Motivation

- Learned about: LSH/Similarity search & recommender systems

- **Search:** “jaguar”

- **Uncertainty** about the user’s information need
 - Don’t put all eggs in one basket!

- **Relevance** isn’t everything – need diversity!
Many applications need diversity!

- **Recommendation:**
 - **NETFLIX**

- **Summarization:**
 - “Robert Downey Jr.”
 - **WIKIPEDIA**

- **News Media:**
 - [Yahoo News](http://www.yahoo.com)
Automatic Timeline Generation

Person

- **Goal:** Timeline should express their relationships to other people through events (personal, collaboration, mentorship, etc.)

- **Why timelines?**
 - Easier: Wikipedia article is 18 pages long
 - Context: Through relationships & event descriptions
 - Exploration: Can “jump” to other people
Problem Definition

- **Given:**
 - Relevant *relationships*
 - *Events* that each cover some relationships

- **Goal:** Given a large set of *events*, pick a small subset that explains most known *relationships* (“the timeline”)
“RDJr starred in Chaplin in 1992 together with Anthony Hopkins.”
Why diversity?

- User studies: People hate redundancy!

- Want to see more diverse set of relationships
Diversity as Coverage
Encode Diversity as Coverage

- **Idea:** Encode diversity as coverage problem
- **Example:** Selecting events for timeline
 - Try to cover all important relationships
What is being covered?

- **Q:** What is being covered?
- **A:** Relationships

- Captain America
- Anthony Hopkins
- Gwyneth Paltrow
- Susan Downey

Downey Jr. starred in *Chaplin* together with Anthony Hopkins

- **Q:** Who is doing the covering?
- **A:** Timeline Events
Simple Coverage Model

- Suppose we are given a set of events \(E \)
 - Each event \(e \) covers a set \(X_e \subseteq U \) of relationships
- For a set of events \(S \subseteq E \) we define:
 \[
 F(S) = \left| \bigcup_{e \in S} X_e \right|
 \]
- Goal: We want to \(\max_{|S| \leq k} F(S) \)
- Note: \(F(S) \) is a set function: \(F(S) : 2^E \rightarrow \mathbb{N} \)
Maximum Coverage Problem

- Given universe of elements and sets
 \[\{X_1, \ldots, X_m\} \subseteq U \]

- Goal: Find set of k events \(X_1 \ldots X_k \) covering most of \(U \)
 - More precisely: Find set of k events \(X_1 \ldots X_k \) whose size of the union is the largest

\[U = \{u_1, \ldots, u_n\} \]
Simple Greedy Heuristic

Simple Heuristic: Greedy Algorithm:

- Start with $S_0 = \{\}$
- For $i = 1\ldots k$
 - Take event e that maximizes $F(S_{i-1} \cup e)$
 - Let $S_i = S_{i-1} \cup \{e\}$

Example:

- Eval. $F(\{e_1\}), \ldots, F(\{e_m\})$, pick best (say e_1)
- Eval. $F(\{e_1\} \cup \{e_2\}), \ldots, F(\{e_1\} \cup \{e_m\})$, pick best (say e_2)
- Eval. $F(\{e_1, e_2\} \cup \{e_3\}), \ldots, F(\{e_1, e_2\} \cup \{e_m\})$, pick best
- And so on...

$F(S) = \bigcup_{e \in S} X_e$
Simple Greedy Heuristic

- Goal: Maximize the covered area
Simple Greedy Heuristic

- **Goal:** Maximize the covered area
Simple Greedy Heuristic

- Goal: Maximize the covered area
Simple Greedy Heuristic

- Goal: Maximize the covered area
Simple Greedy Heuristic

- Goal: Maximize the covered area
When Greedy Heuristic Fails?

- **Goal:** Maximize the size of the covered area with two sets
- Greedy first picks A and then C
- But the optimal way would be to pick B and C
Bad News & Good News

- **Bad news:** Maximum Coverage is NP-hard
 - Related to Set Cover Problem

- **Good news:** Good approximations exist
 - Problem has certain structure to it that even simple greedy algorithms perform reasonably well
 - Details in 2nd half of lecture

- **Now:** Generalize our objective for timeline generation
Issue 1: Not all relationships are created equal

- Objective values all relationships equally

\[F(S) = \left| \bigcup_{e \in S} X_e \right| = \sum_{r \in R} 1 \text{ where } R = \bigcup_{e \in S} X_e \]

- Unrealistic: Some relationships are more important than others
 - use **different weights** ("weighted coverage function")

\[F(S) = \sum_{r \in R} w(r) \quad w : R \rightarrow \mathbb{R}^+ \]
Example weight function

- Use **global importance** weights
- How much interest is there?
- Could be measured as
 - $w(X) = \# \text{search queries for person } X$
 - $w(X) = \# \text{Wikipedia article views for } X$
 - $w(X) = \# \text{news article mentions for } X$

Captain America **Anthony Hopkins** **Gwyneth Paltrow** **Susan Downey**

Captain America **Anthony Hopkins** **Gwyneth Paltrow** **Susan Downey**
Better weight function

- Some relationships are not (very) globally important but (not) highly relevant to timeline
- Need relevant to timeline instead of globally relevant

\[w(\text{Susan Downey} \mid \text{RDJr}) > w(\text{Justin Bieber} \mid \text{RDJr}) \]
Capturing relevance to timeline

- Can use co-occurrence statistics
 \[w(X \mid RDJr) = \frac{\#(X \text{ and } RDJr)}{\#(RDJr) \times \#(X)} \]
 - Similar: Pointwise mutual information (PMI)
 - How often do X and Y occur together compared to what you would expect if they were independent
 - Accounts for popular entities (e.g., Justin Bieber)
 Issue 2: Differentiating between events

- How to differentiate between two events that cover the same relationships?

- **Example:** Robert and Susan Downey
 - Event 1: Wedding, August 27, 2005
 - Event 2: Minor charity event, Nov 11, 2006

- We need to be able to distinguish these!
Scoring of event timestamps

- Further improvement when we not only score relationships but also **score the event timestamp**

\[
F(S) = \sum_{r \in R} w_R(r) + \sum_{e \in S} w_T(t_e)
\]

- Again, use co-occurrences for weights \(w_T\)
Co-occurrences on Web Scale

- “Robert Downey Jr” and “May 4, 2012” occurs 173 times on 71 different webpages
- US Release date of The Avengers
- Use MapReduce on 10B web pages (10k+ machines)
Complete Optimization Problem

- Generalized earlier **coverage** function to linear combination of **weighted coverage functions**

 \[
 F(S) = \sum_{r \in R} w_R(r) + \sum_{e \in S} w_T(t_e)
 \]

- **Goal:** \(\max_{|S| \leq k} F(S) \)

- **Still NP-hard**
 (because generalization of NP-hard problem)
Next

- How can we *actually optimize* this function?
- What *structure* is there that will help us do this efficiently?

- Any questions so far?
For this optimization problem, **Greedy** produces a solution S s.t. $F(S) \geq (1-1/e)\times \text{OPT}$ \hspace{1cm} ($F(S) \geq 0.63 \times \text{OPT}$)

[Nemhauser, Fisher, Wolsey ’78]

- **Claim holds for functions $F(\cdot)$ which are:**
 - Submodular, Monotone, Normal, Non-negative

 (discussed next)
Definition:

Set function $F(\cdot)$ is called \textit{submodular} if:

For all $P, Q \subseteq U$:

$$F(P) + F(Q) \geq F(P \cup Q) + F(P \cap Q)$$
Checking the previous definition is not easy in practice

Substitute \(P = A \cup \{d\} \) and \(Q = B \) where \(A \subseteq B \) and \(d \notin B \) in the definition above

From before: \(F(P) + F(Q) \geq F(P \cup Q) + F(P \cap Q) \)

\[
F(A \cup \{d\}) + F(B) \geq F(A \cup \{d\} \cup B) + F((A \cup \{d\}) \cap B)
\]

\[
F(A \cup \{d\}) + F(B) \geq F(B \cup \{d\}) + F(A)
\]

\[
F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)
\]

Common definition of Submodularity
Submodularity: Definition 2

- **Diminishing returns characterization**

\[F(A \cup d) - F(A) \geq F(B \cup d) - F(B) \]

Gain of adding \(d \) to a small set

Gain of adding \(d \) to a large set

Large improvement

Small improvement
Submodularity: Diminishing Returns

\[F(A \cup d) - F(A) \geq F(B \cup d) - F(B) \]

Adding \(d\) to \(B\) helps less than adding it to \(A\)!

\(\forall A \subseteq B\)
Submodularity: An important property

Let $F_1 \ldots F_M$ be submodular functions and $\lambda_1 \ldots \lambda_M \geq 0$ and let S denote some solution set, then the non-negative linear combination $F(S)$ (defined below) of these functions is also submodular.

$$F(S) = \sum_{i=1}^{M} \lambda_i F_i(S)$$
Submodularity: Approximation Guarantee

- **When maximizing a submodular function with cardinality constraints**, Greedy produces a solution S for which $F(S) \geq (1 - 1/e) \times OPT$
 i.e., $(F(S) \geq 0.63 \times OPT)$
 [Nemhauser, Fisher, Wolsey '78]

- **Claim holds for functions $F(\cdot)$ which are:**
 - **Monotone**: if $A \subseteq B$ then $F(A) \leq F(B)$
 - **Normal**: $F(\emptyset) = 0$
 - **Non-negative**: For any A, $F(A) \geq 0$
 - **In addition to being submodular**
Back to our Timeline Problem
Simple Coverage Model

- Suppose we are given a set of events E
 - Each event e covers a set X_e of relationships U
- For a set of events $S \subseteq E$ we define:
 \[
 F(S) = \left| \bigcup_{e \in S} X_e \right|
 \]
- Goal: We want to $\max_{|S| \leq k} F(S)$
- Note: $F(S)$ is a set function: $F(S) : 2^E \rightarrow \mathbb{N}$
Simple Coverage: Submodular?

- **Claim:** \(F(S) = \bigcup_{e \in S} X_e \) is submodular.

Gain of adding \(X_e \) to a smaller set:

\[
F(A \cup X_e) - F(A) \geq F(B \cup X_e) - F(B)
\]

\(\forall A \subseteq B \)

Gain of adding \(X_e \) to a larger set:
Simple Coverage: Other Properties

- **Claim:** \(F(S) = \left| \bigcup_{e \in S} X_e \right| \) is normal & monotone

- **Normality:** When \(S \) is empty, \(\bigcup_{e \in S} X_e \) is empty.

- **Monotonicity:** Adding a new event to \(S \) can never decrease the number of relationships covered by \(S \).

- **What about non-negativity?**

 - **Monotone:** if \(A \subseteq B \) then \(F(A) \leq F(B) \)
 - **Normal:** \(F(\{\}) = 0 \)
 - **Non-negative:** For any \(A \), \(F(A) \geq 0 \)
Summary so far

<table>
<thead>
<tr>
<th></th>
<th>Simple Coverage</th>
<th>Weighted Coverage (Relationships)</th>
<th>Weighted Coverage (Timestamps)</th>
<th>Complete Optimization Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submodularity</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monotonicity</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normality</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Weighted Coverage (Relationships)

\[F(S) = \sum_{r \in R} w(r) \quad w : R \to \mathbb{R}^+ \]

where
\[R = \bigcup_{e \in S} X_e \]

- **Claim:** \(F(S) \) is submodular.
 - Consider two sets \(A \) and \(B \) s.t. \(A \subseteq B \subseteq S \) and let us consider an event \(e \notin B \)
 - Three possibilities when we add \(e \) to \(A \) or \(B \):
 - **Case 1:** \(e \) does not cover any new relationships w.r.t. both \(A \) and \(B \)
 \[F(A \cup \{e\}) - F(A) = 0 = F(B \cup \{e\}) - F(B) \]
Weighted Coverage (Relationships)

\[F(S) = \sum_{r \in R} w(r) \quad w : R \rightarrow \mathbb{R}^+ \]

- **Claim:** \(F(S) \) is submodular.
 - Three possibilities when we add \(e \) to \(A \) or \(B \):
 - **Case 2:** \(e \) covers some new relationships w.r.t \(A \) but not w.r.t \(B \)
 - \(F(A \cup \{e\}) - F(A) = \nu \) where \(\nu \geq 0 \)
 - \(F(B \cup \{e\}) - F(B) = 0 \)
 - Therefore, \(F(A \cup \{e\}) - F(A) \geq F(B \cup \{e\}) - F(B) \)
Weighted Coverage (Relationships)

\[F(S) = \sum_{r \in R} w(r) \quad w : R \rightarrow \mathbb{R}^+ \]

- **Claim**: \(F(S) \) is submodular.
 - Three possibilities when we add \(e \) to \(A \) or \(B \):
 - **Case 3**: \(e \) covers some new relationships w.r.t both \(A \) and \(B \)

 \[
 F(A \cup \{e\}) - F(A) = \nu \quad \text{where} \quad \nu \geq 0
 \]

 \[
 F(B \cup \{e\}) - F(B) = \mu \quad \text{where} \quad \mu \geq 0
 \]

 But, \(\nu \geq \mu \) because \(e \) will always cover fewer new relationships w.r.t \(B \) than w.r.t \(A \)
Weighted Coverage (Relationships)

\[
F(S) = \sum_{r \in R} w(r) \quad w : R \to \mathbb{R}^+ \quad \text{where} \quad R = \bigcup_{e \in S} X_e
\]

- **Claim:** \(F(S) \) is monotone and normal.
- **Normality:** When \(S \) is empty, \(R = \bigcup_{e \in S} X_e \) is empty.
- **Monotonicity:** Adding a new event to \(S \) can never decrease the number of relationships covered by \(S \).
Summary so far

<table>
<thead>
<tr>
<th></th>
<th>Simple Coverage</th>
<th>Weighted Coverage (Relationships)</th>
<th>Weighted Coverage (Timestamps)</th>
<th>Complete Optimization Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submodularity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Monotonicity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Normality</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Weighted Coverage (Timestamps)

$$F(S) = \sum_{e \in S} w_T(t_e)$$

- Claim: $F(S)$ is submodular, monotone and normal

- Analogous arguments to that of weighted coverage (relationships) are applicable
Summary so far

<table>
<thead>
<tr>
<th></th>
<th>Simple Coverage</th>
<th>Weighted Coverage (Relationships)</th>
<th>Weighted Coverage (Timestamps)</th>
<th>Complete Optimization Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submodularity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Monotonicity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Normality</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Complete Optimization Problem

- Generalized earlier coverage function to non-negative linear combination of weighted coverage functions

\[
F(S) = F_1(S) + F_2(S)
\]

where

\[
R = \bigcup_{e \in S} X_e
\]

- Goal: \(\max_{|S| \leq k} F(S) \)

- Claim: \(F(A) \) is submodular, monotone and normal
Complete Optimization Problem

- **Submodularity**: $F(S)$ is a non-negative linear combination of two submodular functions. Therefore, it is submodular too.

- **Normality**: $$F_1(\emptyset) = 0 = F_2(\emptyset)$$ $$F_1(\emptyset) + F_2(\emptyset) = 0$$

- **Monotonicity**: Let $A \subseteq B \subseteq S$,
 $$F_1(A) \leq F_1(B) \text{ and } F_2(A) \leq F_2(B)$$ $$F_1(A) + F_2(A) \leq F_1(B) + F_2(B)$$
Summary so far

<table>
<thead>
<tr>
<th></th>
<th>Simple Coverage</th>
<th>Weighted Coverage (Relationships)</th>
<th>Weighted Coverage (Timestamps)</th>
<th>Complete Optimization Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submodularity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Monotonicity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Normality</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Lazy Optimization of Submodular Functions
Greedy Algorithm is Slow!

- At each iteration, we need to evaluate marginal gains of all the remaining elements.
- Runtime $O(|U| \times K)$ for selecting K elements out of the set U.

Greedy

Marginal gain: $F(S \cup x) - F(S)$

- Add element with highest marginal gain

Add element with highest marginal gain
Speeding up Greedy

- **In round i:**
 - So far we have $S_{i-1} = \{e_1 \ldots e_{i-1}\}$
 - Now we pick an element $e \not\in S_{i-1}$ which maximizes the marginal benefit $\Delta_i = F(S_{i-1} \cup \{e\}) - F(S_{i-1})$

- **Key observation:**
 - Marginal gain of any element e can never increase!
 - For every element e:
 $\Delta_i(e) \geq \Delta_j(e)$ for all iterations $i < j$
Lazy Greedy

- **Idea:**
 - Use Δ_i as upper-bound on Δ_j ($j > i$)

- **Lazy Greedy:**
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

\[
F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) \quad A \subseteq B
\]
Lazy Greedy

- **Idea:**
 - Use Δ_i as upper-bound on Δ_j ($j > i$)

- **Lazy Greedy:**
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

\[
F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) \quad A \subseteq B
\]

[Leskovec et al., KDD ’07]
Lazy Greedy

- **Idea:**
 - Use Δ_i as upper-bound on Δ_j ($j > i$)

- **Lazy Greedy:**
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) \quad A \subseteq B$$
Lazy greedy offers significant speed-up over traditional greedy implementations in practice.
References

- Althoff et. al., TimeMachine: Timeline Generation for Knowledge-Base Entities, KDD 2015
- Leskovec et. al., Cost-effective Outbreak Detection in Networks, KDD 2007
- Andreas Krause, Daniel Golovin, Submodular Function Maximization
- ICML Tutorial:
- Learning and Testing Submodular Functions:
- UW Research by Jeff Bilmes (ECE)