Announcements:
- Please tag your homework correctly on gradescope. We will deduct points if not.
- Give us feedback 😊 We discuss and try to follow up on all feedback.
 - Make use of our feedback form (see Ed or slides)
- Thu Feb 2 – Homework 2, Colab 4 due and releasing Homework 3, Colab 5
- Project feedback by end of this week. Make sure to have dataset in hand/disk and demonstrate preliminary efforts for milestone report.
- Due to your feedback: Colab deadlines on Friday instead Thursday.

Analysis of Large Graphs: Link Analysis, PageRank
New Topic: Graph Data!

- High dim. data
 - Locality sensitive hashing
 - Clustering
 - Dimensionality reduction
- Graph data
 - PageRank, SimRank
 - Community Detection
 - Spam Detection
- Infinite data
 - Sampling data streams
 - Filtering data streams
 - Queries on streams
- Machine learning
 - SVM
 - Decision Trees
 - Perceptron, kNN
- Apps
 - Recommender systems
 - Association Rules
 - Duplicate document detection
Graph Data: Social Networks

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
Graph Data: Media Networks

Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
Graph Data: Information Nets

Citation networks and Maps of science
[Börner et al., 2012]
Graph Data: Communication Networks

[Diagram of a network with routers and domains labeled as domain1, domain2, and domain3, connected by dotted lines to form a network structure.]

Internet
Graph Data: Technological Networks

Seven Bridges of Königsberg

[Euler, 1735]

Return to the starting point by traveling each link of the graph once and only once.
Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

- I teach a class on data mining.
- CS547: Classes are in the CSE2 building
- Computer Science Department at UW
- University of Washington
Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

I teach a class on data mining.

CS547: Classes are in the CSE2 building.

Computer Science Department at UW

University of Washington
Web as a Directed Graph
Broad Question

- **How to organize the Web?**
 - **First try:** Human curated Web directories
 - Yahoo, DMOZ, LookSmart
 - **Second try:** Web Search
 - Information Retrieval investigates:
 - Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - **But:** Web is huge, full of untrusted documents, random things, web spam, etc.
Web Search: 2 Challenges

2 challenges of web search:

1. Web contains many sources of information
 Who to “trust”?
 - **Trick:** Trustworthy pages may point to each other!

2. What is the “best” answer to query “newspaper”?
 - No single right answer
 - **Trick:** Pages that actually know about newspapers might all be pointing to many newspapers
Ranking Nodes on the Graph

- All web pages are not equally “important”
 - thispersondoesnotexist.com vs. www.uw.edu

- There is a large diversity in the web-graph node connectivity.
 - Let’s rank the pages by the link structure!
Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importances of nodes in a graph:
 - Page Rank
 - Topic-Specific (Personalized) Page Rank
 - Web Spam Detection Algorithms
PageRank:
The “Flow” Formulation
Links as Votes

- **Idea: Links as votes**
 - Page is more important if it has more links
 - In-coming links? Out-going links?
 - **Think of in-links as votes:**
 - www.uw.edu has millions in-links
 - thispersondoesnotexist.com has a few hundreds (?) in-links

- **Are all in-links equal?**
 - Links from important pages count more
 - Recursive question!
Intuition – (1)

- Web pages are important if people visit them a lot.
- But we can’t watch everybody using the Web.
- A good surrogate for visiting pages is to assume people follow links randomly.
- Leads to *random surfer* model:
 - Start at a random page and follow random out-links repeatedly, from whatever page you are at.
 - *PageRank* = limiting probability of being at a page.
Intuition – (2)

- **Solve the recursive equation**: “importance of a page = its share of the importance of each of its predecessor pages”
 - Equivalent to the random-surfer definition of PageRank

- Technically, *importance* = the principal eigenvector of the transition matrix of the Web
 - A few fix-ups needed
Example: PageRank Scores
Simple Recursive Formulation

- Each link’s vote is proportional to the importance of its source page.
- If page j with importance r_j has n out-links, each link gets $\frac{r_j}{n}$ votes.
- Page j’s own importance is the sum of the votes on its in-links.

$$r_j = \frac{r_i}{3} + \frac{r_k}{4}$$
PageRank: The “Flow” Model

- A “vote” from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a “rank” \(r_j \) for page \(j \)

\[
 r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}
\]

\(d_i \) … out-degree of node \(i \)

The web in 1839

“Flow” equations:

\[
 r_y = \frac{r_y}{2} + \frac{r_a}{2}
\]

\[
 r_a = \frac{r_y}{2} + r_m
\]

\[
 r_m = \frac{r_a}{2}
\]
Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo a scale factor
- Additional constraint forces uniqueness:
 - \(r_y + r_a + r_m = 1 \)
 - Solution: \(r_y = \frac{2}{5}, \; r_a = \frac{2}{5}, \; r_m = \frac{1}{5} \)
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

Flow equations:

\[
\begin{align*}
 r_y &= \frac{r_y}{2} + \frac{r_a}{2} \\
 r_a &= \frac{r_y}{2} + r_m \\
 r_m &= \frac{r_a}{2}
\end{align*}
\]
PageRank: Matrix Formulation

- **Stochastic adjacency matrix** M
 - Let page i has d_i out-links
 - If $i \rightarrow j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a column stochastic matrix
 - Columns sum to 1

- **Rank vector** r: vector with an entry per page
 - r_i is the importance score of page i
 - $\sum_i r_i = 1$

- The flow equations can be written
 $$ r = M \cdot r $$
 $$ r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} $$
Example

- Remember the flow equation: \(r_j = \sum_{i \to j} \frac{r_i}{d_i} \)
- Flow equation in the matrix form:
 \[M \cdot r = r \]
- Suppose page \(i \) links to 3 pages, including \(j \)
Example: Flow Equations & M

\[r_y = \frac{r_y}{2} + \frac{r_a}{2} \]
\[r_a = \frac{r_y}{2} + r_m \]
\[r_m = \frac{r_a}{2} \]

<table>
<thead>
<tr>
<th></th>
<th>(r_y)</th>
<th>(r_a)</th>
<th>(r_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_y)</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
</tr>
<tr>
<td>(r_a)</td>
<td>(\frac{1}{2})</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(r_m)</td>
<td></td>
<td>(\frac{1}{2})</td>
<td>0</td>
</tr>
</tbody>
</table>

\[r = M \cdot r \]
Eigenvector Formulation

- The flow equations can be written
 \[r = M \cdot r \]
- So the rank vector \(r \) is an eigenvector of the stochastic web matrix \(M \)
 - Starting from any vector \(u \), the limit \(M(M(\ldots M(M(u)))) \)
 is the long-term distribution of the surfers.
 - The math: limiting distribution = principal eigenvector of \(M = \text{PageRank} \).
 - Note: If \(r \) satisfies the equation \(r = Mr \),
 then \(r \) is an eigenvector of \(M \) with eigenvalue 1.
- We can now efficiently solve for \(r \)!
 The method is called Power iteration

NOTE: \(x \) is an eigenvector with the corresponding eigenvalue \(\lambda \) if:
\[Ax = \lambda x \]
Power Iteration Method

- Given a web graph with \(n \) nodes, where the nodes are pages and edges are hyperlinks
- **Power iteration**: a simple iterative scheme
 - Suppose there are \(N \) web pages
 - Initialize: \(r^{(0)} = [1/N, \ldots, 1/N]^T \)
 - Iterate: \(r^{(t+1)} = M \cdot r^{(t)} \)
 - Stop when \(|r^{(t+1)} - r^{(t)}|_1 < \varepsilon \)

\[
|r^{(t+1)} - r^{(t)}|_1 = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i}
\]

\(d_i \) …. out-degree of node \(i \)

\(|x|_1 = \sum_{1 \leq i \leq N} |x_i| \) is the \(L_1 \) norm

Can use any other vector norm, e.g., Euclidean

About 50 iterations is sufficient to estimate the limiting solution.
PageRank: How to solve?

- **Power Iteration:**
 - Set $r_j = 1/N$
 - 1: $r'_j = \sum_i \frac{r_i}{d_i}$
 - 2: $r = r'$
 - Goto 1

- **Example:**

\[
\begin{pmatrix}
 r_y \\
 r_a \\
 r_m
\end{pmatrix} = \begin{pmatrix}
 1/3 \\
 1/3 \\
 1/3
\end{pmatrix}
\]

Iteration 0, 1, 2, …
PageRank: How to solve?

- **Power Iteration:**
 - Set $r_j = 1/N$
 - 1: $r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - 2: $r = r'$
 - Goto 1

- **Example:**

 $\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{bmatrix} 1/3 & 1/3 & 5/12 & 9/24 & 2/5 \\ 1/3 & 3/6 & 1/3 & 11/24 & … & 2/5 \\ 1/3 & 1/6 & 3/12 & 1/6 & 1/5 \end{bmatrix}$

Iteration 0, 1, 2, …
Random Walk Interpretation

- Imagine a random web surfer:
 - At any time t, surfer is on some page i
 - At time $t + 1$, the surfer follows an out-link from i uniformly at random
 - Ends up on some page j linked from i
 - Process repeats indefinitely

- Let:
 - $p(t)$... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
 - So, $p(t)$ is a probability distribution over pages
The Stationary Distribution

- Where is the surfer at time $t+1$?
 - Follows a link uniformly at random
 $$ p(t + 1) = M \cdot p(t) $$
- Suppose the random walk reaches a state
 $$ p(t + 1) = M \cdot p(t) = p(t) $$
 then $p(t)$ is **stationary distribution** of a random walk.
- **Our original rank vector** r satisfies
 $$ r = M \cdot r $$
 - So, r is a stationary distribution for the random walk.
Existence and Uniqueness

- A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what is the initial probability distribution at time \(t = 0 \)
PageRank:
The Google Formulation
PageRank: Three Questions

\[r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i} \]

or equivalently

\[r = Mr \]

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?
Does this converge?

Example:

\[
\begin{align*}
 r_a &= 1 \ 0 \ 1 \ 0 \\
 r_b &= 0 \ 1 \ 0 \ 1 \\
\end{align*}
\]

Iteration 0, 1, 2, …
Does it converge to what we want?

- Example:

\[\begin{align*}
 r_a &= 1 \quad 0 \quad 0 \quad 0 \quad 0 \\
 r_b &= 0 \quad 1 \quad 0 \quad 0 \quad 0
\end{align*} \]

Iteration 0, 1, 2, …

\[r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i} \]
2 problems:

- (1) **Dead ends**: Some pages have no out-links
 - Random walk has “nowhere” to go to
 - Such pages cause importance to “leak out”

- (2) **Spider traps**: (all out-links are within the group)
 - Random walk gets “stuck” in a trap
 - And eventually spider traps absorb all importance
Problem: Spider Traps

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**

 $\begin{align*}
 \begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} &= \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \begin{bmatrix} 2/6 \\ 1/6 \\ 3/6 \end{bmatrix} + \begin{bmatrix} 3/12 \\ 2/12 \\ 7/12 \end{bmatrix} \begin{bmatrix} 5/24 \\ 3/24 \\ 16/24 \end{bmatrix} \\
 &= \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \begin{bmatrix} 2/6 \\ 1/6 \\ 3/6 \end{bmatrix} + \begin{bmatrix} 3/12 \\ 2/12 \\ 7/12 \end{bmatrix} \begin{bmatrix} 5/24 \\ 3/24 \\ 16/24 \end{bmatrix}
 \end{align*}$

 Iteration 0, 1, 2, …

 All the PageRank score gets “trapped” in node m.
The Google solution for spider traps: At each time step, the random surfer has two options:

- With prob. β, follow a link at random
- With prob. $1-\beta$, jump to some random page
- β is typically in the range 0.8 to 0.9

Surfer will teleport out of spider trap within a few time steps.
Problem: Dead Ends

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**

\[
\begin{pmatrix}
 r_y \\
 r_a \\
 r_m
\end{pmatrix} = \begin{pmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\
 1/3 & 1/6 & 1/12 & 2/24 & 0 \\
\end{pmatrix}
\]

Iteration 0, 1, 2, …

Here the PageRank score “leaks” out since the matrix is not stochastic.
Solution: Always Teleport!

- **Teleports:** Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

![Teleport Diagram]

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>a</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{3}$</td>
</tr>
</tbody>
</table>
Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- **Spider-traps** are not a problem, but with traps PageRank scores are not what we want
 - **Solution:** Never get stuck in a spider trap by teleporting out of it in a finite number of steps

- **Dead-ends** are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - **Solution:** Make matrix column stochastic by always teleporting when there is nowhere else to go
Solution: Random Teleports

- **Google’s solution that does it all:**
 At each step, random surfer has two options:
 - With probability β, follow a link at random
 - With probability $1-\beta$, jump to some random page

- **PageRank equation** [Brin-Page, 98]

 \[
 r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}
 \]

 This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.
The Google Matrix

- **PageRank equation** [Brin-Page, ‘98]

 \[r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N} \]

- **The Google Matrix** \(A \):

 \[A = \beta M + (1 - \beta) \frac{1}{N} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \]

- We have a recursive problem: \(r = A \cdot r \)

And the Power method still works!

- **What is \(\beta \)?**

 - In practice \(\beta = 0.8, 0.9 \) (make 5 steps on avg., jump)
Random Teleports ($\beta = 0.8$)

\[
\begin{pmatrix}
0.8 & 0.2 \\
0.5 & 0.3 \\
0.3 & 0.2
\end{pmatrix}
\]

\[
\begin{pmatrix}
1/2 & 1/2 & 0 \\
1/2 & 0 & 0 \\
0 & 1/2 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3
\end{pmatrix}
\]

\[
\begin{pmatrix}
y & 7/15 & 7/15 & 1/15 \\
a & 7/15 & 1/15 & 1/15 \\
m & 1/15 & 7/15 & 13/15
\end{pmatrix}
\]

\[
\begin{array}{c|c|c|c|c}
y & a & m & & \\
\hline
1/3 & 1/3 & 1/3 & 0.33 & 0.20 & 0.46 \\
0.24 & 0.20 & 0.52 & 0.24 & 0.20 & 0.52 \\
0.26 & 0.20 & 0.56 & 0.26 & 0.20 & 0.56 \\
\hline
& & & & 7/33 & 5/33 & 21/33
\end{array}
\]
How do we actually compute the PageRank?
Computing PageRank

- **Key step is matrix-vector multiplication**
 - \(r^{\text{new}} = A \cdot r^{\text{old}} \)
- Easy if we have enough main memory to hold \(A, r^{\text{old}}, r^{\text{new}} \)
- Say \(N = 1 \text{ billion pages} \)
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix \(A \) has \(N^2 \) entries
 - \(10^{18} \) is a large number!

\[
A = \beta \cdot M + (1-\beta) \frac{1}{N} \]

\[
A = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 1 \\
\end{bmatrix}
+ 0.2
\]

\[
= \begin{bmatrix}
\frac{7}{15} & \frac{7}{15} & \frac{1}{15} \\
\frac{7}{15} & \frac{1}{15} & \frac{1}{15} \\
\frac{1}{15} & \frac{7}{15} & \frac{13}{15} \\
\end{bmatrix}
\]

4/22/24
Rearranging the Equation

\[r = A \cdot r, \text{ where } A_{ji} = \beta M_{ji} + \frac{1-\beta}{N} \]

\[r_j = \sum_{i=1}^{N} A_{ji} \cdot r_i \]

\[r_j = \sum_{i=1}^{N} \left[\beta M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i \]

\[= \sum_{i=1}^{N} \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^{N} r_i \]

\[= \sum_{i=1}^{N} \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \text{ since } \sum r_i = 1 \]

\[\text{So we get: } r = \beta M \cdot r + \left[\frac{1-\beta}{N} \right]_N \]

Note: Here we assume \(M \) has no dead-ends

\([x]_N \ldots \text{a vector of length } N \text{ with all entries } x\)
Sparse Matrix Formulation

- We just rearranged the PageRank equation

\[r = \beta M \cdot r + \left[\frac{1 - \beta}{N} \right] N \]

- where \([(1-\beta)/N]_N\) is a vector with all \(N\) entries \((1-\beta)/N\)

- \(M\) is a **sparse matrix**! (with no dead-ends)
 - 10 links per node, approx 10\(N\) entries

- So in each iteration, we need to:
 - Compute \(r^{\text{new}} = \beta M \cdot r^{\text{old}}\)
 - Add a constant value \((1-\beta)/N\) to each entry in \(r^{\text{new}}\)
 - Note if \(M\) contains dead-ends then \(\sum_j r_j^{\text{new}} < 1\) and we also have to renormalize \(r^{\text{new}}\) so that it sums to 1
PageRank: The Complete Algorithm

Input: Graph G and parameter β
- Directed graph G (can have spider traps and dead ends)
- Parameter β

Output: PageRank vector r^{new}

- **Set:** $r_j^{old} = \frac{1}{N}$
- **repeat until convergence:** $\sum_j |r_j^{new} - r_j^{old}| < \varepsilon$
 - $\forall j$: $r_j^{new} = \sum_{i \rightarrow j} \beta \frac{r_i^{old}}{d_i}$
 - $r_j^{new} = 0$ if in-degree of j is 0
- **Now re-insert the leaked PageRank:**
 - $\forall j$: $r_j^{new} = r_j^{new} + \frac{1 - S}{N}$ where: $S = \sum_j r_j^{new}$
- $r^{old} = r^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is $1 - \beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.

Some Problems with PageRank

- **Measures generic popularity of a page**
 - Biased against topic-specific authorities
 - **Solution:** Topic-Specific PageRank (*on Thursday*)

- **Uses a single measure of importance**
 - Other models of importance
 - **Solution:** Hubs-and-Authorities

- **Susceptible to Link spam**
 - Artificial link topographies created in order to boost page rank
 - **Solution:** TrustRank (*on Thursday*)
Please give us feedback 😊