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Abstract

Music Source Separation is defined as the isolation of individual instruments from a
mixture of sounds. Source separation is commonly used as a tool for preservation of historical
recordings, musical transcription, or preprocessing for further analysis. In this project, we
introduce two transformer-based architectures for music separation, MSTransformer and MSTU.
Both methods achieve decent, but not state-of-the-art, evaluations using the MUSDB18 dataset
[7]. However, we contribute further experimentation and insight to the models’ behavior using
more data and parameters, to better inform future research with transformer-based music
separation.

Introduction

A source is defined as an individual signal (e.g. voice, instrument, etc.), which has been
combined with other sources to create a mixture. Since the introduction of Deep Learning,
source separation has been dominated by RNNs and CNNs. RNNs perform very well, as they
capture a long range of information by recursively analyzing the input, but scale poorly and are
impossible to parallelize on the sequence (e.g. estimate must be generated sequentially).
Conversely, CNNs are easily parallelizable, but do not capture as much information as RNNs,
due to the limited sizes of their kernels.
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Figure 1: Audio Source Separation Visualizer [9]

Transformers present a compromise that is able to capture long ranges of information
using attention mechanisms, without needing to recursively analyze the entire input [1]. Then,
the encoded attention values are passed through a parallelizable, feed-forward network. Our
project introduces two transformer-based neural networks for music separation, MSTransformer
and MSTU (Music Separation Transformer-UNet). MSTransformer is a purely transformer-based
architecture, whereas MSTU combines the transformer encoder with the UNet architecture to
generate better estimates. Prior attempts to use transformers for music separation have



necessitated external training data to meet non-transformer performance. In our project, we
restrict ourselves to our specific dataset, to analyze the behavior of transformer-based
architectures without additional support.

Related Work

As further discussed in the Mathematical Background section, there are two primary
ways to represent data for music separation: the waveform and the spectrogram. Both
representations encode the same audio, but with different features (a deeper understanding is
not necessary for this section). Most deep learning models for music separation only separate a
single source [2, 3, 4, 6]. Consequently, distinct models must be trained for each individual
source.

As priorly mentioned, modern music separation is dominated by RNNs and CNNs. A
popular approach for encoding audio (both waveform and spectrogram) is the UNet. For
instance, Wave-U-Net is a waveform CNN that uses upsampling and downsampling (with
learned parameters), combined with convolutional layers, to learn features from the mixture and
separate a source [3]. Downsampling is the process of reducing the sample-rate (bits per
sample) of a signal via compression. Wave-U-Net repeatedly downsamples the input waveform,
computing higher-dimensional features on an increasingly coarse time scale. Then, the encoded
features are combined with output from previous layers, to upsample the signal and generate an
estimated source (e.g. the output of the last downsampling block is passed to the first
upsampling block). In doing so, the model is able to learn long range temporal relations via
downsampling, while maintaining short term contextual information via upsampling. Although
this architecture performs well, and is used as a basis for future models, its performance
stagnates with outliers and larger inputs. Quiet segments of audio, labeled as “outliers" by the
authors, are difficult to recover during resampling, creating residual noise. Additionally, large
inputs may require additional resampling, which may necessitate too much memory usage.
Other models, such as SepFormer [4], avoid this limitation by dividing the input into a sequence
of chunks before passing it through a transformer. Then, the model augments the chunked
output to create a separated waveform.

A hybrid-transformer architecture, known as HTDemucs, uses both waveform and
spectrogram representations of a mixture to encode separate sources, which are combined to
create an estimate. HTDemucs is composed of two UNets (corresponding to the waveform and
spectrogram), each with five downsampling blocks and five upsampling blocks. At the
“‘bottleneck” (between the last downsampling block and first upsampling block), HTDemucs
applies a cross-domain transformer encoder. This transformer uses the downsampled input of
both UNets to further encode features from both representations (waveform and spectrogram).
After upsampling, the two UNets aggregate their results to generate an estimate. Although
HTDemucs overcame the weaknesses of many other models, it still underperformed relative to
state-of-the-art RNNs. To provide its transformer more contextual information, HTDemucs was
trained using 800 extra songs, which resulted in the current top SDR score for MUSDB18 [5, 7]
of 9.00.




Data Collection

Our project uses the MUSDB18 dataset from SigSep [5]. MUSDB18 comprises 150
full-length audio tracks (~10 hours of audio), each with 5 sources: mixture (all sources), vocals,
drums, bass, and other. The dataset includes 18 different genres, such as pop, rock, electronic,
and classical. MUSDB18 is widely used for training and evaluating models for music source
separation, which provides a useful baseline to compare our model performance against other
architectures. The sample-rate of each track is 44.1 kHz (e.g. each second of audio duration is
represented by a 44100-dimensional array).

As priorly mentioned, previous attempts of using transformers for music separation have
underperformed due to their relatively small datasets. Although MUSDB18 is a considerably
large dataset (4.4 GB), there are only 150 tracks that the model can use to learn musical
features. To augment this dataset, we borrow the solution from Open-Unmix, a model developed
by SigSep [6]. Open-Unmix randomly samples from each source at random points in a track,
and combines these samples to generate a new mixture. This solution creates more data points
for training, and provides new random patterns between sources in each mixture. For
evaluation, we use the normal MUSDB18 validation dataset, without random mixing, to provide
a better comparison against other baseline models. In Results, we provide a comparison of
model performance as we increase the number of random samples per track. We further
discuss how the data is processed (and why) in the Method section.

Method

Mathematical Background
Waveform and Spectrogram

There are two representations used for audio in source separation: the waveform and
the spectrogram. The waveform is a 2D representation of audio which defines the amplitude of
a signal at a given time. In comparison, the spectrogram is a 3D representation of audio which
defines the volume (dB) of a given frequency at a given time. There are several equations used
to alternate between these representations. In this project (with MSTransformer), we use the

(Discrete) Short-Time Fourier Transform, which converts a waveform to a spectrogram as,
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where T is a given time, w is a given frequency, x[t] is the waveform amplitude at time t, and
w(t] is a window function (e.g. Hann window).

The window function is non-zero for a short interval of time, and zero otherwise.
Consequently, the data is grouped into chunks of time, known as frames (which usually
overlap). For reference, a matrix representation of a waveform with a shape of (44100) may
have a corresponding spectrogram shape of (169, 1024) (Note: this shape is dependent on
specified parameters, such as window length). In both representations, the last dimension
represents time (sequence length). In the spectrogram, the first dimension is the number of
frequencies, or “bins”, for each frame. In Deep Learning, RNNs prefer spectrograms, as they
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shorten the sequence length and number of recursive calls, whereas CNNs prefer waveforms,
as they provide simpler, more informative convolutions. Notably, the output of the STFT is
complex-valued. DL architectures that use spectrograms must convert these values to a
different format, because most DL frameworks do not fully support complex values.

Signal-to-Distortion Ratio (SDR)

There are several metrics used in source separation, however the most popular metric is
Signal-to-Distortion Ratio (SDR),
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where s is the true source, and s . is our model’s estimate of the true source.
target estimate

Intuitively, the optimal estimate is such that s =5 which minimizes the denominator

estimate target’
and maximizes SDR. For reference, the best performing architecture (maximum SDR) for
MUSDB18 has an SDR score of 9.00 [2, 7].

Attention

Attention is a technique in machine learning that allows a model to selectively “focus” on
certain parts of an input sequence [1]. It works by assigning weights to different parts of the
input sequence based on their relevance to the current output. In doing so, the model can better
capture long-range dependencies in the input (such as audio features).

Mathematically, the equation for attention is,

vy,

where Q, K, and V (the query, key, and value matrices, respectively) are learned during

KT
Attention(Q, K, V') = softmax (Q ) 1%

the training process. The numerator, QKT, is a dot product of the current query with other keys in
the input, which identifies parts of the input that are related to the current state. The dot product
is scaled by the square root of the embedding dimension to stabilize the softmax. Multiplying by
the value matrix produces a weighted sum of values, which emphasize the most relevant parts
of the input. We can independently learn multiple Q, K, and V matrices to capture different
aspects of the input, known as Multi-Head Attention.

MSTransformer

MSTransformer is a spectrogram transformer-based music source separation model
composed of four main sections. First, a preprocessing layer converts the input waveform into a
spectrogram. Then, the embedded input passes through multiple encoder and decoder blocks
to create an estimated source. Finally, the postprocessing layer converts the spectrogram to a
waveform for evaluation. We provide an illustration of our model for clarity.
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Figure 2: MSTransformer architecture. Modifies diagram from “Attention Is All You Need” [1].

Preprocessing

Our preprocessing layer begins by applying a Short-Time Fourier Transform to the
waveform data to generate a spectrogram. In the STFT, we use a Hann Window with length
4096 (time per frame) and a hop length of 1024 (time between the start of frames). These
parameters are not necessary to understand the architecture, but are provided for the interested
reader. By definition, the output of the STFT is complex-valued, and may not match the
dimension of our transformer. To simplify the input to the desired dimensions, we apply two
linear layers. The first layer reduces the complex values to a single dimension, and the second
layer maps the dimension of the spectrogram to the dimension of the transformer.

Encoder and Decoder

Our encoder and decoder are modeled after the architecture outlined in “Attention Is All
You Need” [1]. The encoder is composed of six identical blocks, where each block has two
sub-layers. Each sublayer has a residual connection, followed by layer normalization. The first
sublayer applies self-attention, and the second sublayer is a simple feedforward network (linear
layers). The shape of the input and output are the same, such that we are able to consecutively
stack encoder blocks without additional processing. Before the first encoder block, we add a
positional encoding, which provides the transformer with the relative location of each element in
the input sequence.

PE(pos,2i) = sin (pos/lOOOO%/dW’de’)

PE(pos,2i+ 1) = cos (pos/l()ooo?i/dmodez)

where pos is the position in the input and i is the i-th feature.

Similarly, the decoder is composed of six identical blocks, where each block has three
sublayers. The first sublayer applies self-attention to the current output sequence (initially
empty). Then, the second sublayer applies cross-attention using the output of the encoder and
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the output of the first sublayer. This correlates the encoded input with the current output. Finally,
the third sublayer applies a feed-forward layer, which is then passed to the postprocessing layer.

Postprocessing

Finally, the postprocessing layer converts the estimated spectrogram to a waveform. To
do so, we apply two linear layers to undo the preprocessing layer. The first layer maps the
dimension of the transformer to the original dimension of the spectrogram. Then, the second
layer converts single-dimensional output to two-dimensional complex values. We apply ISTFT to
convert the spectrogram to a waveform. However, our estimated spectrogram is unlikely to
correspond to a uniform signal, such that ISTFT may discard parts of the spectrogram, resulting
in a shorter waveform (e.g. an input waveform of size 44100 may produce an estimate of size
44096). To generate a consistent estimate, we pad the output to the length of the original
mixture.

MSTU

MSTU is an improvement of MSTransformer, which uses a UNet architecture to encode
a waveform, rather than a spectrogram. MSTU is composed of three main sections. First, the
downsampling blocks encode an increasingly higher-dimensional feature representation of the
input waveform on coarser time scales. We use a transformer encoder to apply multi-head
attention using the high-dimensional representation. Then, the encoded features are combined
with the output of previous layers, yielding multi-time-scale features for the decoded source
estimate. We provide an illustration of the new architecture for clarity.
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Figure 3: MSTU architecture. Combines Transformer encoder with UNet resampling.



Downsampling

The downsampling layers reduce the input time dimension (length of the waveform), by
using convolutional layers and max-pooling, which compute an increasingly higher-dimensional
feature representation of the waveform on the coarser time scale. Each downsampling block
uses a double convolution, which applies two separate convolutional layers, each followed by
batch normalization and ReLU activation (denoted as “Conv” in the above diagram). These
double convolutions increase the dimension of our encoding, which is also provided to future
upsampling blocks as additional context. After the double convolution, we apply a max-pooling
layer (with a kernel size of 2), to create a coarser time scale that divides the length of the
waveform in half (denoted as “Down” in the above diagram).

To reiterate, each downsampling block divides the input length in half. If our input has
odd length, then we lose information, as the fractional length is rounded down. To avoid losing
information, we pad each input to the next largest power of two. This ensures that consecutive
downsampling blocks will never create an odd-length input.

Another potential issue to address is Dying ReLU [10]. If previous layers learn a large
negative bias, then ReLU may get “stuck”, as it outputs zero for all negative values (and the
gradient is also zero). To avoid this problem, we standardize the input waveform to avoid
learning large biases, and also apply dropout regularization.

Encoder and Bottleneck

The encoder and bottleneck layers of MSTU connect the downsampling and upsampling
layers. The encoder is recycled from the Encoder described in MSTransformer. However, this
encoder uses a waveform input, rather than a spectrogram. After the transformer encoder, the
encoded input is passed to a series of double convolutions, known as the bottleneck. The
bottleneck convolutions do not apply max-pooling, such that the length of the waveform does
not change. The purpose of the bottleneck layer is to use the attended output from the
transformer encoder to further extract the most important features and context from the input
(following the intuition from HTDemucs [2]).

Upsampling

As illustrated in the above diagram, the upsampling blocks combine the output of
previous downsampling convolutions (known as “shortcuts”) with the encoded input, to create a
higher resolution waveform (where the length is doubled). First, the model applies a transposed
convolution (denoted as “Up” in the above diagram), which decreases the feature dimension
and increases the sequence length. We concatenate this output with the shortcut from the
corresponding downsampling block, and apply a double convolution. The shortcut retains
information from the original waveform, which improves the quality of the reconstructed audio.
We repeatedly upsample until reaching the original padded length, which is followed by a final
convolution, and then cropped to the original input length.



Results

Baseline Comparison

We quantitatively evaluate both MSTransformer and MSTU by comparing their SDR
scores against other related architectures. We report the highest performance, using the
MUSDB18 evaluation dataset, from numerous model training attempts. Both models are trained
using 64 random samples per track and dropout regularization (with Pdmp = 0.1). We use the

same number of layers and parameters provided in the above descriptions. Additionally, we use
mean-squared error to calculate our training and validation loss.

Model I HTDemucs MSTU Wave-U-Net MSTransformer

SDR I 9.00 5.18 3.25 3.10
Table 1: Comparison of our models (bolded) against SOTA and related architectures.

We find that MSTU outperforms MSTransformer and Wave-U-Net, but both models
underperform relative to a state-of-the-art architecture, such as HTDemucs. To avoid
redundancy, further analysis will primarily involve MSTU, as the results are more informative.
We qualitatively analyze an informative example source, to observe patterns that are
challenging for our model to estimate.
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Figure 4: A true source (left) from a mixture, and the estimate (right) generated by MSTU.

The above estimate illustrates several errors of MSTU. The overall shape of the
waveform (e.g. location of peaks, width of bands, etc.) is correct, but not as clearly defined. The
peaks of the true waveform are less intense, whereas the troughs (amplitude near zero)
experience significant noise. Additionally, the model struggles to estimate short, intense peaks,
such as the peaks near 0 and 40000. Consequently, the estimate sounds noisy, as if the source
was recorded through an old microphone (an example will be provided in the project
presentation).

In the original Wave-U-Net paper, the authors observed similar noise near troughs.
Quantitatively, the SDR score shows that MSTU provides a good estimate of the source.
However, qualitatively, the downsampling and upsampling from the UNet creates residual noise,



especially in quieter segments. Overall, MSTU still provides significant improvement over
Wave-U-Net and MSTransformer.

Data Augmentation

Additionally, we undergo further experimentation to show potential improvements and
provide a better understanding regarding the behavior of MSTU. Our first addendum correlates
the SDR score with the number of random samples per track. In Data Collection, we discussed
how we augment our training dataset by randomly sampling from each source, and combining
the samples to create a new mixture. In this section, we analyze how the number of random
samples per track affects the SDR score.

We perform all computations on our individual laptops. Consequently, the training and
evaluation process requires a significant amount of time, which increases linearly with the size
of the dataset. To train and evaluate the models in a reasonable amount of time, we reduce the
number of training epochs. Consequently, the models do not fully converge, which causes their
SDR scores to underperform relative to the baseline comparison. However, the overall trend is
still informative.
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Figure 5: Comparison of SDR score against number of random samples per track.

We observe that the SDR initially decreases, and then monotonically increases beyond
n = 4 samples. This initial decrement contradicts previous research, which states that
performance should increase logarithmically based on the volume of training data [11]. We
hypothesize that this error is a consequence of our random sampling. We resample from the
same tracks, which may be interpreted as noise by our model, causing the initial decrease. As
the number of samples per track continues increasing, the model is able to fit to the new
samples, and the performance logarithmically increases as expected.

Model Complexity

Our second addendum correlates the training and validation loss with the number of
parameters in our model. We increase the number of parameters in our model by: increasing
the number of resampling layers, increasing the number of channels in the resampling layers,
increasing the number of encoder blocks, and increasing the number of bottleneck layers. We
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train multiple models with an increasing number of parameters, and compare their respective
mean-squared errors.

This experiment is victim to the same restrictions as the former. To train and evaluate
the models in a reasonable amount of time, we reduce the number of training epochs and
random samples per track.

Model Complexity vs MSE Loss
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Figure 6: Comparison of MSE loss and model complexity.

We observe that the validation loss initially decreases, then increases, and then
decreases again as the number of parameters increases. This observation mirrors a
phenomenon observed in modern Deep Learning research, known as “Double Descent” [8].
Although our observation does not match the exact criteria for double descent (training loss
does not reach zero), the results are still indicative of the benefits of larger models for music
separation. Our environment restrictions prohibit further experimentation, but we hypothesize
that increasing parameters would continue the decreasing end behavior. The results suggest
that future music separation research involving CNNs and Transformers (and more GPUs),
could observe increased performance by increasing model complexity.

Conclusion

In this paper, we proposed two transformer-based architectures for music separation,
MSTransformer and MSTU. Although our architectures do not achieve state-of-the-art results,
we contribute experimental analysis of methods to improve future transformer-based
architectures, such as artificial data augmentation and increased parameterization. Previous
research involving transformer-based music separation, such as HTDemucs, required additional
audio to achieve state-of-the-art results [2]. By randomly sampling new mixtures, we are able to
increase performance, without introducing new tracks. We also provide new experimental
results to illustrate how model performance increases as parameters increase. Future research
using larger datasets and more parameters would necessitate better development
environments. However, if these larger, transformer-based architectures are successful, they
would be easily parallelizable, in comparison to their RNN counterparts.
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Contributions

Elliott Zackrone: Introduction, related work, data collection, mathematical background, model
implementations, model descriptions and diagrams, baseline comparison, data augmentation,
model complexity, audio generation, and presentation preparation.

Xiaoqing Zhou: References searching, related work, model description and implementations,
experiment analysis and diagrams.

Sue Yang: Review of related work, description of data in data collection, searching for related
work, working on data preliminary analysis and report-writing.

Mary Yang: References searching, introduction, review of related work, description of
metadata, experimental analysis, and presentation preparation.
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