New Topic: ML that scales!

- **High dim. data**
 - Locality sensitive hashing
 - Clustering
 - Dimensionality reduction

- **Graph data**
 - PageRank, SimRank
 - Community Detection
 - Spam Detection

- **Infinite data**
 - Sampling data streams
 - Filtering data streams
 - Queries on streams

- **Machine learning**
 - Decision Trees
 - SVM / Max Margin
 - Parallel SGD

- **Apps**
 - Recommender systems
 - Association Rules
 - Duplicate document detection
Supervised Learning

Given some data:

- “Learn” a function to map from the input to the output

- Given:
 Training examples \((x_i, y_i = f(x_i))\) for some unknown function \(f\)

- Find:
 A good approximation to \(f\)
Many Other ML Paradigms

- **Supervised:**
 - Given “labeled data” \(\{x, y\}\), learn \(f(x) = y\)

- **Unsupervised:**
 - Given only “unlabeled data” \(\{x\}\), learn \(f(x)\)

- **Semi-supervised:**
 - Given some labeled \(\{x, y\}\) and some unlabeled data \(\{x\}\), learn \(f(x) = y\)

- **Active learning:**
 - When we predict \(f(x) = y\), we then receive true \(y^*\)

- **Transfer learning:**
 - Learn \(f(x)\) so that it works well on new domain \(f(z)\)
Supervised Learning

- Would like to do **prediction**: estimate a function $f(x)$ so that $y = f(x)$

- Where y can be:
 - **Continuous / Real number**: Regression
 - **Categorical**: Classification
 - **Complex object**:
 - Ranking of items, Parse tree, etc.

- Data is **labeled**:
 - Have many pairs $\{(x, y)\}$
 - x ... vector of binary, categorical, real valued features
 - y ... class, or a real number
Supervised Learning

- **Task:** Given data (X, Y) build a model $f()$ to predict Y' based on X'
- **Strategy:** Estimate $y = f(x)$ on (X, Y)

Hope that the same $f(x)$ also works to predict unknown Y'

- The “hope” is called generalization
 - **Overfitting:** If $f(x)$ predicts Y well, but is unable to predict Y'
- We want to build a model that **generalizes well to unseen data**
Why Large-Scale ML?

- **Brawn or Brains?**
 - In 2001, Microsoft researchers ran a test to evaluate 4 of different approaches to ML-based language translation

- **Findings:**
 - **Size of the dataset** used to train the model **mattered more** than the model itself
 - As the dataset grew large, performance difference between the models became small

Why Large-Scale ML?

- **The Unreasonable Effectiveness of Big Data**
 - In 2017, Google revisited the same type of experiment with the latest Deep Learning models in computer vision

- **Findings:**
 - Performance increases logarithmically based on volume of training data
 - Complexity of modern ML models (i.e., deep neural nets) allows for even further performance gains

- Large datasets + large ML models => amazing results!!

Decision Trees
Decision Tree Learning

- Given one attribute (e.g., lifespan), try to predict the value of new people’s lifespans by means of some of the other available attribute

- **Input attributes:**
 - d features/attributes: $x^{(1)}, x^{(2)}, \ldots, x^{(d)}$
 - Each $x^{(i)}$ has domain O_j
 - Categorical: $O_j = \{\text{brown, blue, gray}\}$
 - Numerical: $H_j = (0, 10)$
 - Y is output variable with domain O_Y:
 - Categorical: Classification, Numerical: Regression

- **Data D:**
 - n examples (x_i, y_i) where x_i is a d-dim feature vector, $y_i \in O_Y$ is output variable

- **Task:**
 - Given an input data vector x predict output label y
A Decision Tree is a tree-structured plan of a set of attributes to test in order to predict the output.
Decision Trees

- **Decision trees:**
 - Split the data at each internal node
 - Each leaf node makes a prediction

- **Lecture today:**
 - Binary splits: $X^{(j)} < v$
 - Numerical attributes
 - Regression
How to make predictions?

- **Input:** Example x_i
- **Output:** Predicted \hat{y}_i

- “Drop” x_i down the tree until it hits a leaf node
- Predict the value stored in the leaf that x_i hits
Decision Trees: feature space

- Alternative view:
How to construct a tree?

- Training dataset D^*, $|D^*| = 100$ examples
How to construct a tree?

- Imagine we are currently at some node \(G \)
 - Let \(D_G \) be the data that reaches \(G \)
- There is a decision we have to make: Do we continue building the tree?
 - If yes, which variable and which value do we use for a **split**?
 - Continue building the tree recursively
 - If not, how do we make a prediction?
 - We need to build a “**predictor node**”
3 steps in constructing a tree

Algorithm 1: BuildSubtree

Require: Node n, Data $D \subseteq D^*$

1: $(n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)$
2: if $\text{StoppingCriteria}(D_L)$ then
3: \hspace{1em} $n \rightarrow \text{left_prediction} = \text{FindPrediction}(D_L)$
4: else
5: $\text{BuildSubtree} (n \rightarrow \text{left}, D_L)$
6: if $\text{StoppingCriteria}(D_R)$ then
7: \hspace{1em} $n \rightarrow \text{right_prediction} = \text{FindPrediction}(D_R)$
8: else
9: $\text{BuildSubtree} (n \rightarrow \text{right}, D_R)$

- Requires at least a single pass over the data!
(1) How to split? Pick attribute & value that optimizes some criterion

- **Regression: Purity**
 - Find split \((X^{(i)}, \nu)\) that creates \(D, D_L, D_R\): parent, left, right child datasets and maximizes:
 \[
 |D| \cdot Var(D) - (|D_L| \cdot Var(D_L) + |D_R| \cdot Var(D_R))
 \]
 - \(Var(D) = \frac{1}{n} \sum_{i \in D} (y_i - \bar{y})^2\) ... variance of \(y_i\) in \(D\)
(1) How to split? Pick attribute & value that optimizes some criterion

- **Classification:**
 - Information Gain
 - Measures how much a given attribute X tells us about the class Y
 - $IG(Y \mid X)$: We must transmit Y over a binary link. How many bits on average would it save us if both ends of the line knew X?
Why Information Gain? Entropy

Entropy: What’s the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from \(X \)’s distribution?

The entropy of \(X \): \[H(X) = -\sum_{j=1}^{m} p(X_j) \log p(X_j) \]

- **“High Entropy”:** \(X \) is from a uniform (flat) distribution
 - A histogram of the frequency distribution of values of \(X \) is *flat*
- **“Low Entropy”:** \(X \) is from a varied (peaks/valleys) distrib.
 - A histogram of the frequency distribution of values of \(X \) would have many lows and one or two peaks
Why Information Gain? Entropy

- Suppose I want to predict \(Y \) and I have input \(X \)
 - \(X = \) College Major
 - \(Y = \) Likes Movie “Casablanca”

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
</tbody>
</table>

- From this data we estimate
 - \(P(Y = Yes) = 0.5 \)
 - \(P(X = Math \& Y = No) = 0.25 \)
 - \(P(X = Math) = 0.5 \)
 - \(P(Y = Yes \mid X = History) = 0 \)

- Note:
 - \(H(Y) = -\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\log_2(\frac{1}{2}) = 1 \)
 - \(H(X) = 1.5 \)
Why Information Gain? Entropy

- Suppose I want to predict Y and I have input X
 - $X = \text{College Major}$
 - $Y = \text{Likes Movie “Casablanca”}$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
</tbody>
</table>

- **Def:** Specific Conditional Entropy
 - $H(Y \mid X = \nu) = \text{The entropy of } Y \text{ among only those records in which } X \text{ has value } \nu$

- **Example:**
 - $H(Y \mid X = \text{Math}) = 1$
 - $H(Y \mid X = \text{History}) = 0$
 - $H(Y \mid X = \text{CS}) = 0$
Why Information Gain?

- **Suppose I want to predict** \(Y \) **and I have input** \(X \)
 - \(X = \) College Major
 - \(Y = \) Likes “Casablanca”

- **Def: Conditional Entropy**
 - \(H(Y | X) = \) The average specific conditional entropy of \(Y \)
 - = if you choose a record at random what will be the conditional entropy of \(Y \), conditioned on that row’s value of \(X \)
 - = Expected number of bits to transmit \(Y \) if both sides will know the value of \(X \)
 - = \(\sum_j P(X = v_j)H(Y|X = v_j) \)
Why Information Gain?

- Suppose I want to predict \(Y \) and I have input \(X \)

- \(H(Y | X) = \) The average specific conditional entropy of \(Y \)

\[
H(Y | X) = \sum_j P(X = v_j)H(Y|X = v_j)
\]

- Example:

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
</tbody>
</table>

| \(v_j \) | \(P(X=v_j) \) | \(H(Y|X=v_j) \) |
|---|---|---|
| Math | 0.5 | 1 |
| History | 0.25 | 0 |
| CS | 0.25 | 0 |

So: \(H(Y|X) = 0.5 \times 1 + 0.25 \times 0 + 0.25 \times 0 = 0.5 \)
Why Information Gain?

- Suppose I want to predict Y and I have input X

- Def: Information Gain

 $IG(Y|X) = I$ must transmit Y. How many bits on average would it save me if both ends of the line knew X?

 $$IG(Y|X) = H(Y) - H(Y|X)$$

- Example:

 - $H(Y) = 1$
 - $H(Y|X) = 0.5$
 - Thus $IG(Y|X) = 1 - 0.5 = 0.5$
What is Information Gain used for?

- Suppose you are trying to predict whether someone is going to live past 80 years
- From historical data you might find:
 - $IG(\text{LongLife} \mid \text{HairColor}) = 0.01$
 - $IG(\text{LongLife} \mid \text{Smoker}) = 0.4$
 - $IG(\text{LongLife} \mid \text{Gender}) = 0.25$
 - $IG(\text{LongLife} \mid \text{LastDigitOfSSN}) = 0.00001$

- IG tells us how much information about Y is contained in X
 - So attribute X that has high $IG(Y \mid X)$ is a good split!
3 steps in constructing a tree

```
Algorithm 1: BuildSubtree

Require: Node n, Data D ⊆ D*
1: (n → split, D_L, D_R) = FindBestSplit(D) (1)
2: if StoppingCriteria(D_L) then (2)
3: n → left_prediction = FindPrediction(D_L) (3)
4: else
5: BuildSubtree (n → left, D_L)
6: if StoppingCriteria(D_R) then
7: n → right_prediction = FindPrediction(D_R)
8: else
9: BuildSubtree (n → right, D_R)
```
(2) When to stop?

Many different heuristic options to avoid overfitting

Two ideas:

- (1) When the leaf is “pure”
 - The target variable does not vary too much: \(Var(y) < \varepsilon \)

- (2) When # of examples in the leaf is too small
 - For example, \(|D| \leq 100 \)

- (3) Stop at a fixed depth
 - For example, max depth = 4.
How to predict?

(3) How to predict?

- Many options
 - **Regression:**
 - Typically: Predict average y_i of the examples in the leaf
 - Build a linear regression model on the examples in the leaf
 - **Classification:**
 - Predict most common y_i of the examples in the leaf
Building Decision Trees Using MapReduce
Problem: Building a tree

- Given a large dataset with hundreds of attributes
- Build a decision tree!

General considerations:

- **Tree is small** (can keep it memory):
 - Shallow (~10 levels)
- Dataset too large to keep in memory (Petabytes)
- Dataset too big to scan over on a single machine
- **MapReduce to the rescue!**
Today’s Lecture: PLANET

Parallel Learner for Assembling Numerous Ensemble Trees [Panda et al., VLDB ‘09]

- A sequence of MapReduce jobs that builds a decision tree
- Spark MLlib Decision Trees are based on PLANET

Setting:

- Hundreds of **numerical** (discrete & continuous, but not categorical) attributes
- Target variable is **numerical**: Regression
- Splits are **binary**: \(X^{(j)} < v \)
- Decision tree is small enough for each Mapper to keep it in memory
- Data too large to keep in memory
PLANET Architecture

Input data

Model

Attribute metadata

MapReduce: Given a set of split candidates compute their quality

Master

Keeps track of the model and decides how to grow the tree

Intermediate results
The tree will be built in levels

- One level at a time:

Steps:

1) Master decides candidate splits \((n, X^{(j)}, v)\)
2) MapReduce computes quality of those splits
3) Master then grows the tree for a level
4) Goto (1)
Decision trees on MapReduce

Hard part: Computing “quality” of a split
1) **Master** tells the **Mappers** which splits \((n, X^{(i)}, v)\) to consider
2) Each **Mapper** gets a subset of data and computes partial statistics for a given split
3) **Reducers** collect partial statistics and output the final quality for a given split \((n, X^{(i)}, v)\)
4) **Master** makes final decision where to split
We build the tree level by level

- One MapReduce step builds one level of the tree

Mapper

- Considers a number of candidate splits (node, attribute, value) on its subset of the data
- For each split it stores partial statistics
- Partial split-statistics is sent to Reducers

Reducer

- Collects all partial statistics and determines best split

Master grows the tree for one level
Planets Overview

- **Mapper** loads the DT model and info about which attribute splits (split is a tuple \(<\text{NodeID}, \text{Attribute}, \text{Value}>\)) to consider
 - Each mapper sees a subset of the data \(D^*\)
 - Mapper “drops”/classifies each datapoint \(d\) using the tree to find the leaf node \(L\) where \(d\) lands
 - For each leaf node \(L\) mapper keeps statistics about
 - (1) the data reaching \(L\)
 - (2) the data in left/right subtree under some split \(S\)

- **Reducer** aggregates the statistics (1), (2) and determines the best split for each tree node
PLANET: Components

- **Master**
 - Monitors everything (runs multiple MapReduce jobs)

- **Three types of MapReduce jobs:**
 - **(1) MapReduce Initialization** (run once first)
 - For each attribute identify values to be considered for splits
 - **(2) MapReduce FindBestSplit** (run multiple times)
 - MapReduce job to find best split (when there is too much data to fit in memory)
 - **(3) MapReduce InMemoryBuild** (run once last)
 - Similar to BuildSubTree (but for small data)
 - Grows an entire sub-tree once the data fits in memory

- **Model file**
 - A file describing the state of the model
PLANET: Components

(1) Master Node
(2) MapReduce **Initialization** (run once first)
(3) MapReduce **FindBestSplit** (run multiple times)
(4) MapReduce **InMemoryBuild** (run once last)
PLANET: Master

- **Master controls the entire process**
- **Determines the state of the tree and grows it:**
 - **(1)** Decides if nodes should be split
 - **(2)** If there is little data entering a tree node, Master runs an *InMemoryBuild* MapReduce job to grow the entire subtree below that node
 - **(3)** For larger nodes, Master launches MapReduce *FindBestSplit* to evaluate candidates for best split
 - Master also collects results from *FindBestSplit* and chooses the best split for a node
 - **(4)** Updates the model
PLANET: Components

(1) Master Node
(2) MapReduce **Initialization** (run once first)
(3) MapReduce **FindBestSplit** (run multiple times)
(4) MapReduce **InMemoryBuild** (run once last)
Initialization: Attribute metadata

- **Initialization job:** Identifies all the attribute values which need to be considered for splits
 - Initialization process generates “attribute metadata” to be loaded in memory by other tasks

- **Main question:** Which splits to even consider?

- A split is defined by a triple: (node n, attribute $X^{(j)}$, value v)
Which splits to even consider?

- For small data we can sort the values along a particular feature and consider every possible split.
- But data values may not be uniformly populated so many splits may not really make a difference.

\[\mathbf{X}^{(j)}: \begin{align*}
1.2 & \quad 1.3 & \quad 1.4 & \quad 1.6 & \quad 2.1 & \quad 7.2 & \quad 8.1 & \quad 9.8 & \quad 10.1 & \quad 10.2 & \quad 10.3 & \quad 10.4 & \quad 11.5 & \quad 11.7 & \quad 12.8 & \quad 12.9
\end{align*} \]

Idea: Consider a limited number of splits such that splits “move” about the same amount of data (e.g. percentiles)
Splits for numerical attributes:

- For attribute $X^{(i)}$ we would like to consider every possible value $v \in O_j$
- Compute an approx. equi-depth histogram on D^*
 - **Idea:** Select buckets such that counts per bucket are equal

Use boundary points of histogram as splits
Side note: Computing Equi-Depth

- **Goal:** Equal number of elements per bucket (B buckets total)
- Construct by first **sorting** and then taking $B-1$ equally-spaced splits
- **Faster construction:**
 Sample & take equally-spaced splits in the sample
 - Nearly equal buckets
PLANET: Components

(1) Master Node
(2) MapReduce Initialization (run once first)
(3) MapReduce FindBestSplit (run multiple times)
(4) MapReduce InMemoryBuild (run once last)
Goal: For a particular split node \(n \) find attribute \(X^{(j)} \) and value \(v \) that *maximize Purity*:

\[
|D| \cdot Var(D) - \left(|D_L| \cdot Var(D_L) + |D_R| \cdot Var(D_R) \right)
\]

- \(D \) ... training data \((x_i, y_i) \) reaching the node \(n \)
- \(D_L \) ... training data \(x_i \), where \(x_i^{(j)} < v \)
- \(D_R \) ... training data \(x_i \), where \(x_i^{(j)} \geq v \)
- \(Var(D) = \frac{1}{n} \sum_{i \in D} y_i^2 - \left(\frac{1}{n} \sum_{i \in D} y_i \right)^2 \)
FindBestSplit

- To compute Purity we need
 \[\text{Var}(D) = \frac{1}{n} \sum_{i \in D} y_i^2 - \left(\frac{1}{n} \sum_{i \in D} y_i \right)^2 \]

- Important observation: Variance can be computed from sufficient statistics:
 \[N, S=\sum y_i, Q=\sum y_i^2 \]
 - Each **Mapper** \(m \) processes subset of data \(D_m \), and computes \(N_m, S_m, Q_m \) for its own \(D_m \)
 - **Reducer** combines the statistics and computes global variance and then Purity:
 \[\text{Var}(D) = \frac{1}{\sum_m N_m} \sum_m Q_m - \left(\frac{1}{\sum_m N_m} \sum_m S_m \right)^2 \]
FindBestSplit: Map

- **Mapper:**
 - Initialized by loading results of *Initialization task*
 - **Current model** (to find which node each datapoint \(x_i \) ends up)
 - **Attribute metadata** (all split points for each attribute)
 - Load the set of *candidate splits*: \{\{(node, attribute, value)\}\}
 - For each data record run the Map algorithm:
 - For each tree node store statistics of the data entering the node and at the end emit (to all reducers):
 - \(<\text{NodeID}, \{ S=\Sigma y, Q=\Sigma y^2, N=\Sigma 1 \} >\>
 - For each split store statistics and at the end emit:
 - \(<\text{SplitID}, \{ S, Q, N \} >\>
 - SplitID = (node id, attribute \(X^{(i)} \), split value \(v \))
FindBestSplit: Reducer

Reducer:

1. Load all the $<\text{NodeID}, \text{List } \{S_m, Q_m, N_m\}>$ pairs and aggregate the per node statistics
2. For all the $<\text{SplitID}, \text{List } \{S_m, Q_m, N_m\}>$ aggregate the statistics

\[Var(D) = \frac{1}{\sum_m N_m} \sum_m Q_m - \left(\frac{1}{\sum_m N_m} \sum_m S_m \right)^2 \]

For each NodeID, output the best split found
Overall system architecture

- Master gives the mappers: (1) Tree (2) Set of nodes (3) Set of candidate splits

Nodes: F, G, H, I
Split candidates: (G, X^{(1)}, v^{(1)}), (G, X^{(1)}, v^{(2)}), (H, X^{(3)}, v^{(3)}), (H, X^{(4)}, v^{(4)})

Mappers output 2 types of key-value pairs:
(NodeID: S,Q,N)
(Split: S,Q,N)

For every (NodeID, Split) Reducer(s) compute the Purity and output the best split
Overall system architecture

- **Example:** Need to split nodes F, G, H, I
- **Map and Reduce:**
 - **FindBestSplit::Map** (each mapper)
 - Load the current model M
 - Drop every example x_i down the tree
 - If it hits $F/G/H/I$, update in-memory hash tables:
 - For each node: $T_n: (\text{Node}) \rightarrow \{S, Q, N\}$
 - For each (Split, Node): $T_{n,j,s}: (\text{Node, Attribute, SplitValue}) \rightarrow \{S, Q, N\}$
 - **Map::Finalize:** output the key-value pairs from above hashtables
 - **FindBestSplit::Reduce** (each reducer)
 - Collect:
 - $T_1: <\text{Node, List}\{S, Q, N\}> \rightarrow <\text{Node, } \{\Sigma S, \Sigma Q, \Sigma N\}>$
 - $T_2: <(\text{Node, Attr., Val}), \text{List}\{S, Q, N\}> \rightarrow <(\text{Node, Attr., Val}), \{\Sigma S, \Sigma Q, \Sigma N\}>$
 - Compute Purity for each node using T_1, T_2
 - Return **best split** to Master (which then decides on globally best split)
Back to the Master

- **Collects outputs from FindBestSplit reducers**

 `<Split.NodeID, Attribute, Value, Purity>`

- **For each node decides the best split**

 - If data in D_L/D_R is small enough, later run a MapReduce job
 InMemoryBuild on the node

 - Else run MapReduce **FindBestSplit** job for both nodes
Decision Trees: Conclusion
Decision Trees

- **Characteristics**
 - Classification & Regression
 - Multiple (~10) classes
 - Real valued and categorical features
 - Few (hundreds) of features
 - Usually dense features
 - Complicated decision boundaries
 - Early stopping to avoid overfitting!

- **Example applications**
 - User profile classification
 - Landing page bounce prediction
Decision Trees

- Decision trees are the single most popular data mining tool:
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap
 - Easy to parallelize
 - It’s possible to mitigate overfitting (i.e., with ensemble methods or early stopping)
 - They do classification as well as regression!
Learning Ensembles

- Learn multiple trees and combine their predictions
 - Gives better performance in practice
- Bagging:
 - Learns multiple trees over independent samples of the training data
 - For a dataset D on n data points: Create dataset D' of n points but sample from D with replacement
 - Dataset D' will include duplicate data points
 - Predictions from each tree are averaged to compute the final model prediction
Bagging Decision Trees
Improvement: Random Forests

- Train a **Bagged Decision Tree**
- But use a modified tree learning algorithm that selects (at each candidate split) a random subset of the features
 - If we have d features, consider \sqrt{d} random features

- **This is called: Feature bagging**
 - **Benefit:** Breaks correlation between trees
 - Otherwise, if one feature is very strong predictor, then every tree will select it, causing trees to be correlated.

- Random Forests achieve state-of-the-art results in many classification problems!