Review of Linear Algebra

CSE 547 / STAT 548 at the University of Washington

Acknowledgment: This note was originally compiled by Jessica Su for CS 224W at Stanford with substantial modifications by Yikun Zhang in Winter 2023 and Spring 2024 for CSE 547 / STAT 548 at UW. Parts of this note are adapted from Lecture 8 of Professor Yen-Chi Chen’s and Professor Michael Perlman’s lecture notes (Perlman, 2020) for STAT 512 at UW. Other good references about linear algebra includes Horn and Johnson (2012); Axler (2015) and notes from CS 224W at Stanford:

- http://snap.stanford.edu/class/cs224w-2014/recitation/linear_algebra/LA_Slides.pdf,

Note: We only discuss the vectors and matrices with real entries in this note, though the stated results also hold for complex entries.

1 Vector Space, Span, and Linear Independence

Vector space: A vector space over the real numbers \(\mathbb{R} \) is a set of vectors that is closed under additions with an identity as the zero vector \(\mathbf{0} \) and additive inverses in the set. It is also closed under scalar multiplications of the vectors by elements in \(\mathbb{R} \).

The most common vector space in Machine Learning is the Euclidean space \(\mathbb{R}^n \), which consists of all ordered \(n \)-tuples of real numbers. A vector of \(\mathbb{R}^n \) can be denoted by

\[
\mathbf{x} = \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}
\]

or a row vector \(\mathbf{x}^T = [x_1, \ldots, x_n] \), where \(x_i, i = 1, \ldots, n \) are called its components or coordinates.

1.1 Vector Operations

Dot/Inner product: The geometric properties of \(\mathbb{R}^n \) are derived from the Euclidean dot product defined as:

\[
\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = x_1y_1 + \cdots + x_ny_n = \sum_{i=1}^{n} x_iy_i,
\]

\(^1\)See http://faculty.washington.edu/yenchic/20A_stat512.html.
where $\mathbf{x} = [x_1, ..., x_n]^T$ and $\mathbf{y} = [y_1, ..., y_n]^T$ are in \mathbb{R}^n.

Orthogonality: Two vectors in \mathbb{R}^n are orthogonal if and only if their dot product is zero. In \mathbb{R}^2, we also call orthogonal vectors perpendicular.

Norm: The standard ℓ_2-norm or length of a vector $\mathbf{x} = [x_1, ..., x_n]^T \in \mathbb{R}^n$ is given by

$$||\mathbf{x}||_2 = \sqrt{x_1^2 + \cdots + x_n^2}.$$

Other possible norms in \mathbb{R}^n include

- ℓ_p-norm: $||\mathbf{x}||_p = \left(\sum_{i=1}^{n} x_i^p \right)^{\frac{1}{p}}$. It reduces to the above ℓ_2-norm when $p = 2$.

- ℓ_∞-norm: $||\mathbf{x}||_\infty = \max_{i=1, ..., n} |x_i|$. Notice that $||\mathbf{x}||_\infty \leq ||\mathbf{x}||_p \leq n^{\frac{1}{p}} ||\mathbf{x}||_\infty$.

When the context is clear, we often write the norm of a vector \mathbf{x} as $||\mathbf{x}||$. The norms in \mathbb{R}^n can be used to measure distances between data points (or vectors) in \mathbb{R}^n.

Triangle inequality: For two vectors \mathbf{x}, \mathbf{y} and any norm $||\cdot||$ in \mathbb{R}^n, the triangle inequality states that

$$||\mathbf{x} + \mathbf{y}|| \leq ||\mathbf{x}|| + ||\mathbf{y}||,$$

and its reverse version goes as

$$||\mathbf{x} - \mathbf{y}|| \geq \left| ||\mathbf{x}|| - ||\mathbf{y}|| \right|.$$

1.2 Subspaces and Span

Subspace of \mathbb{R}^n: A subspace of \mathbb{R}^n is a subset of \mathbb{R}^n that is, by itself, a vector space over \mathbb{R} using the same operations of vector addition and scalar multiplication in \mathbb{R}^n. In other words, a subset of \mathbb{R}^n is a subspace precisely when it is closed under these two operations.

Linear combination: A linear combination of the vectors $\mathbf{v}_1, ..., \mathbf{v}_k$ (in \mathbb{R}^n) is any expression of the form $a_1 \mathbf{v}_1 + \cdots + a_k \mathbf{v}_k$, where k is a positive integer and $a_1, ..., a_k \in \mathbb{R}$. Note that some of $a_1, ..., a_k$ may be zero.

Span: The span of a set \mathcal{S} of vectors consists of all possible linear combinations of finitely many vectors in \mathcal{S}, i.e.,

$$\text{span} \mathcal{S} = \{a_1 \mathbf{v}_1 + \cdots + a_k \mathbf{v}_k : \mathbf{v}_1, ..., \mathbf{v}_k \in \mathcal{S}, a_1, ..., a_k \in \mathbb{R}, \text{ and } k = 1, 2, ... \}.$$

1.3 Linear Independence

The vectors $\mathbf{v}_1, ..., \mathbf{v}_k$ (in \mathbb{R}^n) are linearly dependent if and only if there exist $a_1, ..., a_k \in \mathbb{R}$, not all zero, such that $a_1 \mathbf{v}_1 + \cdots + a_k \mathbf{v}_k = \mathbf{0}$.

A finite set of vectors $\mathbf{v}_1, ..., \mathbf{v}_k$ (in \mathbb{R}^n) is linearly independent if it is not linearly dependent. In other words, we cannot write any vector in $\mathbf{v}_1, ..., \mathbf{v}_k$ in terms of a linear combination of the other vectors.
2 Matrices

A $m \times n$ matrix $A \in \mathbb{R}^{m \times n}$ is an array of mn numbers as

$$A = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
A_{21} & A_{22} & \cdots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m1} & A_{m2} & \cdots & A_{mn}
\end{bmatrix}.$$

It represents the linear mapping (or linear transformation) from \mathbb{R}^n to \mathbb{R}^m as

$$x \mapsto Ax = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
A_{21} & A_{22} & \cdots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m1} & A_{m2} & \cdots & A_{mn}
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} = \begin{bmatrix}
\sum_{i=1}^{n} A_{1i}x_i \\
\sum_{i=1}^{n} A_{2i}x_i \\
\vdots \\
\sum_{i=1}^{n} A_{mi}x_i
\end{bmatrix} \quad \text{for any } x = \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} \in \mathbb{R}^n.$$

Here, the linearity means that $A(ax + by) = aAx + bAy$ for any $x, y \in \mathbb{R}^n$ and $a, b \in \mathbb{R}$. In particular, when $m = n$, $A \in \mathbb{R}^{n \times n}$ is called a square matrix.

2.1 Matrix Operations

Matrix addition: If A, B are both $m \times n$ matrices, then the matrix addition is defined as elementwise additions as:

$$[A + B]_{ij} = A_{ij} + B_{ij}.$$

Example 1. Here is an example of a matrix addition for two matrices in $\mathbb{R}^{2 \times 2}$ as

$$\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix} + \begin{bmatrix}
5 & 6 \\
7 & 8
\end{bmatrix} = \begin{bmatrix}
1 + 5 & 2 + 6 \\
3 + 7 & 4 + 8
\end{bmatrix} = \begin{bmatrix}
6 & 8 \\
10 & 12
\end{bmatrix}.$$

Matrix multiplication: For two matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, the product AB is a $m \times p$ matrix, whose (i, j)-entry is

$$[AB]_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj}$$

for all $1 \leq i \leq m$ and $1 \leq j \leq p$.

Example 2. Here is an example of the matrix multiplication for two square matrices in $\mathbb{R}^{2 \times 2}$ as

$$\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix} \cdot \begin{bmatrix}
5 & 6 \\
7 & 8
\end{bmatrix} = \begin{bmatrix}
1 \times 5 + 2 \times 7 & 1 \times 6 + 2 \times 8 \\
3 \times 5 + 4 \times 7 & 3 \times 6 + 4 \times 8
\end{bmatrix} = \begin{bmatrix}
19 & 22 \\
43 & 50
\end{bmatrix}.$$

We can also multiply non-square matrices when their dimensions are matched (i.e., the number of columns of the first matrix should be equal to the number of rows of the second
matrix) as
\[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
= \begin{bmatrix}
1 \cdot 1 + 2 \cdot 4 & 1 \cdot 2 + 2 \cdot 5 & 1 \cdot 3 + 2 \cdot 6 \\
3 \cdot 1 + 4 \cdot 4 & 3 \cdot 2 + 4 \cdot 5 & 3 \cdot 3 + 4 \cdot 6 \\
5 \cdot 1 + 6 \cdot 4 & 5 \cdot 2 + 6 \cdot 5 & 5 \cdot 3 + 6 \cdot 6
\end{bmatrix}
= \begin{bmatrix} 9 & 12 & 15 \\ 19 & 26 & 33 \\ 29 & 40 & 51 \end{bmatrix}.
\]

Properties of matrix multiplications:

- **Associativity**: \((AB)C = A(BC)\).
- **Distributivity**: \(A(B + C) = AB + AC\).
- However, matrix multiplication is in general **not** commutative. That is, \(AB\) is not necessarily equal to \(BA\).
- The matrix multiplication between a 1-by-\(n\) matrix and an \(n\)-by-1 matrix is the same as taking the dot product of the corresponding vectors.

Matrix transpose: If \(A = [A_{ij}] \in \mathbb{R}^{m \times n}\), then its **transpose** \(A^T\) is a \(n \times m\) matrix, whose \((i, j)\)-entry is \(A_{ji}\). That is, \([A^T]_{ij} = A_{ji}\).

Example 3. Here is an example of transposing a \(3 \times 2\) matrix, where we switch the matrix’s rows with its columns as
\[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}^T
= \begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}.
\]

Properties of matrix transpose:

- \((A^T)^T = A\) for any matrix \(A \in \mathbb{R}^{m \times n}\).
- \((A + B)^T = A^T + B^T\) with \(A, B \in \mathbb{R}^{m \times n}\).
- \((AB)^T = B^T A^T\) with \(A \in \mathbb{R}^{m \times n}\) and \(B \in \mathbb{R}^{n \times p}\).

Proof. Let \(AB = C\) and \((AB)^T = D\). Then,
\[
(AB)^T_{ij} = D_{ij} = C_{ji}
= \sum_k A_{jk} B_{ki}
= \sum_k (A^T)_{kj} (B^T)_{ik}
= \sum_k (B^T)_{ik} (A^T)_{kj}.
\]

It shows that \(D = B^T A^T\) and the result follows.

\[\square\]
Identity matrix: The identity matrix I_n is an $n \times n$ (square) matrix given by

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix},$$

where it has all 1’s on the diagonal and 0’s everywhere else. It is sometimes abbreviated I when the dimension of the matrix is clear. For any $A \in \mathbb{R}^{m \times n}$, it holds that $AI_n = I_mA$.

Matrix inverse: Given a square matrix $A \in \mathbb{R}^{n \times n}$, its inverse A^{-1} (if it exists) is the unique matrix satisfying

$$AA^{-1} = A^{-1}A = I_n.$$

Notice that the inverse of a matrix may not always exist. Those matrices that have an inverse are called invertible or nonsingular.

Properties of matrix inverse: Whenever the matrices $A, B \in \mathbb{R}^{n \times n}$ are invertible, we have the following properties.

- $(A^{-1})^{-1} = A$.
- $(AB)^{-1} = B^{-1}A^{-1}$.
- $(A^{-1})^T = (A^T)^{-1}$. (It can be proved by noting that $(A^{-1})^T(A^T) = (AA^{-1})^T = I_n$.)
- All the columns (or rows) of A are linearly independent, i.e., $\text{rank}(A) = n$.
- $\det(A) \neq 0$.

Matrix rank: The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the dimension of the linear space spanned by its rows (or columns). One can verify that

- $\text{rank}(A) \leq \min\{m, n\}$ and $\text{rank}(A) = \text{rank}(A^T)$.
- $\text{rank}(AB) \leq \min \{\text{rank}(A), \text{rank}(B)\}$ for any $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$.

Matrix trace: For a square matrix $A \in \mathbb{R}^{n \times n}$, the trace of A is defined as

$$\text{tr}(A) = \sum_{i=1}^{n} A_{ii},$$

i.e., it is the sum of all the diagonal entries of A. Specifically, the traces of matrices satisfy the following properties:

- $\text{tr}(aA + bB) = a \cdot \text{tr}(A) + b \cdot \text{tr}(B)$ for any $A, B \in \mathbb{R}^{n \times n}$ and $a, b \in \mathbb{R}$.
- $\text{tr}(A) = \text{tr}(A^T)$ for any $A \in \mathbb{R}^{n \times n}$.
- $\text{tr}(AB) = \text{tr}(BA)$ for any $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$.
Proof. By direct calculations,
\[
\text{tr}(AB) = \sum_{i=1}^{m} [AB]_{ii} = \sum_{i=1}^{m} \left(\sum_{k=1}^{n} A_{ik} B_{ki} \right) \\
= \sum_{k=1}^{n} \left(\sum_{i=1}^{m} B_{ki} A_{ik} \right) = \sum_{k=1}^{n} [BA]_{kk} = \text{tr}(BA).
\]

Determinant: For a square matrix \(A \in \mathbb{R}^{n \times n} \), its determinant \(\det(A) \) or \(|A| \) is defined as
\[
\det(A) = \sum_{\pi} \left(\text{sign}(\pi) \prod_{i=1}^{n} A_{i\pi(i)} \right),
\]
where the sum is over all \(n! \) permutations \(\pi : \{1, ..., n\} \to \{1, ..., n\} \) and \(\text{sign}(\pi) = 1 \) or \(-1\) according to whether the minimum number of transpositions (i.e., pairwise interchanges) necessary to achieve it starting from \(\{1, ..., n\} \) is even or odd. One can also calculate \(\det(A) \) through the Laplace expansion by minor along row \(i \) or column \(j \) as
\[
\det(A) = \sum_{k=1}^{n} (-1)^{i+k} A_{ik} \det(M_{ik}) = \sum_{k=1}^{n} (-1)^{k+j} A_{kj} \det(M_{kj}),
\]
where \(M_{ik} \in \mathbb{R}^{(n-1)\times(n-1)} \) denotes the submatrix of \(A \) obtained by removing row \(i \) and column \(k \) of \(A \). Geometrically, the determinant of \(A = [a_1, a_2, ..., a_n] \in \mathbb{R}^{n \times n} \) gives the signed volume of a \(n \)-dimensional paralleloptope \(\mathcal{P} = \{ c_1 a_1 + \cdots + c_n a_n : c_1, ..., c_n \in [0, 1] \} \), i.e.,
\[
\det A = \pm \text{Volume}(\mathcal{P}),
\]
where \(a_1, ..., a_n \) are column vectors of \(A \).

Example 4. We give explicit formulae for computing the determinants of square matrices with dimension less than 3 as:
\[
\det[A_{11}] = A_{11},
\]
\[
\det \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = A_{11}A_{22} - A_{12}A_{21},
\]
\[
\det \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} = A_{11}A_{22}A_{33} + A_{12}A_{23}A_{31} + A_{13}A_{21}A_{32} - A_{11}A_{23}A_{32} - A_{12}A_{21}A_{33} - A_{13}A_{22}A_{31}.
\]

Properties of determinant: For any \(A, B \in \mathbb{R}^{n \times n} \),
\begin{itemize}
 \item \(\det(AB) = \det(A) \cdot \det(B) \).
 \item \(\det(A^{-1}) = [\det(A)]^{-1} \) and \(\det(A^T) = \det(A) \).
\end{itemize}
2.2 Special Types of Matrices

Diagonal matrix: A matrix $D \in \mathbb{R}^{n \times n}$ is diagonal if $D_{ij} = 0$ whenever $i \neq j$. We write a diagonal matrix D as

$$D = \text{diag}(d_1, d_2, \ldots, d_n) =
\begin{bmatrix}
d_1 & 0 & \cdots & 0 \\
0 & d_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_n
\end{bmatrix}.$$

One can verify that

$$D^k = \begin{bmatrix} d_1^k & 0 & \cdots & 0 \\
0 & d_2^k & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_n^k \end{bmatrix}.$$

Triangular matrix: A matrix $A \in \mathbb{R}^{n \times n}$ is lower triangular if $A_{ij} = 0$ whenever $i < j$. That is, a lower triangular matrix has all its nonzero elements on or below the diagonal. Similarly, a matrix A is upper triangular if its transpose A^T is lower triangular. When A is a lower or upper triangular matrix, $\det(A) = \prod_{i=1}^n A_{ii}$.

Orthogonal matrix: A square matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if $UU^T = U^TU = I_n$. This implies that

- $U^{-1} = U^T$, i.e., the inverse of an orthogonal matrix is its transpose. Moreover, $\det(U) = \pm 1$.
- the rows (or columns) of U form an orthonormal basis for \mathbb{R}^n.
- U preserves angles and lengths, i.e., for any vectors $x, y \in \mathbb{R}^n$,

$$\langle Ux, Uy \rangle = (Ux)^T(Uy) = x^TU^TUy = \langle x, y \rangle \quad \text{and} \quad \|Ux\|_2^2 = \|x\|_2^2.$$

Symmetric matrix: A square matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$, i.e., $A_{ij} = A_{ji}$ for all entries of A.

Projection matrix: A square matrix $P \in \mathbb{R}^{n \times n}$ is a projection matrix if it is symmetric and idempotent: $P^2 = P$.

Positive definite matrix: A (real) symmetric matrix $S \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) if its quadratic form is nonnegative, i.e.,

$$x^T S x \geq 0$$

for all $x \in \mathbb{R}^n$. Furthermore, S is positive definite (PD) if its quadratic form is strictly positive, i.e.,

$$x^T S x > 0$$

for all $x \in \mathbb{R}^n$ with $x \neq 0$. Here are some useful properties of PSD or PD matrices.
• A diagonal matrix $D = \text{diag}(d_1, ..., d_n)$ is PSD if and only if $d_i \geq 0$ for all $i = 1, ..., n$. It is PD if and only if $d_i > 0$ for all $i = 1, ..., n$. In particular, the identity matrix I_n is PD.

• If $S \in \mathbb{R}^{n \times n}$ is PSD, then ASA^T is also PSD for any matrix $A \in \mathbb{R}^{m \times n}$.

• If $S \in \mathbb{R}^{n \times n}$ is PD, then ASA^T is also PD for any matrix $A \in \mathbb{R}^{m \times n}$ with full rank $\text{rank}(A) = m \leq n$.

• AA^T is PSD for any matrix $A \in \mathbb{R}^{m \times n}$.

• AA^T is PD for any matrix $A \in \mathbb{R}^{m \times n}$ with full rank $\text{rank}(A) = m \leq n$.

• $S \in \mathbb{R}^{n \times n}$ is PD $\implies S$ has full rank $\implies S^{-1}$ exists $\implies S^{-1} = (S^{-1})S(S^{-1})^T$ is PD.

2.3 Eigenvalues and Eigenvectors

Given a square matrix $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{R}$ is an eigenvalue of A with the corresponding eigenvector $x \in \mathbb{R}^n$ and $x \neq 0$ if $Ax = \lambda x$.

Here, $0 \in \mathbb{R}^n$ stands for a vector whose entries are all zero. By convention, the zero vector cannot be an eigenvector of any matrix.

Example 5. If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, then the vector $x = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$ is an eigenvector with eigenvalue 1, because $Ax = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -3 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \end{bmatrix} = 1 \times \begin{bmatrix} 3 \\ -3 \end{bmatrix}$.

2.3.1 Solving for eigenvalues and eigenvectors

We exploit the fact that $Ax = \lambda x$ if and only if

$$(A - \lambda I_n)x = 0. \quad (1)$$

(Note that λI_n is the diagonal matrix where all the diagonal entries are λ, and all other entries are zero.)

The equation (1) has a nonzero solution x if and only if $\det(A - \lambda I_n) = 0$; see Section 1.1 in Horn and Johnson (2012). Therefore, we can obtain the eigenvalues of a matrix A by solving the characteristic equation $\det(A - \lambda I_n) = 0$ for λ. Once we have done that, you can find the corresponding eigenvector for each eigenvalue λ by solving the system of equations $(A - \lambda I_n)x = 0$ for x.

Example 6. If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, then

$$A - \lambda I_n = \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix}$$
and
\[\det(A - \lambda I_n) = (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3. \]
Setting it to 0 yields that $\lambda = 1$ and $\lambda = 3$ are possible eigenvalues.

(i) To find the eigenvectors for $\lambda = 1$, we plug λ into the equation $(A - \lambda I_n)x = 0$. This gives us

\[
\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
Any vector with $x_2 = -x_1$ is a solution to this equation, and in particular, $\begin{bmatrix} 3 \\ -3 \end{bmatrix}$ is one solution.

(ii) To find the eigenvectors for $\lambda = 3$, we again plug λ into the equation and obtain that

\[
\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
Any vector where $x_2 = x_1$ is a solution to this equation.

\textbf{Note:} The above method is never used to calculate eigenvalues and eigenvectors for large matrices in practice. We will introduce the power iterative method in the lecture (Lecture 6: Dimensionality Reduction) to find eigenpairs instead.

2.3.2 Properties of eigenvalues and eigenvectors

- If $A \in \mathbb{R}^{n \times n}$ is symmetric, then all its eigenvalues are real.
- The eigenvalues of any (lower or upper) triangular matrix $A \in \mathbb{R}^{n \times n}$ are its diagonal entries.
- The trace of a matrix $A \in \mathbb{R}^{n \times n}$ is equal to the sum of its eigenvalues, i.e., $\text{tr}(A) = \sum_{i=1}^{n} \lambda_i$ with $\lambda_1, \ldots, \lambda_n$ being the eigenvalues of A.
- $\det(A) = \prod_{i=1}^{n} \lambda_i$, where $\lambda_1, \ldots, \lambda_n$ is the eigenvalues of $A \in \mathbb{R}^{n \times n}$.
- A symmetric matrix is PSD (PD) if all its eigenvalues are nonnegative (positive).
- The eigenvalues of a projection matrix are either 1 or 0.

2.4 Matrix Norms

\textbf{Frobenius norm:} Given a matrix $A \in \mathbb{R}^{m \times n}$, its Frobenius norm is defined as

\[||A||_F = \sqrt{\sum_{i,j} A_{ij}^2} = \text{tr}(A^T A). \]

We can compute $||A||_F$ as $||A||_F = \sqrt{\sigma_1(A)^2 + \cdots + \sigma_q(A)^2}$, where $\sigma_i(A), i = 1, \ldots, q$ are singular values of A and $q = \min\{m, n\}$; see Section 3 for the definition of singular values. In
particular, if A is a symmetric matrix in $\mathbb{R}^{n \times n}$, then $||A||_F = \sqrt{\sum_{i=1}^{n} \lambda_i^2}$ with $\lambda_1, ..., \lambda_n$ being the eigenvalues of A.

Maximum norm: The maximum norm (or ℓ_∞-norm) for $A \in \mathbb{R}^{m \times n}$ is defined as $||A||_{\max} = \max_{1 \leq i \leq m} |A_{i\cdot}|$. Strictly speaking, $||\cdot||_{\max}$ is not a matrix norm because it does not satisfy the submultiplicativity $||AB|| \leq ||A|| ||B||$. However, it is a vector norm when we consider $\mathbb{R}^{m \times n}$ as a mn-dimensional vector space; see Section 5.6 in Horn and Johnson (2012).

Operator norm: For any matrix $A \in \mathbb{R}^{m \times n}$ and ℓ_p-norm for vectors in \mathbb{R}^m and \mathbb{R}^n, then the corresponding operator norm $||A||_p$ is defined as

$$||A||_p = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p}.$$

For the special cases when $p = 1, 2, \infty$, these (induced) operator norms can be computed as

- $||A||_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{m} |A_{ij}|$, which is simply the maximum absolute column sum of the matrix.
- $||A||_\infty = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |A_{ij}|$, which is simply the maximum absolute row sum of the matrix.
- $||A||_2 = \sqrt{\lambda_{\max}(AA^T)} = \sigma_{\max}(A)$, where $\lambda_{\max}(AA^T)$ is the maximum eigenvalue of AA^T and $\sigma_{\max}(A)$ is the maximum singular value of A.

There are several useful inequalities between these matrix norms. For any $A \in \mathbb{R}^{m \times n}$,

$$||A||_2 \leq ||A||_F \leq \sqrt{n} ||A||_2, \quad ||A||_{\max} \leq ||A||_2 \leq \sqrt{mn} ||A||_{\max}, \quad \text{and} \quad ||A||_F \leq \sqrt{mn} ||A||_{\max}.$$

3 Spectral Decomposition and Singular Value Decomposition (SVD)

Theorem 1 (Spectral Decomposition of a Real Symmetric Matrix). For a symmetric (square) matrix $A \in \mathbb{R}^{n \times n}$, there exists a real orthogonal matrix $U \in \mathbb{R}^{n \times n}$ such that

$$A = U \Lambda U^T = \sum_{i=1}^{n} \lambda_i u_i u_i^T,$$

where $\Lambda = \text{diag}(\lambda_1, ..., \lambda_n)$, $U = [u_1, u_2, ..., u_n]$, and $u_1, ..., u_n$ are orthonormal eigenvectors of A associated with eigenvalues $\lambda_1, ..., \lambda_n$.

The spectral decomposition also provides us with a convenient method for computing the power $A^k = U \Lambda^k U^T$ and exponentiation $\exp(A) = U \exp(\Lambda) U^T$ of a real symmetric matrix $A \in \mathbb{R}^{n \times n}$.

While the spectral decomposition (Theorem 1) only works for symmetric (square) matrices, it is also feasible to diagonalize a rectangular matrix $A \in \mathbb{R}^{m \times n}$ through orthogonal matrices.
Theorem 2 (Singular Value Decomposition (SVD)). Let $A \in \mathbb{R}^{m \times n}$ with $q = \min\{m, n\}$. There exist orthogonal matrices $\bar{U} = [u_1, \ldots, u_m] \in \mathbb{R}^{m \times m}$ and $\bar{V} = [v_1, \ldots, v_n] \in \mathbb{R}^{n \times n}$ as well as a (square) diagonal matrix $\Sigma_q = \text{diag}(\sigma_1, \ldots, \sigma_q) \in \mathbb{R}^{q \times q}$ such that

$$A = \bar{U} \Sigma \bar{V}^T = \sum_{i=1}^{q} \sigma_i u_i v_i^T = U \Sigma_q V^T,$$

where $U = [u_1, \ldots, u_q] \in \mathbb{R}^{m \times q}$, $V = [v_1, \ldots, v_q] \in \mathbb{R}^{n \times q}$, and

$$\Sigma = \begin{cases} \Sigma_q & \text{if } m = n, \\ [\Sigma_q \ 0] & \text{if } n > m, \\ [0 \ \Sigma_q] & \text{if } m > n. \end{cases}$$

Here, $\sigma_1 \geq \cdots \geq \sigma_q \geq 0$ are called the singular values of A, which are eigenvalues of AA^T when $m \leq n$ or A^TA when $m > n$.

Notice that the number of nonzero singular values of A determines the rank of A. During the lecture (Lecture 6: Dimensionality Reduction), we will leverage the singular value decomposition to reduce the dimension (or matrix rank) of a user-movie rating matrix.

References

