Y|X) = 1 - 0.5 = 0.5$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
</tbody>
</table>
What is Information Gain used for?

- Suppose you are trying to predict whether someone is going to live past 80 years.
- From historical data you might find:
 - \(IG(\text{LongLife} \mid \text{HairColor}) = 0.01 \)
 - \(IG(\text{LongLife} \mid \text{Smoker}) = 0.4 \)
 - \(IG(\text{LongLife} \mid \text{Gender}) = 0.25 \)
 - \(IG(\text{LongLife} \mid \text{LastDigitOfSSN}) = 0.00001 \)
- IG tells us how much information about \(Y \) is contained in \(X \).
 - So attribute \(X \) that has high \(IG(Y \mid X) \) is a good split!
3 steps in constructing a tree

Algorithm 1 BuildSubtree

Require: Node \(n \), Data \(D \subseteq D^* \)

1: \((n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)\)
2: if StoppingCriteria\((D_L)\) then
3: \(n \rightarrow \text{left_prediction} = \text{FindPrediction}(D_L)\)
4: else
5: \(n \rightarrow \text{left_prediction} \)
6: if StoppingCriteria\((D_R)\) then
7: \(n \rightarrow \text{right_prediction} = \text{FindPrediction}(D_R)\)
8: else
9: \(n \rightarrow \text{right_prediction} \)

BuildSubtree
\((n \rightarrow \text{left}, D_L)\)
\(n \rightarrow \text{right_prediction} \)
(2) When to stop?

- Many different heuristic options to avoid overfitting

Two ideas:

- **(1) When the leaf is “pure”**
 - The target variable does not vary too much: $\text{Var}(y) < \varepsilon$

- **(2) When # of examples in the leaf is too small**
 - For example, $|D| \leq 100$

- **(3) Stop at a fixed depth**
 - For example, max depth = 4.
How to predict?

(3) How to predict?

- Many options
 - Regression:
 - Typically: Predict average y_i of the examples in the leaf
 - Build a linear regression model on the examples in the leaf
 - Classification:
 - Predict most common y_i of the examples in the leaf
Building Decision Trees Using MapReduce
Problem: Building a tree

- Given a large dataset with hundreds of attributes
- Build a decision tree!
- General considerations:
 - Tree is small (can keep it memory):
 - Shallow (~10 levels)
 - Dataset too large to keep in memory (Petabytes)
 - Dataset too big to scan over on a single machine
 - MapReduce to the rescue!

```
Algorithm 1 BuildSubTree
Require: Node n, Data D ⊆ D*
1: (n → split,DL,D_R) = FindBestSplit(D)
2: if StoppingCriteria(D_L) then
3:     n → left_prediction = FindPrediction(D_L)
4: else
5:     BuildSubTree(n → left, D_L)
6: if StoppingCriteria(D_R) then
7:     n → right_prediction = FindPrediction(D_R)
8: else
9:     BuildSubTree(n → right, D_R)
```
Parallel Learner for Assembling Numerous Ensemble Trees [Panda et al., VLDB ‘09]

- A sequence of MapReduce jobs that builds a decision tree
- Spark MLlib Decision Trees are based on PLANET

Setting:

- Hundreds of **numerical** (discrete & continuous, but not categorical) attributes
- Target variable is **numerical**: **Regression**
- Splits are **binary**: $X^{(i)} < v$
- Decision tree is small enough for each Mapper to keep it in memory
- Data too large to keep in memory
MapReduce: Given a set of split candidates compute their quality

Master

Keeps track of the model and decides how to grow the tree

Input data

Model

Attribute metadata

Intermediate results
PLANET: Building the Tree

- The tree will be built in levels
 - One level at a time:

Steps:
- 1) Master decides candidate splits \((n, X^{(j)}, v)\)
- 2) MapReduce computes quality of those splits
- 3) Master then grows the tree for a level
- 4) Goto (1)
Decision trees on MapReduce

Hard part: Computing “quality” of a split

1) **Master** tells the **Mappers** which splits \((n, X^{(j)}, v)\) to consider
2) Each **Mapper** gets a subset of data and computes partial statistics for a given split
3) **Reducers** collect partial statistics and output the final quality for a given split \((n, X^{(j)}, v)\)
4) **Master** makes final decision where to split
PLANET Overview

- **We build the tree level by level**
 - One MapReduce step builds one level of the tree

- **Mapper**
 - Considers a number of candidate splits *(node, attribute, value)* on its subset of the data
 - For each split it stores partial statistics
 - Partial split-statistics is sent to Reducers

- **Reducer**
 - Collects all partial statistics and determines best split

- **Master** grows the tree for one level
Mapper loads the DT model and info about which attribute splits (split is a tuple $<$NodeID, Attribute, Value$>$) to consider

- Each mapper sees a subset of the data D^*
- Mapper “drops”/classifies each datapoint d using the tree to find the leaf node L where d lands
- For each leaf node L mapper keeps statistics about
 - (1) the data reaching L
 - (2) the data in left/right subtree under some split S

Reducer aggregates the statistics (1), (2) and determines the best split for each tree node
PLANET: Components

- Master
 - Monitors everything (runs multiple MapReduce jobs)

- Three types of MapReduce jobs:
 - (1) MapReduce Initialization (run once first)
 - For each attribute identify values to be considered for splits
 - (2) MapReduce FindBestSplit (run multiple times)
 - MapReduce job to find best split (when there is too much data to fit in memory)
 - (3) MapReduce InMemoryBuild (run once last)
 - Similar to BuildSubTree (but for small data)
 - Grows an entire sub-tree once the data fits in memory

- Model file
 - A file describing the state of the model
PLANET: Components

1. Master Node
2. MapReduce Initialization (run once first)
3. MapReduce FindBestSplit (run multiple times)
4. MapReduce InMemoryBuild (run once last)
PLANET: Master

- **Master controls the entire process**
- **Determines the state of the tree and grows it:**
 - **(1)** Decides if nodes should be split
 - **(2)** If there is little data entering a tree node, Master runs an `InMemoryBuild` MapReduce job to grow the entire subtree below that node
 - **(3)** For larger nodes, Master launches MapReduce `FindBestSplit` to evaluate candidates for best split
 - Master also collects results from `FindBestSplit` and chooses the best split for a node
 - **(4)** Updates the model
PLANET: Components

(1) Master Node
(2) MapReduce Initialization (run once first)
(3) MapReduce FindBestSplit (run multiple times)
(4) MapReduce InMemoryBuild (run once last)
Initialization: Attribute metadata

- **Initialization job:** Identifies all the attribute values which need to be considered for splits
 - Initialization process generates "attribute metadata" to be loaded in memory by other tasks

- **Main question:**
 - Which splits to even consider?

- A split is defined by a triple:
 - (node n, attribute $X^{(j)}$, value v)
Initialization: Attribute metadata

- **Which splits to even consider?**
 - For small data we can sort the values along a particular feature and consider every possible split
 - But data values may not be uniformly populated so many splits may not really make a difference

X(i): 1.2 1.3 1.4 1.6 2.1 7.2 8.1 9.8 10.1 10.2 10.3 10.4 11.5 11.7 12.8 12.9

- **Idea:** Consider a limited number of splits such that splits “move” about the same amount of data (e.g. percentiles)
Initialization: Attribute metadata

- **Splits for numerical attributes:**
 - For attribute $X^{(i)}$ we would like to consider every possible value $v \in O_j$
 - Compute an approx. equi-depth histogram on D^*
 - **Idea:** Select buckets such that counts per bucket are equal
 - Use boundary points of histogram as splits
Goal: Equal number of elements per bucket (B buckets total)

Construct by first **sorting** and then taking $B-1$ equally-spaced splits

Faster construction:

Sample & take equally-spaced splits in the sample

- Nearly equal buckets
PLANET: Components

(1) Master Node
(2) MapReduce **Initialization** (run once first)
(3) MapReduce **FindBestSplit** (run multiple times)
(4) MapReduce **InMemoryBuild** (run once last)
FindBestSplit

- **Goal:** For a particular split node n find attribute $X^{(j)}$ and value v that maximize Purity:

 $$|D| \cdot Var(D) - \left(|D_L| \cdot Var(D_L) + |D_R| \cdot Var(D_R) \right)$$

- D ... training data (x_i, y_i) reaching the node n
- D_L ... training data x_i, where $x_i^{(j)} < v$
- D_R ... training data x_i, where $x_i^{(j)} \geq v$

- $Var(D) = \frac{1}{n} \sum_{i \in D} y_i^2 - \left(\frac{1}{n} \sum_{i \in D} y_i \right)^2$
FindBestSplit

- **To compute Purity we need**

 \[Var(D) = \frac{1}{n} \sum_{i \in D} y_i^2 - \left(\frac{1}{n} \sum_{i \in D} y_i \right)^2 \]

- **Important observation:** Variance can be computed from **sufficient statistics**:
 \[N, S=\sum y_i, Q=\sum y_i^2 \]

 - Each **Mapper** \(m \) processes subset of data \(D_m \), and computes \(N_m, S_m, Q_m \) for its own \(D_m \)
 - **Reducer** combines the statistics and computes global variance and then Purity:

 \[Var(D) = \frac{1}{\sum_m N_m} \sum_m Q_m - \left(\frac{1}{\sum_m N_m} \sum_m S_m \right)^2 \]
FindBestSplit: Map

Mapper:

- Initialized by loading results of **Initialization task**
 - **Current model** (to find which node each datapoint x_i ends up)
 - **Attribute metadata** (all split points for each attribute)
 - Load the set of **candidate splits**: \{(node, attribute, value)\}

- For each data record run the Map algorithm:
 - For each tree node store statistics of the data entering the node and at the end emit (to all reducers):
 - $<\text{NodeID}, \{S=\Sigma y, Q=\Sigma y^2, N=\Sigma 1\}>$
 - For each split store statistics and at the end emit:
 - $<\text{SplitID}, \{S, Q, N\}>$
 - SplitID = (node id, attribute $X^{(i)}$, split value v)
Reducer:

1. Load all the $\langle \text{NodeID}, \text{List} \{S_m, Q_m, N_m\} \rangle$ pairs and aggregate the per node statistics.
2. For all the $\langle \text{SplitID}, \text{List} \{S_m, Q_m, N_m\} \rangle$ aggregate the statistics.

- \[Var(D) = \frac{1}{\sum_m N_m} \sum_m Q_m - \left(\frac{1}{\sum_m N_m} \sum_m S_m \right)^2 \]
- For each NodeID, output the best split found.
Overall system architecture

- Master gives the mappers:
 1. Tree
 2. Set of nodes
 3. Set of candidate splits

Nodes: F, G, H, I
Split candidates: (G, X^{(1)}, v^{(1)}), (G, X^{(1)}, v^{(2)}), (H, X^{(3)}, v^{(3)}), (H, X^{(4)}, v^{(4)})

Mappers output 2 types of key-value pairs:
(NodeID: S, Q, N)
(Split: S, Q, N)

For every (NodeID, Split) Reducer(s) compute the Purity and output the best split
Overall system architecture

Example: Need to split nodes F, G, H, I

Map and Reduce:

- **FindBestSplit::Map** (each mapper)
 - Load the current model M
 - Drop every example x_i down the tree
 - If it hits $F/G/H/I$, update in-memory hash tables:
 - For each node: $T_n: \text{(Node)} \rightarrow \{S, Q, N\}$
 - For each $(\text{Split, Node}): T_{n,j,s}: \text{(Node, Attribute, SplitValue)} \rightarrow \{S, Q, N\}$
 - **Map::Finalize:** output the key-value pairs from above hashtables

- **FindBestSplit::Reduce** (each reducer)
 - Collect:
 - $T_1: \langle \text{Node, List}\{S, Q, N\} \rangle \rightarrow \langle \text{Node, } \Sigma S, \Sigma Q, \Sigma N \rangle$
 - $T_2: \langle \text{Node, Attr., Val}, \text{List}\{S, Q, N\} \rangle \rightarrow \langle \text{Node, Attr., Val}, \Sigma S, \Sigma Q, \Sigma N \rangle$
 - Compute Purity for each node using T_1, T_2
 - Return **best split** to Master (which then decides on globally best split)
Back to the Master

- Collects outputs from FindBestSplit reducers
 \(<\text{Split.NodeID, Attribute, Value, Purity}>\)

- For each node decides the best split
 - If data in \(D_L/D_R\) is small enough, later run a MapReduce job \text{InMemoryBuild} on the node
 - Else run MapReduce \text{FindBestSplit} job for both nodes
Decision Trees: Conclusion
Decision Trees

- **Characteristics**
 - Classification & Regression
 - Multiple (~10) classes
 - Real valued and categorical features
 - Few (hundreds) of features
 - Usually dense features
 - Complicated decision boundaries
 - Early stopping to avoid overfitting!

- **Example applications**
 - User profile classification
 - Landing page bounce prediction
Decision Trees

- Decision trees might be the single most popular data mining tool:
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap
 - Easy to parallelize
 - It’s possible to mitigate overfitting (i.e., with ensemble methods or early stopping)
 - They do classification as well as regression!
Learning Ensembles

- Learn multiple trees and combine their predictions
 - Gives better performance in practice
- Bagging:
 - Learns multiple trees over independent samples of the training data
 - For a dataset \mathbf{D} on n data points: Create dataset \mathbf{D}' of n points but sample from \mathbf{D} with replacement
 - Dataset \mathbf{D}' will include duplicate data points
 - Predictions from each tree are averaged to compute the final model prediction
Bagging Decision Trees

Random Forest

Tree-1
Class-A

Tree-2
Class-B

Tree-n
Class-B

Instance

Majority-Voting

Final-Class
Improvement: Random Forests

- Train a **Bagged Decision Tree**
- But use a modified tree learning algorithm that selects (at each candidate split) a *random subset of the features*
 - If we have d features, consider \sqrt{d} random features

- **This is called: Feature bagging**
 - **Benefit:** Breaks correlation between trees
 - Otherwise, if one feature is very strong predictor, then every tree will select it, causing trees to be correlated.

- **Random Forests achieve state-of-the-art results in many classification problems!**
Please give us feedback 😊