Large-Scale Machine Learning (2)
Supervised Learning

- Would like to do **prediction**: estimate a function $f(x)$ so that $y = f(x)$

- **Where y can be:**
 - **Real number**: Regression
 - **Categorical**: Classification
 - **Complex object**:
 - Ranking of items, Parse tree, etc.

- **Data is labeled**:
 - Have many pairs $\{(x, y)\}$
 - x ... vector of binary, categorical, real valued features
 - y ... class: $\{+1, -1\}$, or a real number
Supervised Learning

- **Task:** Given data \((X,Y)\) build a model \(f()\) to predict \(Y'\) based on \(X'\)
- **Strategy:** Estimate \(y = f(x)\) on \((X,Y)\).

Hope that the same \(f(x)\) also works to predict unknown \(Y'\)
- The “hope” is called **generalization**
 - **Overfitting:** If \(f(x)\) predicts well \(Y\) but is unable to predict \(Y'\)
- We want to build a model that **generalizes** well to unseen data
Formal Setting

1) Training data is drawn independently at random according to unknown probability distribution $P(x, y)$

2) The learning algorithm analyzes the examples and produces a classifier f

Given new data (x, y) drawn from P, the classifier is given x and predicts $\hat{y} = f(x)$

The loss $\mathcal{L}(\hat{y}, y)$ is then measured

Goal of the learning algorithm:
Find f that minimizes expected loss $E_P[\mathcal{L}]$
Why is it hard?

We estimate f on training data but want the f to work well on unseen future (i.e., test) data.
Goal: Minimize the expected loss
\[
\min_f \mathbb{E}_P[\mathcal{L}]
\]

But, we don’t have access to \(P \) but only to training sample \(D \):
\[
\min_f \mathbb{E}_D[\mathcal{L}]
\]

So, we minimize the average loss on the training data:
\[
\min_f J(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(x_i), y_i)
\]

Problem: Just memorizing the training data gives us a perfect model (with zero loss)
ML == Optimization

- **Given:**
 - A set of N training examples
 - $\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}$
 - A loss function \mathcal{L}

- **Choose the model:** $f_w(x) = w \cdot x + b$

- **Find:**
 - The weight vector w that minimizes the expected loss on the training data

$$J(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(w \cdot x_i + b, y_i)$$
Problem: Loss

Problem: Step-wise Constant 0-1-Loss function

Derivative is either 0 or not differentiable
Approximating the Loss

- Approximating the expected loss by a smooth function
 - Replace the original objective function by a surrogate loss function. E.g., hinge loss:

\[
\tilde{J}(w) = \frac{1}{N} \sum_{i=1}^{N} \max\left(0, 1 - y^{(i)} f(x^{(i)})\right)
\]

When \(y = 1 \):
Support Vector Machines
Support Vector Machines

- Want to separate “+” from “-” using a line

Data:
- Training examples:
 - $(x_1, y_1) \ldots (x_n, y_n)$
- Each example i:
 - $x_i = (x_i^{(1)}, \ldots, x_i^{(d)})$
 - $x_i^{(j)}$ is real valued
 - $y_i \in \{-1, +1\}$
- Inner product:
 - $w \cdot x = \sum_{j=1}^{d} w^{(j)} \cdot x^{(j)}$

Which is best linear separator (defined by w,b)?
Maximum Margin

- Distance from the separating hyperplane corresponds to the “confidence” of prediction
- Example:
 - We are more sure about the class of A and B than of C
Maximum Margin

- **Margin γ:** Distance of closest example from the decision line/hyperplane

The reason we define margin this way is due to theoretical convenience and existence of generalization error bounds that depend on the value of margin.
Why maximizing γ a good idea?

- **Remember: The Dot product**

\[A \cdot B = ||A|| \cdot ||B|| \cdot \cos \theta \]

\[
||A|| = \sqrt{\sum_{j=1}^{d} (A(j))^2}
\]
Why maximizing γ a good idea?

- **Dot product**
 \[A \cdot B = \|A\| \|B\| \cos \theta \]

- **What is $w \cdot x_1$, $w \cdot x_2$?**

 ![Diagram showing dot product and separating lines]

 - In this case $\gamma_1 \approx \|w\|^2$
 - In this case $\gamma_2 \approx 2\|w\|^2$

- **So, γ roughly corresponds to the margin**
 - **Bottom line:** Bigger γ, bigger the separation
What is the margin?

Let:

- **Line L**: \(w \cdot x + b = 0 \)
- \(w = (w^{(1)}, w^{(2)}) \)
- **Point A** = \((x_A^{(1)}, x_A^{(2)})\)
- **Point M** on a line = \((x_M^{(1)}, x_M^{(2)})\)

Note we assume \(||w||_2 = 1 \)

\[
d(A, L) = |AH| = |(A-M) \cdot w| = |(x_A^{(1)} - x_M^{(1)}) w^{(1)} + (x_A^{(2)} - x_M^{(2)}) w^{(2)}| = |x_A^{(1)} w^{(1)} + x_A^{(2)} w^{(2)} + b| = |w \cdot A + b|
\]

Remember \(x_M^{(1)}w^{(1)} + x_M^{(2)}w^{(2)} = -b \) since M belongs to line L
Prediction = \text{sign}(w \cdot x + b)

“Confidence” = (w \cdot x + b) y

For i-th datapoint:
\[\gamma_i = (w \cdot x_i + b) y_i \]

Want to solve:
\[
\max_{w,b} \min_i \gamma_i
\]

Can rewrite as
\[
\max_{w,y,b} \gamma
\]
\[
s.t. \forall i, y_i (w \cdot x_i + b) \geq \gamma
\]
Support Vector Machine

Maximize the margin:
- Good according to intuition, theory (c.f. “VC dimension”) and practice

\[
\max_{\gamma, w, b} \gamma \\
\text{s.t. } \forall i, y_i (w \cdot x_i + b) \geq \gamma
\]

- \(\gamma\) is margin ... distance from the separating hyperplane
Support Vector Machines: Deriving the margin
Support Vector Machines

- Separating hyperplane is defined by the support vectors
 - Points on +/- planes from the solution
 - If you knew these points, you could ignore the rest
 - Generally, $d+1$ support vectors (for d dim. data)
Problem:
- Let \((w \cdot x + b)y = \gamma\)
- then \(2(w \cdot x + 2b)y = 2\gamma\)
- Scaling \(w\) increases margin!

Solution:
- Work with normalized \(w\):
 \[
 \gamma = \left(\frac{w}{||w||} \cdot x + b\right)y
 \]
- Let’s also require support vectors \(x_j\)
 to be on the plane defined by:
 \[
 w \cdot x_j + b = \pm 1
 \]
Canonicaal Hyperplane: Solution

- Want to maximize margin!
- What is the relation between x_1 and x_2?
 - $x_1 = x_2 + 2\gamma \frac{w}{||w||}$
 - We also know:
 - $w \cdot x_1 + b = +1$
 - $w \cdot x_2 + b = -1$
- So:
 - $w \cdot x_1 + b = +1$
 - $w \left(x_2 + 2\gamma \frac{w}{||w||} \right) + b = +1$
 - $w \cdot x_2 + b + 2\gamma \frac{w \cdot w}{||w||} = +1$}

$$\Rightarrow \gamma = \frac{||w||}{w \cdot w} = \frac{1}{||w||}$$

Note:

$$w \cdot w = ||w||^2$$
Maximizing the Margin

- We started with
 \[\max_{w, \gamma} \gamma \]
 \[\text{s.t. } \forall i, y_i (w \cdot x_i + b) \geq \gamma \]
 But \(w \) can be arbitrarily large!

- We normalized and...
 \[\text{arg max } \gamma = \text{arg max } \frac{1}{\|w\|} = \text{arg min } \|w\| = \text{arg min } \frac{1}{2} \|w\|^2 \]

- Then:
 \[\min_{w, b} \frac{1}{2} \|w\|^2 \]
 \[\text{s.t. } \forall i, y_i (w \cdot x_i + b) \geq 1 \]

This is called SVM with “hard” constraints
Non-linearly Separable Data

- If data is **not separable** introduce penalty:

 \[
 \min_{w,b} \frac{1}{2} \|w\|^2 + C \cdot (# \text{number of mistakes})
 \]

 \[
 s.t. \forall i, y_i (w \cdot x_i + b) \geq 1
 \]

 - Minimize \(\|w\|^2 \) plus the number of training mistakes
 - Set \(C \) using cross validation

- **How to penalize mistakes?**

 - All mistakes are not equally bad!
Support Vector Machines

- **Introduce slack variables** ξ_i

 $$\min_{w,b,\xi \geq 0} \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^{n} \xi_i$$

 s.t. $\forall i$, $y_i (w \cdot x_i + b) \geq 1 - \xi_i$

- If point x_i is on the wrong side of the margin then get penalty ξ_i

For each data point:
- If margin ≥ 1, don’t care
- If margin < 1, pay linear penalty
Slack Penalty C

$$\min_{w,b,\xi_i \geq 0} \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^{n} \xi_i$$

$s.t. \forall i, \ y_i (w \cdot x_i + b) \geq 1 - \xi_i$

- **What is the role of slack penalty C:**
 - $C=\infty$: Only want to w, b that separate the data
 - $C=0$: Can set ξ_i to anything, then $w=0$ (basically ignores the data)
How do we obtain the Natural Form?

- Previously

\[
\begin{align*}
\min_{w,b} & \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i \\
\text{s.t.} & \quad \forall i, y_i \cdot (w \cdot x_i + b) \geq 1 - \xi_i
\end{align*}
\]

- Solve for \(\xi \):

\[
\begin{align*}
\xi_i & \geq 1 - y_i \cdot (w \cdot x_i + b) \\
\xi_i & \geq 0 \\
\Rightarrow \quad \xi_i & \geq \max(0, 1 - y_i \cdot (w \cdot x_i + b))
\end{align*}
\]

- Natural form:

\[
\begin{align*}
\arg\min_{w,b} & \quad \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max\{0, 1 - y_i (w \cdot x_i + b)\}
\end{align*}
\]
Support Vector Machines

- **SVM in the “natural” form**

\[
\text{arg min}_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max \{0, 1 - y_i (w \cdot x_i + b)\}
\]

Margin

Regularization parameter

Empirical loss \(L \) (how well we fit training data)

- **SVM uses “Hinge Loss”:**

\[
\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i
\]

\[s.t. \forall i, y_i \cdot (w \cdot x_i + b) \geq 1 - \xi_i\]

Hinge loss: \(\max\{0, 1-z\} \)

\[z = y_i \cdot (x_i \cdot w + b)\]
Support Vector Machines: How to estimate the parameters?
SVM: How to estimate w?

$$\min_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \xi_i$$

s.t. $\forall i, y_i \cdot (x_i \cdot w + b) \geq 1 - \xi_i$

- **Want to estimate w and b!**
 - **Standard way:** Use a solver!
 - **Solver:** software for finding solutions to “common” optimization problems
 - **Use a quadratic solver:**
 - Minimize quadratic function
 - Subject to linear constraints
- **Problem:** Solvers are inefficient for big data!
SVM: How to estimate w?

- **Want to minimize** $J(w, b)$:

 $$J(w, b) = \frac{1}{2} \sum_{j=1}^{d} (w^{(j)})^2 + C \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i \left(\sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b \right) \right\}$$

- **Compute the gradient** $\nabla (j)$ w.r.t. $w^{(j)}$

 $$\nabla J^{(j)} = \frac{\partial J(w, b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

 $$\frac{\partial L(x_i, y_i)}{\partial w^{(j)}} = 0 \quad \text{if} \quad y_i (w \cdot x_i + b) \geq 1$$

 $$= -y_i x_i^{(j)} \quad \text{else}$$
SVM: How to estimate w?

- **Gradient descent:**

 Iterate until convergence:

 - For $j = 1 \ldots d$
 - **Evaluate:** $\nabla J^{(j)} = \frac{\partial f(w, b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$
 - **Update:** $w^{'}(j) \leftarrow w^{(j)} - \eta \nabla J^{(j)}$

 - $w \leftarrow w^{'}$

- **Problem:**

 - Computing $\nabla J^{(j)}$ takes $O(n)$ time!
 - $n \ldots$ size of the training dataset

$\eta \ldots$ learning rate parameter
$C \ldots$ regularization parameter
Stochastic Gradient Descent

Instead of evaluating gradient over all examples, evaluate it for each individual training example.

\[
\nabla J^{(j)}(x_i) = w^{(j)} + C \cdot \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}
\]

Stochastic gradient descent:

Iterate until convergence:
- For \(i = 1 \ldots n \)
 - For \(j = 1 \ldots d \)
 - Compute: \(\nabla J^{(j)}(x_i) \)
 - Update: \(w^{(j)} \leftarrow w^{(j)} - \eta \nabla J^{(j)}(x_i) \)

We just had:

\[
\nabla J^{(j)} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}
\]

Notice: no summation over \(i \) anymore.
Other variations of GD

- **Batch Gradient Descent**
 - Calculates error for each example in the training dataset, but updated model only after all examples have been evaluated (i.e., end of training epoch)
 - **PROS**: fewer updates, more stable error gradient
 - **CONS**: usually requires whole dataset in memory, slower than SGD

- **Mini-Batch Gradient Descent**
 - Like BGD, but using smaller batches of training data. Balance between robustness of SGD, and efficiency of BGD.
Support Vector Machines: Example
Example: Text categorization

- **Dataset:**
 - **Reuters RCV1** news document corpus
 - Predict a category of a document
 - One vs. the rest classification
 - $n = 781,000$ training examples (documents)
 - 23,000 test examples
 - $d = 50,000$ features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words
Questions:

(1) Is SGD successful at minimizing $J(w,b)$?
(2) How quickly does SGD find the min of $J(w,b)$?
(3) What is the error on a test set?

<table>
<thead>
<tr>
<th></th>
<th>Training time</th>
<th>Value of $J(w,b)$</th>
<th>Test error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard SVM</td>
<td>23,642 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
<tr>
<td>“Fast Linear SVM”</td>
<td>66 secs</td>
<td>0.2278</td>
<td>6.03%</td>
</tr>
<tr>
<td>SGD-SVM</td>
<td>1.4 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
</tbody>
</table>

(1) SGD-SVM is successful at minimizing the value of $J(w,b)$
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable
Optimization “Accuracy”

For optimizing $J(w,b)$ within reasonable quality
SGD-SVM is super fast
What about multiple classes?

- **Idea 1:**
 One against all
 Learn 3 classifiers
 - + vs. \{o, -\}
 - - vs. \{o, +\}
 - o vs. \{+, -\}

 Obtain:
 $$w_+ b_+, w_- b_-, w_o b_o$$

- **How to classify?**

 Return class \(c\)

 $$\arg \max_c w_c x + b_c$$
Idea 2: Learn 3 sets of weights simultaneously!

- For each class c estimate w_c, b_c
- Want the correct class y_i to have highest margin:

$$w_{y_i} x_i + b_{y_i} \geq 1 + w_c x_i + b_c \quad \forall c \neq y_i, \forall i$$
Multiclass SVM

- **Optimization problem:**

\[
\begin{align*}
\min_{w,b} & \quad \frac{1}{2} \sum_c \|w_c\|^2 + C \sum_{i=1}^n \xi_i \\
\text{s.t.} & \quad w_{y_i} \cdot x_i + b_{y_i} \geq w_c \cdot x_i + b_c + 1 - \xi_i, \quad \forall c \neq y_i, \forall i \\
& \quad \xi_i \geq 0, \forall i
\end{align*}
\]

- To obtain parameters \(w_c, b_c\) (for each class \(c\)) we can use similar techniques as for 2 class SVM

- SVM is widely perceived a very powerful learning algorithm
ML Parallelization
Why Large-Scale ML?

- **The Unreasonable Effectiveness of Data**
 - In 2017, Google revisited a 15-year-old experiment on the effect of data and model size in ML, focusing on the latest Deep Learning models in computer vision.

- **Findings:**
 - Performance increases logarithmically based on volume of training data.
 - Complexity of modern ML models (i.e., deep neural nets) allows for even further performance gains.

- **Large datasets + large ML models => amazing results!!**

Recap

- Last lecture: Decision Trees (and PLANET) as a prime example of **Data Parallelism** in ML

- Today’s lecture: Multiclass SVMs, Neural Networks (especially Deep ones), etc. can leverage both **Data Parallelism and Model Parallelism**
 - State-of-the-art Deep Neural Networks for visual recognition tasks (e.g., ImageNet challenge) or NLP can have **more than 1 billion parameters!**
Parallelization overview

M2 and M4 must wait for the 1st stage to complete!
Parallelization overview

- Unsupervised or Supervised Objective
- Minibatch Stochastic Gradient Descent (SGD)
- Model parameters sharded by partition
- 10s, 100s, or 1000s of cores per model
Parameter Server

Parameter Server: $p' = p + \Delta p$

- **Parameter Server**: Key/Value store
- **Keys** index the model parameters (e.g., weights)
- **Values** are the parameters of the ML model (e.g., a neural network)

- **Systems challenges:**
 - High bandwidth
 - Synchronization
 - Fault tolerance
Parameter Server

Parameter Server $p' = p + \Delta p$

Why do parallel updates work?
Async SGD

- **Key idea:** don’t synchronize, just **overwrite** parameters opportunistically from multiple workers (i.e., servers)
 - Same implementation as SGD, **just without locking!**

- **In theory,** Async SGD converges, but a slower rate than the serial version.
- **In practice,** when gradient updates are sparse (i.e., high dimensional data), **same convergence!**

- Recht et al. “*HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent*”, 2011

RR is a super optimized version of online Gradient Descent, but with synchronization
HOGWILD!

1. Initialize w in shared memory // in parallel, do
2. for $i = \{1, \ldots, p\}$ do
3. while TRUE do
4. if stopping criterion met then
5. break
6. end
7. Sample j from $1, \ldots, n$ uniformly at random.
8. Compute $f_j(w)$ and $\nabla f_j(w)$ using whatever w is currently available.
9. Let e_j denote non-zero indices of x_i
10. for $k \in e_j$ do
11. $w(k) \leftarrow w(k) - \alpha [\nabla f_j(w)](k)$
12. end
13. end
14. end

$\leq P$ is the number of partitions / processors

Component-wise gradient updates (relies on sparsity)
Asynchronous Distributed SGD

From an engineering standpoint, this is much better than a single model with the same number of total machines:

- Synchronization boundaries involve fewer machines
- Better robustness to individual slow machines
- Makes forward progress even during evictions/restarts

- Google, “Large Scale Distributed Deep Networks” [2012]
- All ingredients together:
 - Model and Data parallelism
 - Async SGD
- Dawn of modern Deep Learning
Example Implementations

- **Google: Tensorflow Distributed Training**
- **Uber: Horovod**
- **Ray (UC Berkeley)**
 - Ray is a general-purpose framework for parallel and distributed Python.
 - Spark isn’t optimized for these low latency communication workflow.
 - 15 lines of python for parameter server
- **Mu Li et al.** Scaling Distributed Machine Learning with the Parameter Server. OSDI 2014