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Abstract

The COVID-19 pandemic has caused enormous challenges for medical experts
in identifying the abnormalities from radiography images due to the lack of pre-
labeled training data. The recent need to analyze radiography images efficiently
without pre-labeled unseen diseases is essential in helping combat future pandemics
and reduce the burden on society. In this paper, we study the use of several
Computer Vision and Deep Learning models for the tasks of abnormality detection
and unseen disease prediction. Our goal is to explore the possibility of utilizing
previously trained models to detect abnormal regions and predict new, unseen
diseases in chest X-ray images.

1 Introduction

Experts have long warned of the potential for new diseases to emerge and cause significant health
complications, particularly in regions where health resources are limited. Due to the substantial
impact of such unforeseeable events on individuals and society at large, we aim to investigate the
feasibility of extending the current advancement of using computer vision to predict a known disease
from a given X-ray image, to also predict unknown diseases as well.

Our motivation stemmed from the spread of the novel COVID-19 virus and the bottleneck of
analyzing the X-ray image. At the beginning of the pandemic, there existed no labeled training data
for identifying COVID-19 from chest X-rays, so identifying COVID-19 in patients was practically
impossible given the lack of data. Nevertheless, radiographers are capable of correctly separating
COVID-19 X-ray images from other diseases. Thus, in this project, we try to explore the possibility
of using previously trained models’ intuition based on known-label diseases to extrapolate whether
new images contain new diseases. We believe that if we can quantify the effectiveness of using
Deep Learning models on new diseases, then we will be equipped to combat the future generation
pandemic and reduce the psychological and economic burden on society.

We have seen the imbalance of hospital equipment and technology access from different parts of the
country and across the continent. As a result, we come up with the second question, the robustness of
these deep learning models for the spectrum of X-ray resolutions and artifacts. Specifically, after
doing preliminary data exploration, we found that some hospitals printed and annotated text on
the film, which can confuse the model and reduce the accuracy of their prediction. This is very
important to us because, in the real world, we do not have the luxury of hand cleaned each image
and preprocessing like the one that we have access to in the dataset. We simulate this by augmenting
the dataset with different random noise distributions and adding some annotated characters across
different locations of images.

We focus on supervised learning methods with labeled data of chest X-ray images to train multiple
Deep Learning models. We perform our analyses on two types of supervised learning models. First, a
binary classifier that is capable of predicting whether an image has an abnormal region or not. Second,
another binary classifier that is capable of predicting whether an image has an unseen disease or not.



In summary, the main contributions of our research are:

* Conduct a case study of supervised models to determine whether or not an chest x-ray image
has abnormalities and pick some of the models with the best performances.

* Use the best performing models above to investigate and quantify the effect of withholding
one or more diseases from the training data on a model’s performances, and investigate how
well a model that has been trained on a set of diseases, performs on a previously unseen
disease.

* Evaluate these model architectures and provide a guideline for selecting the best one to
handle newly emerged diseases without having labeled data yet.

2 Related Works

Prior to our research, there have been several analyses on similar topics in the chest X-ray images.

Liu et al. [5] proposed a Segmentation-based Deep Fusion Network combining the techniques of
image segmentation and deep learning for the classification of thoracic diseases. The segmentation
network is trained to segment the chest X-ray images into different regions of interest (ROIs) such
as the lung, heart, and clavicle. The fusion network is a deep CNN that uses the segmented ROIs
as input. The proposed model achieved a mean AUC score of 0.815 that outperformed fine-tined
DenseNets and all other available approaches. Moreover, the segmentation model could successfully
identified 95.84% lung regions without false positive/negative segmentation. One possible limitation
would be that the model was trained on a specific dataset and may not perform as well on images
from different sources due to variations in image quality or other factors.

Awan et al. [2]] applied a combination of Apache Spark framework and a Deep Transfer Learning
pipeline on multiple pre-trained CNN architectures, to detect COVID-19 symptoms. They performed
experiments for 2 different tasks: binary classification and 3-class classification, including normal,
COVID-19 and pneumonia. For all models trained, the binary classification task achieved the accuracy
of 100% and the 3-class classification task achieved more than 97% accuracy, which outperformed
all other approaches. However, there are still some limitations in this proposal. Since the authors
combined multiple sources of chest X-ray images as their dataset, and the overall size of the dataset
is relatively small, there are some biases among the dataset, especially for binary classification.

Albahli and Yar [[L] presented a multilevel classification approach using DL to diagnose COVID-19
and other chest disorders. Their approach was evaluated using different pre-trained DL models such
as ResNet-50, NasNetLarge, Xception, InceptionV3, and InceptionResNetV2. The results show that
ResNet-50 performed best with an average accuracy of 71.905% for COVID-19 identification and
66.634% for other diseases. Classifying X-ray images at two different stages could allow a faster
speed to detect COVID-19-specific X-ray images than X-rays of other chest diseases during the
pandemic. However, as the data for patients with COVID-19 is much smaller compared to other
diseases, there may be some biases when training.

Cai et al. [4] proposed an unsupervised learning framework called Dual-distribution Discrepancy
for Anomaly Detection to utilize the task of anomaly detection in both labeled and unlabeled chest
X-ray images. Their framework consists of 2 modules, with Module A being trained on both labeled
and unlabeled images to detect anomalous regions, and Module B models the distribution of only
labeled images and is expected to show high uncertainty on unseen anomalies from Module A. The
structures of the modules is an ensemble of multiple reconstruction models, and can be any variants
of autoencoders (AEs). They also proposed new methods to calculate reconstruction errors and
anomaly scores that consider the discrepancy between different distributions, which improve the
modules’ capability of discriminating anomalies. Results of the AUC values showed that the proposed
framework using 3 different AEs outperformed other methods by at most 14.6% on Chest X-ray8 and
15.1% on VinDr-CXR [7] - another fairly big dataset on chest X-rays.

3 Data Collection

All the works in this project are done using 2 datasets:



Firstly, we use the NIH Chest X-ray14 dataset [9] as our training and validation data. This is a
publicly available medical imaging dataset of chest radiography images that is commonly used in
research related to thoracic disease classification. It contains 112,120 anonymized frontal-view X-ray
images of 30,805 unique patients. Each image is a 1024x1024 PNG image, and is labeled with zero
or more thoracic disease labels, for a total of 14 possible disease labels. These include: Atelectasis,
Consolidation, Infiltration, Pneumothorax, Edema, Emphysema, Fibrosis, Effusion, Pneumonia,
Pleural-thickening, Cardiomegaly, Nodule, Mass and Hernia. All images from the same patient only
appear in either the training/validation or testing set.
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Figure 1: Sample images of the Chest X-rayi4 dataset, along with their labels.

When evaluating our models on unseen diseases, we use another dataset called the COVIDx CXR-2
dataset [8]]. This is a dataset of frontal-view X-ray images containing 29986 images from 16648
patients, Each image is also a 1024x1024 PNG image, with labels indicating whether the patient has
COVID-19 (Positive) or not (Negative).

To greatly reduce the computation needed for training and validation, we resize all 1024x1024 images
in both NIH ChestX-ray14 and COVIDx CXR-2 to fit each of our models’ desired input size, using
bi-linear interpolation. We also apply data augmentation methods, as well as normalizing the mean
and standard deviation of both datasets to avoid overfitting.

4 Exploratory Data Analysis

Before conducting our analyses, some data manipulation are necessary. Since a patient may have
multiple diseases in the Chest Xray14 dataset, exploratory methods such as Pricipal Component
Analysis (PCA) or t-distributed Stochastic Neighbor Embedding (t-SNE) may not work well, as these
methods may have trouble clustering patients with multiple diseases into one specific cluster. Table 1
shows the number of times each disease occurs in our dataset.

La.bel. Count Label Count
No Finding 60361 - .
. Pleural Thickening | 3385
Infiltration 19894 .
. Cardiomegaly 2776
Effusion 13317
. Emphysema 2516
Atelectasis 11559
Edema 2303
Nodule 6331 5 :
Fibrosis 1686
Mass 5782 .
Pneumonia 1431
Pneumothorax | 5302 Hernia 277
Consolidation 4667

Table 1: Distribution of data labels in the Chest X-rayl4 dataset.

As we can see from Table 1, overall, the Chest X-ray14 dataset is quite balanced, with 60361 images
not having any disease (No Finding) and 51579 images having one or more diseases. However,



Pneumothorax N / Infiltration

Atelectasis

Fibrosis

Figure 2: Correlation between diseases in the Chest X-ray14 dataset.

among the images with diseases, there is a huge imbalance in favor of some diseases. Specifically,
Infiltration has the highest count, accounting for 38.6% and Hernia has the lowest count, accounting
for only 0.4% of the data. To avoid overfitting and class imbalance among the data and improve the
robustness of the deep learning model, we apply data augmentation techniques to the training data,
such as random rotation, flipping, scaling and cropping.

Moreover, since there are many patients whose images show to have multiple diseases, we explore
and plot the correlations of those diseases in Figure 2. According to Figure 2, there are strong
correlations between Infiltration, Atelectasis and Effusion, which are the 3 diseases with the highest
label counts. This means if a patient is infected with Atelectasis or Effusion, there’s a high likelihood
that they also suffer from Infiltration.

The COVIDx CXR-2 dataset is also quite balanced, with 15994 images of patients having COVID-19
(Positive) and 13992 images of patients not having it (Negative). For testing, the labels of the dataset
are converted into binary labels using one-hot encoding.

5 Methods

We perform the following tasks and use our data to validate them:

* Task 1: Case Study of Abnormality Detection
e Task 2: Predictions on Unseen Diseases.

For Task 1, we want to know whether or not an image in the Chest X-ray14 dataset has regions of
abnormalities. The abnormalities include the 14 labels of diseases defined in the dataset. We conduct
a case study of several supervised learning models to detect abnormalities, and pick the 2 models with
the best performances to perform Task 2. Our hypothesis is that the models with the most parameters
or have the highest depths will perform better.

We use transfer learning and a caviar strategy to pick the models for our case study. The caviar
strategy refers to the practice of developing and training multiple models and selecting the model
having the best learning curve. Our strategy is to filter the models available from the Torchvision
package, pick some of the best models with the highest Top-1 Accuracy on ImageNet, as well as
having the ability to train efficiently without CUDA running out of memory midway, and conduct
transfer learning on the chosen pretrained models. Following this strategy, we have picked 8
supervised learning models for our case study, all pretrained on ImageNet. These models will then be
trained on the ChestX-ray14 dataset using Binary Cross Entropy loss and Adam optimizer for 10
epochs, with learning rate of 0.0002 and weight decay of 0.00002. Each model is followed by one



or multiple fully connected layers, along with ReLU activation function, a dropout layer of 0.2 to
prevent overfitting, and a Sigmoid layer at the end. The models are as follow:

* ResNet-50: A residual network that is 50 layers deep, formed by stacking multiple residual
blocks to prevent gradient vanishing. It consists of 48 convolutional layers, 1 MaxPool and
1 AveragePool layer.

* ResNet-152: A deeper residual network with 152 layers, approximately 8 times deeper
than VGG19 but still has lower complexity, with improved accuracy on both ImageNet and
COCO.

* DenseNet-121: A 121-layer network where each layer is connected directly with every other
layer. It consists of 4 DenseBlocks, each block has a constant dimension of the feature maps,
and 3 Transition Layers to halve the number of channels.

* VGG19: The currently deepest variant of the VGG family with 19 layers, using only 3 x 3
kernels, followed by 3 fully connected layers and a Softmax layer at the end.

* MNasNet0.5: A type of neural network optimized for mobile devices, which explicitly
incorporates model latency into the main objective. It mainly consists of inverted residual
blocks, similar to MobileNetv2, but has less parameters.

» ResNeXt-50: A network that repeats a building block that aggregates a set of transformations
with the same topology. In addition to dimensions of depth and width like ResNet-50, it also
explores another essential dimension, cardinality (the size of the set of transformations).

* InceptionV3: An improved version of the Inception family by making use of the label
smoothing technique, factorized 7 x 7 kernels, an auxiliary classifer to propagate label
information lower down the network, and batch normalization for layers in the sidehead.

* EfficientNetV2-S: The smallest version of the EfficientNetV?2 family, with better parameter
efficiency and training speed compared to EfficientNet by extensively using inverted residual
blocks in early layers, smaller 3 x 3 kernels and removing the last stride-1 stage.

For Task 2, there are 2 steps:

* First, we test our model locally using a modified Chest X-ray14 dataset: We pick one disease
in the Chest X-ray14 dataset and pretend that this disease is the newly emerged disease. We
remove all samples with this disease label from the dataset, and then retrain our two best
performing models from Task 1 using this reduced dataset. We do this for the three diseases
with the most counts (Infiltration), least counts (Hernia) and mean counts (Consolidation).
To test the performance of our models, for each case, we generate a test set of 5000 images
of the excluded disease, as well as images without any disease (No Finding). These images
are separate from our training data. Our ideal test set would contain 2500 images of the
excluded disease and 2500 images with No Finding label. However, since the number of
images of is unequal among the excluded diseases, and some are less than 2500 in total, the
ratio between the number of No Finding images and excluded disease images may be greater
than 1:1. This is actually more realistic, as in practice, the number of people suffering a
disease is supposed to be less than the number of people that do not. Each model is then
evaluated on how well it is able to detect abnormalities on these unseen diseases that the
models were not trained on.

» Second, we test our models to see whether they can predict a completely new disease:
COVID-19. We will train our models on the whole Chest X-ray14 dataset and use the
COVIDx CXR-2 dataset as our test set. Our test set contains 29986 samples of both positive
or negative COVID-19 x-ray images. Each model is then evaluated on how well it is able to
detect abnormalities on the COVID-19 patients.

For each task, our models are evaluated using several metrics:

* Precision: Precision is defined as the number of observations that are correctly classified
as true positive over the total number total positive. As an example, a model with 70%
precision when predicting an image to be abnormal means that it is correct 70% of the time.

TP

Precision = m



* Recall: Recall (or sensitivity) is defined as the number of observations correctly classified
as true positive over the total number of true positive and false negative instances. Thus, a
model with 60% recall means it correctly identifies 60% of all abnormal images.

TP

= —F——
Reca TP+ FN
* F1-Score: Fl-score is the harmonic mean of precision and recall metrics.

Fl-Score — 2 - Precision - Recall

Precision + Recall

¢ Matthew’s Correlation Coefficient (MCC): MCC is defined as the correlation between
the predicted observations and their respective ground truths, and is a very essential metric
to consider when the dataset is heavily imbalanced.
TP-TN - FP-FN

MCC =
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

* ROC-AUC: ROC-AUC is the area under the receiver operating characteristic (ROC) curve.
The ROC curve is the plot visualizing the tradeoff between true positive rate (TPR) and false
positive rate (FPR).

6 Results

6.1 Task 1: Case Study of Abnormality Detection

Table 2 shows the accuracy and loss of each model after training for 10 epochs. According to Table 2
and Figure 3, VGG19 achieves the highest training accuracy, and thus the lowest training loss, but
suffers overfitting heavily, as can be seen in Figure 3. This can also be explained by its low validation
and testing accuracy compared to other models. The same happens with MNasNet0.5. This also
explains why these 2 models” AUC are lowest (0.69, while all others are above 0.7).

Model Ay [ __Low
Training | Validation | Testing | Training | Validation
ResNet-50 0.703 0.680 0.685 0.588 0.608
ResNet-152 0.679 0.681 0.688 0.609 0.610
DenseNet-121 0.709 0.685 0.694 0.576 0.607
VGG19 0.780 0.640 0.639 0.472 0.679
MNasNet0.5 0.701 0.621 0.621 0.582 0.649
ResNeXt-50 0.714 0.690 0.692 0.567 0.605
InceptionV3 0.712 0.698 0.699 0.573 0.604
EfficientNetv2-S 0.708 0.698 0.692 0.582 0.594

Table 2: Loss and Accuracy of 8 models after training Task 1. VGG19 achieves the best accuracy, but has the
second lowest validation and testing accuracy, suggesting that it has overfitted. InceptionV3 and
EfficientNetv2-S achieved the best validation and testing accuracies and losses.

Model Precision | Recall | F1 - Score | MCC
ResNet-50 0.665 0.652 0.658 0.366
ResNet-152 0.670 0.647 0.658 0.371
DenseNet-121 0.652 0.736 0.692 0.392
VGG19 0.594 0.704 0.644 0.288
MNasNet0.5 0.682 0.344 0.458 0.243
ResNeXt-50 0.673 0.659 0.666 0.380
InceptionV3 0.705 0.609 0.653 0.394
EfficientNetV2-S 0.670 0.669 0.668 0.381

Table 3: Evaluation of 8 models after training Task 1. InceptionV3 achieves the best Precision and MCC
scores, while DenseNet-121 has the best Recall and F1-Score.
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Figure 3: Training and Validation Loss of 8 models for Task 1. VGG19 and MNasNet0.5 suffers overfitting,
while ResNeXt-50, while maintaining a fairly low training loss, has an unstable validation loss.

Using Table 2, we can identify our 2 potential model choices for Task 2: InceptionV3 and
EfficientNetv2-S, as they have the highest validation and testing accuracies. However, as our
training data is very big and a little imbalanced, using only accuracy and loss is not enough. We
also need our evaluation metrics from Table 3. According to Table 3, InceptionV3 achieves the best
Precision (0.705) and MCC scores (0.394), as well as the highest AUC value (0.75, as seen in Figure
4). For the other evaluation metrics, DenseNet-121 has the best Recall (0.736) and F1-Score (0.692).
Although these 2 models have the same AUC value (0.74, according to Figure 4), EfficientNetV2-S’s
values in Table 3 are fairly lower, while DenseNet-121’s accuracies and losses are not too worse than
EfficientNetV2-S. Another thing to note is that EfficientNetV2-S has much more parameters than
DenseNet-121 and InceptionV3, thus has much longer training time and higher computational costs.
Therefore, based on our results, the 2 models with the best performances and will be used for Task 2
are InceptionV3 and DenseNet-121. The results also help us reject our hypothesis that models with
more parameters and greater depths will perform significantly better than others.

—— VGG19 AUC:0.69

—— MNasNet0.5 AUC:0.69
— ResNet-50 AUC:0.73
— ResNet-152 AUC:0.73
— DenseNet-121 AUC:0.74
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Figure 4: ROC-AUC of 8 models aftering training Task 1. InceptionV3 and ResNeXt-50 have the best AUC,
followed by DenseNet-121 and EfficientNetV2-S. VGG19 and MNasNet0.5 have the lowest AUC scores,
bolstering the claim that they overfitted.



6.2 Task 2: Predictions on Unseen Diseases

Table 4 demonstrates the results of testing DenseNet-121 and InceptionV3 on predicting several
unseen diseases. For our first step of Task 2, InceptionV3 seems to have better performances
compared to DenseNet-121 when predicting unseen diseases on our modified Chest X-ray14 dataset.

Unseen Disease Model Accuracy | Precision | Recall | F1 - Score | MCC
Infiliration DenseNet—lZl 0.528 0.582 0.196 0.293 0.073
InceptionV3 0.557 0.596 0.356 0.446 0.125

Consolidation DenseNet-121 0.760 0.536 0.634 0.581 0.417
InceptionV3 0.734 0.495 0.725 0.588 0.418

Hernia DenseNet-lZl 0.710 0.029 0.373 0.326 0.029
InceptionV3 0.696 0.030 0.409 0.346 0.036

DenseNet-121 0.755 0.708 0.919 0.800 0.525

COVID-19 1 pceptionV3 | 0742 | 0688 | 0943 | 079 | 0511

Table 4: Evaluation of DenseNet-121 and InceptionV3 for Task 2. InceptionV3 has better performances on
locally held out diseases (Infiltration, Consolidation, Hernia), while DenseNet-121 has slightly better results on
a completely unseen disease - COVID-19.

Both models have the worst performances in identifying Infiltration, the disease with the most
counts in our dataset, achieving less than 60% accuracy and AUC, as can be seen in Figure 5. The
recall values are very low, suggesting that both models have difficulties identifying samples having
Infiltration (high False Negative). This leads to F1-Score and MCC scores being much less than
0.5, although the Precision and Accuracy scores are above 0.5. One possible explanation is that the
abnormalities that Infiltration causes happen in a very small region of the image, and our models are
not fine-tuned or strong enough to correctly identify them efficiently yet.

— Infiltration AUC:0.58 — Infiltration AUC:0.57

—— Hemia AUC:0.62 —— Hemia AUC:0.60

—— COVID-19 AUC:0.76 —— COVID-19 AUC:0.76

— Consolidation AUC:0.78 — Consolidation AUC:0.78
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Figure 5: ROC-AUC of DenseNet-121 and InceptionV3 for Task 2. DenseNet-121 has slightly higher AUC for
Infiltration and Hernia, and the same values for Consolidation and COVID-19.

For Consolidation and Hernia, both models achieve better evaluation scores. They can correctly
classify more than 70% of the test set, and achieve fairly good AUC, especially for Consolidation
(both 0.78, according to Figure 5). The Precision scores for Hernia of both models are below 0.1
due to the high imbalance between samples having Hernia and samples without diseases (ratio of
roughly 1:49). While DenseNet-121’s accuracy is higher than InceptionV3 for these 2 diseases, its
other values are slightly lower due to the fact that it has a higher False Negative count, suggesting
that it has more difficulties identifying samples having the held out disease compared to InceptionV3.
Another explanation for the high testing results on Consolidation and Hernia is that the abnormality
regions these 2 diseases cause is comparably larger than those caused by Infiltration.



For the second step of Task 2, DenseNet-121 achieves slightly better results in classifying samples
with COVID-19 without training on this disease, compared to InceptionV3. Since the difference
between the models’ evaluation metrics are very small (less than 0.02 for all metrics), and they
similar AUC (both 0.76, as seen in Figure 4), it’s hard to say DenseNet-121 is a better performer
than InceptionV3, as so far we have seen InceptionV3 achieving better results for most of our tasks.
Nevertheless, both models have remarkably high Recall values (0.919 for DenseNet-121 and 0.943
for InceptionV3), meaning that they can identify nearly all the images having abnormalities caused
by COVID-19. One possible explanation to these results is that COVID-19 causes abnormalities in
multiple regions of the lung, therefore it is easier for the models to identify these regions, compared
to some other diseases such as Infiltration or Mass.

7 Discussion

In Task 1, we conduct a case study of 8 supervised learning models on the task on detecting
abnormalities caused by one or more diseases in Chest X-ray images. We hypothesize that the deeper
the network is, the better it is at performing our classification task. However, through this case study,
we have rejected that hypothesis. We are able to identify which models are the most suitable for our
next steps (DenseNet-121 and InceptionV3), which models are not (VGG19 and MNasNet0.5, as they
overfitted), and which models are potentially useful should we need more models (EfficientNetV2-S
and ResNeXt-50). From the result of our study, we can see that depth and the number of parameters
are not the only sole factors responsible for the performances of our models. Instead, sometimes
too deep models can also lead to overfitting, which is very undesirable. Therefore, it is essential to
consider multiple versions of a model family carefully so that we can avoid overfitting and underfitting
our training data.

Using DenseNet-121 and InceptionV3 as our baseline models for Task 2, we learn that our models
are able to detect some of the locally held out diseases with reasonable accuracy (Hernia and
Consolidation), and struggle with some others at the same time (Infiltration) possibly due to the
region caused by the diseases. Additionally, since Infiltration is highly correlated with many other
disease (as can be seen in Figure 2), it makes sense that removing Infiltration from the dataset lowers
the overall performance metrics of the models. Moreover, by testing out our models on a completely
separate dataset of COVID-19 Chest X-ray images, we learn that the models are able to detect more
than 90% of the images that are COVID-19 positive. Based on the empirical results of this task, we
are confident that our 2 models DenseNet-121 and InceptionV3, with fairly similar performances,
can be used to detect new and unseen diseases in Chest X-ray images in the future with limited
computation resources. If we have to pick the best model for this task, InceptionV3 will be the best
choice, based on its stable performances in both Task 1 and 2.

The results of Task 2 have shown that we can now apply Deep Learning methods to detect new
and unseen diseases through Chest X-ray scans of patients with high precision to detect this newly
emerged disease from day 1. Moreover, given that our model works well on Chest X-ray images, it
is possible that they also have the ability to predict new or unseen diseases in different areas of our
body, such as brain tumor diseases through brain MRI scans or even detect abnormalities in unborn
babies through abdominal MRI scans.

Finally, it should be noted that neither of our models performed perfectly. As such, while our models
can be of high value to professional radiologists during diagnosis, the models should not be used
as a sole tool to diagnose patients. Furthermore, our model predicts whether a Chest X-ray image
contains special abnormalities. To correctly diagnose a patient to be of a specific disease, we need
expert medical personnel incorporating multi-modals information (fever, breathing pattern, or medical
history) that is not recorded by a radiography image.

8 Limitations and Future Works

8.1 Limitations

There are several limitations to our method and analysis that could have led us to our current results.

Even though we have good results, we believe that with access to more computing resources, we can
tune our model to yield even better results. The challenges in current settings have two main aspects.



First, GPU memory is very limited when training our models. Because of this, we are unable to train
very large models such as EfficientNetV2-L or MobileNetV2. Second, the size of the images and
pre-processing (general artificial noises, such as Gaussian and random rotation) requires significant
CPU computation and makes the process become CPU bound and not fully utilized on the GPUs.

Apart from the measurable metrics, we are assuming that our artificial noises would represent the
nature of noise in real hospital settings. Given that all datasets we found have been pre-processed
and that we have very limited access to the raw X-ray image, we assume that the distribution of real
X-ray images would still be relatively within our simulated noises.

8.2 Future Works
There are several possible avenues we can take from our current results:

* So far, we only focus on binary classification tasks in our analysis. One possible extension
is to apply our models to perform multi-label classification of multiple diseases at the same
time, so that they can predict more than one unseen disease simultaneously.

* Our models successfully detect whether or not an image has abnormal regions but have yet
to correctly visualize such regions. If given more time and computational resources, we can
modify our models to output those abnormal regions and calculate the probability of which
disease one region belongs to, should an image has multiple disease labels.

* Our model choice focuses mainly on supervised learning models, namely well-known
pre-trained CNN models. In the future, we can explore different types of models, such as
unsupervised learning models like Autoencoders (AEs) or Transformer-based models.

* It is possible that our models may have potential biases. Therefore, should we continue
with our project, we can explore the bias in our classification models and the correlation of
such bias with a specific disease. It might be possible that the current models will be biased
toward a specific disease if the image happens to have a certain type of artifact that types of
machines can cause.

* Our work focuses on repurposing general classification models (ResNet, EfficientNetV2),
which should be able to generalize well. However, there are several X-ray-specific models,
such as XNet [3], which have shown to be superior in classification tasks but may not
generalize in few-shot or zero-shot learning settings [6]. We can investigate and compare our
general classification models with those task-specific models in few-shot learning settings.

9 Conclusion

In this paper, we have shown with empirical results that it is possible to use transfer learning of
Deep Learning models to help classify newly emerged pandemic from chest x-ray without seeing the
data first. We studied multiple supervised learning models in the task of abnormality detection in
radiography images. Using transfer learning and a caviar strategy, we were able to pick 8 models
that are most suitable with our computation resources to perform our classification task. Of the 8
models, 2 of the best-performing ones are once again chosen to predict whether or not a Chest X-ray
image contains a new or unseen disease or not. Our hypotheses and results showed that these models
were able to detect an unseen disease - COVID-19 - with great precision and sensitivity. While the
correlation between multiple diseases may affect the models’ ability to predict one, these results are
very essential to our medical fields in detecting and preventing any potential pandemic outspread
in the future. We hope the success of these models will help lower the barrier of applying Deep
Learning to assist diagnosis at the start of pandemic and consequently facilitate medical staff to help
patient more efficiently.
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Team Member Contributions:

e Minh: Conduct caviar strategy for model choice and code for model deployment for Task 1
(VGG19, MNasNet0.5, ResNeXt-50, EfficientNetV2-S), generate plots, calculate evaluation
metrics, and report.

* Varich: Explanatory data analysis, examine few-shot learning, test COVID-19 as held-out
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A Appendix

Figure 6 describes the distribution of the Chest X-ray14 dataset embeddings using Principal Compo-
nent Analysis (PCA). PCA fails to cluster the data points properly, due to the fact that one image may
contain multiple disease labels, causing PCA to unable to choose a proper cluster for such image.
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Figure 6: Distribution of Chest X-rayl4 dataset embeddings using PCA.

Figure 7 shows sample predictions of one model from our case study in Task 1. The goal is to predict
whether a Chest X-ray image is abnormal or not.

Ground Truth: normal

Ground Truth: abnormal Ground Truth: abnormal
Prediction: abnormal Prediction: abnormal

Prediction: normal

Figure 7: Sample predictions of Task 1.
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