Announcements

Deadlines today, 11:59 PM:
- Colab 0, Colab 1
- You can submit many times and will get immediate feedback

Deadlines next Thu, 11:59 PM:
- HW1, Colab 2

How to find teammates for project?
- Ed Discussion Board
- Make sure you have a good dataset accessible
Recap: Finding similar documents

- **Task:** Given a large number \(N \) in the millions or billions of documents, find “near duplicates”

- **Problem:**
 - Too many documents to compare all pairs

- **Solution:** Hash documents so that similar documents hash into the same bucket
 - Documents in the same bucket are then candidate pairs whose similarity is then evaluated
Recap: The Big Picture

Document \rightarrow \text{Shingling} \rightarrow \text{Min-Hashing} \rightarrow \text{Locality-sensitive Hashing}

The set of strings of length k that appear in the document

Signatures: short integer vectors that represent the sets, and reflect their similarity

Candidate pairs: those pairs of signatures that we need to test for similarity
A *k*-shingle (or *k*-gram) is a sequence of *k* tokens that appears in the document

- **Example:** \(k=2; \ D_1 = \text{abcab} \)

 Set of 2-shingles: \(C_1 = S(D_1) = \{ab, bc, ca\} \)

- Represent a doc by a set of hash values of its *k*-shingles

- A natural **similarity measure** is then the **Jaccard similarity**:

\[
sim(D_1, D_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}
\]

- Similarity of two documents is the Jaccard similarity of their shingles
Recap: Minhashing

- **Min-Hashing**: Convert large sets into short signatures, while preserving similarity: $\Pr[h(C_1) = h(C_2)] = \text{sim}(D_1, D_2)$

<table>
<thead>
<tr>
<th>Permutation π</th>
<th>Input matrix (Shingles x Documents)</th>
<th>Signature matrix M</th>
<th>Similarities of columns and signatures (approx.) match!</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 4 3</td>
<td>1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0</td>
<td>2 1 2 1 2 1 4 1 4 1</td>
<td>1.00 0.67 0.00 0 0 0</td>
</tr>
<tr>
<td>3 2 4</td>
<td>1 0 1 0 0 1 0 1 0 1 0</td>
<td>2 1 4 1 4</td>
<td>0.75 0.75 0.00 0 0 0</td>
</tr>
<tr>
<td>7 1 1 7</td>
<td>0 1 0 1 0 1 0 1 0 1 0</td>
<td>1 2 1 2 1 2</td>
<td>0.75 0.75 0.00 0 0 0</td>
</tr>
<tr>
<td>6 3 2 6</td>
<td>0 1 0 1 0 1 0 1 0 1 0</td>
<td></td>
<td>0.67 1.00 0.00 0 0 0</td>
</tr>
<tr>
<td>1 6 6 1</td>
<td>0 1 0 1 0 1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 7 1 5</td>
<td>1 0 1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 5 5</td>
<td>1 0 1 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input matrix (Shingles x Documents)

1-3 2-4 1-2 3-4
0.75 0.75 0.00 0 0 0
0.67 1.00 0.00 0 0 0

Recap: LSH

- **Hash columns of the signature matrix M:**
 - Similar columns likely hash to same bucket
 - Divide matrix M into b bands of r rows ($M = b \cdot r$)
 - **Candidate** column pairs are those that hash to the same bucket for ≥ 1 band
Today: Generalizing Min-hash

Signatures: short integer signatures that reflect point similarity

Candidate pairs: those pairs of signatures that we need to test for similarity

Design a **locality sensitive hash function** (for a given distance metric)

Apply the **“Bands” technique**
The S-Curve

- The S-curve is where the “magic” happens

Remember:
Probability of equal hash-values = similarity

This is what 1 hash-code gives you
\[\Pr[h_\pi(C_1) = h_\pi(C_2)] = sim(D_1, D_2) \]

Similarity \(t \) of two sets

Threshold \(s \)

Probability = 1 if \(t > s \)

No chance if \(t < s \)

Similarity \(t \) of two sets

This is what we want!

How to get a step-function?
By choosing \(r \) and \(b \)!

01/22/2023
How Do We Make the S-curve?

- **Remember:** b bands, r rows/band
- Let $\text{sim}(C_1, C_2) = s$

What’s the prob. that at least 1 band is equal?

- Pick some band (r rows)
 - Prob. that elements in a single row of columns C_1 and C_2 are equal = s
 - Prob. that all rows in a band are equal = s^r
 - Prob. that some row in a band is not equal = $1 - s^r$
 - Prob. that all bands are not equal = $(1 - s^r)^b$
 - Prob. that at least 1 band is equal = $1 - (1 - s^r)^b$

$P(C_1, C_2 \text{ is a candidate pair}) = 1 - (1 - s^r)^b$
Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions ($r=5$, $b=10$)
Given a fixed threshold s.

We want choose r and b such that the $P($Candidate pair$)$ has a “step” right around s.

\[
prob = 1 - (1 - t^r)^b
\]
Signatures: short vectors that represent the sets, and reflect their similarity

Candidate pairs: those pairs of signatures that we need to test for similarity

Theory of LSH

general hashing

locality-sensitive hashing
Theory of LSH

- We have used LSH to find similar documents
 - More generally, we found similar columns in large sparse matrices with high Jaccard similarity

- Can we use LSH for other distance measures?
 - e.g., Euclidean distances, Cosine distance
 - Let’s generalize what we’ve learned!
Distance Metric

- **d()** is a **distance metric** if it is a function from pairs of points \(x,y \) to real numbers such that:
 - \(d(x,y) \geq 0 \)
 - \(d(x,y) = 0 \) if and only if \(x = y \)
 - \(d(x,y) = d(y,x) \)
 - \(d(x,y) \leq d(x,z) + d(z,y) \) (triangle inequality)

- **Jaccard distance** for sets = 1 - Jaccard similarity
- **Cosine distance** for vectors = angle between the vectors
- **Euclidean distances**:
 - \(L_2 \) norm: \(d(x,y) = \) square root of the sum of the squares of the differences between \(x \) and \(y \) in each dimension
 - The most common notion of “distance”
 - \(L_1 \) norm: sum of absolute value of the differences in each dimension
 - **Manhattan distance** = distance if you travel along coordinates only
For Min-Hashing signatures, we got a Min-Hash function for each permutation of rows

A “hash function” is any function that allows us to say whether two elements are “equal”

- Shorthand: \(h(x) = h(y) \) means “\(h \) says \(x \) and \(y \) are equal”

A *family* of hash functions is any set of hash functions from which we can *pick one at random efficiently*

- Example: The set of Min-Hash functions generated from permutations of rows
Locality-Sensitive (LS) Families

- Suppose we have a space S of points with a distance metric $d(x, y)$

- A family H of hash functions is said to be (d_1, d_2, p_1, p_2)-sensitive if for any x and y in S:
 1. If $d(x, y) \leq d_1$, then the probability over all $h \in H$, that $h(x) = h(y)$ is at least p_1
 2. If $d(x, y) \geq d_2$, then the probability over all $h \in H$, that $h(x) = h(y)$ is at most p_2

With a LS Family we can do LSH!
A \((d_1, d_2, p_1, p_2)\)-sensitive function

For all \(h \in H\),
\[
P[h(x) = h(y_1)] \geq p_1
\]
\[
P[h(x) = h(y_2)] \leq p_2
\]
A \((d_1, d_2, p_1, p_2)\)-sensitive function

Small distance, high probability

Large distance, low probability of hashing to the same value

Notice distance on x-axis, not similarity, hence the S-curve is mirrored!
A \((d_1,d_2,p_1,p_2)\)-sensitive function

Small distance, high probability

Large distance, low probability of hashing to the same value

Notice distance on x-axis, not similarity, hence the S-curve is mirrored!
A \((d_1, d_2, p_1, p_2)\)-sensitive function

Small distance, high probability

Large distance, low probability of hashing to the same value

Notice distance on x-axis, not similarity, hence the S-curve is mirrored!
Example of LS Family: Min-Hash

- **Let:**
 - S = space of all sets,
 - d = Jaccard distance,
 - H is family of Min-Hash functions for all permutations of rows

- **Then for any hash function $h \in H$:**

$$\Pr[h(x) = h(y)] = 1 - d(x, y)$$

- Simply restates theorem about Min-Hashing in terms of distances rather than similarities
Claim: Min-hash H is a $(1/3, 2/3, 2/3, 1/3)$-sensitive family for S and d.

If distance $\leq 1/3$ (so similarity $\geq 2/3$)

Then probability that Min-Hash values agree is $\geq 2/3$

For Jaccard similarity, Min-Hashing gives a $(d_1, d_2, (1-d_1), (1-d_2))$-sensitive family for any $d_1 < d_2$
Can we reproduce the “S-curve” effect we saw before for any LS family?

The “bands” technique we learned for signature matrices carries over to this more general setting.

Can do LSH with any \((d_1, d_2, p_1, p_2)\)-sensitive family!

Two constructions:

- **AND** construction like “rows in a band”
- **OR** construction like “many bands”
Amplifying Hash Functions: AND and OR
AND of Hash Functions

- Given family H, construct family H' consisting of r independent functions from H
- For $h = [h_1, ..., h_r]$ in H', we say $h(x) = h(y)$ if and only if $h_i(x) = h_i(y)$ for all $1 \leq i \leq r$
 - Note this corresponds to creating a band of size r

Theorem: If H is (d_1, d_2, p_1, p_2)-sensitive, then H' is $(d_1, d_2, (p_1)^r, (p_2)^r)$-sensitive

Proof: Use the fact that h_i's are independent

Also lowers probability for small distances (Bad)
Lowers probability for large distances (Good)
Subtlety Regarding Independence

- Independence of hash functions (HFs) really means that the prob. of two HFs saying “yes” is the product of each saying “yes”
 - But two particular hash functions could be highly correlated
 - For example, in Min-Hash if their permutations agree in the first one million entries
 - However, the probabilities in definition of a LSH-family are over all possible members of \(H, H' \) (i.e., average case and not the worst case)
OR of Hash Functions

- Given family H, construct family H' consisting of b independent functions from H

- For $h = [h_1, ..., h_b]$ in H', $h(x) = h(y)$ if and only if $h_i(x) = h_i(y)$ for at least 1 i

- **Theorem:** If H is (d_1, d_2, p_1, p_2)-sensitive, then H' is $(d_1, d_2, 1-(1-p_1)^b, 1-(1-p_2)^b)$-sensitive

- **Proof:** Use the fact that h_i’s are independent

 Raises probability for small distances (Good)
 Raises probability for large distances (Bad)
 Effect of AND and OR Constructions

- **AND** makes all probs. **shrink**, but by choosing r correctly, we can make the lower prob. approach 0 while the higher does not.

- **OR** makes all probs. **grow**, but by choosing b correctly, we can make the higher prob. approach 1 while the lower does not.

![Graphs showing the effect of AND and OR on the probability of sharing a bucket for different values of r and b.]
Combine AND and OR Constructions

- By choosing b and r correctly, we can make the lower probability approach 0 while the higher approaches 1

- As for the signature matrix, we can use the AND construction followed by the OR construction
 - Or vice-versa
 - Or any sequence of AND’s and OR’s alternating
Composing Constructions

- r-way **AND** followed by b-way **OR** construction
 - Exactly what we did with Min-Hashing
 - **AND:** If bands match in all r values hash to same bucket
 - **OR:** Cols that have ≥ 1 common bucket \rightarrow **Candidate**

- Take points x and y s.t. $Pr[h(x) = h(y)] = s$
 - H will make (x,y) a candidate pair with prob. s
 - Construction makes (x,y) a candidate pair with probability $1-(1-s^r)^b$ The S-Curve!

- **Example:** Take H and construct H' by the **AND** construction with $r = 4$. Then, from H', construct H'' by the **OR** construction with $b = 4$
Table for Function $1-(1-s^{4})^4$

<table>
<thead>
<tr>
<th>s</th>
<th>$p=1-(1-s^{4})^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.0064</td>
</tr>
<tr>
<td>.3</td>
<td>.0320</td>
</tr>
<tr>
<td>.4</td>
<td>.0985</td>
</tr>
<tr>
<td>.5</td>
<td>.2275</td>
</tr>
<tr>
<td>.6</td>
<td>.4260</td>
</tr>
<tr>
<td>.7</td>
<td>.6666</td>
</tr>
<tr>
<td>.8</td>
<td>.8785</td>
</tr>
<tr>
<td>.9</td>
<td>.9860</td>
</tr>
</tbody>
</table>

$r = 4, \ b = 4$ transforms a $\ (.2,.8,.8,.2\)$-sensitive family into a $\ (.2,.8,.8785,.0064\)$-sensitive family.
How to choose r and b
Picking r and b: The S-curve

- Picking r and b to get desired performance
 - 50 hash-functions ($r = 5$, $b = 10$)

Yellow area X: False Negative rate
These are pairs with $\text{sim} > s$ but the X fraction won’t share a band and then will never become candidates. This means we will never consider these pairs for (slow/exact) similarity calculation!

Blue area Y: False Positive rate
These are pairs with $\text{sim} < s$ but we will consider them as candidates. This is not too bad, we will consider them for (slow/exact) similarity computation and discard them.
Picking \(r \) and \(b \): The S-curve

- Picking \(r \) and \(b \) to get desired performance
 - 50 hash-functions \((r \times b = 50)\)

![Graph showing the relationship between similarity \(s \) and probability \(\text{Prob}(\text{Candidate pair}) \). The graph illustrates threshold similarities for different values of \(r \) and \(b \): \(r=2, b=25 \), \(r=5, b=10 \), \(r=10, b=5 \).]
OR-AND Composition

- Apply a b-way OR construction followed by an r-way AND construction
- Transforms similarity s (probability p) into $(1-(1-s)^b)^r$
 - The same S-curve, mirrored horizontally and vertically
- **Example:** Take H and construct H' by the OR construction with $b = 4$. Then, from H', construct H'' by the AND construction with $r = 4$
Table for Function \((1-(1-s)^4)^4\)

<table>
<thead>
<tr>
<th>s</th>
<th>(p=(1-(1-s)^4)^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>.0140</td>
</tr>
<tr>
<td>.2</td>
<td>.1215</td>
</tr>
<tr>
<td>.3</td>
<td>.3334</td>
</tr>
<tr>
<td>.4</td>
<td>.5740</td>
</tr>
<tr>
<td>.5</td>
<td>.7725</td>
</tr>
<tr>
<td>.6</td>
<td>.9015</td>
</tr>
<tr>
<td>.7</td>
<td>.9680</td>
</tr>
<tr>
<td>.8</td>
<td>.9936</td>
</tr>
</tbody>
</table>

The example transforms a \((.2,.8,.8,.2)\)-sensitive family into a \((.2,.8,.9936,.1215)\)-sensitive family.
Cascading Constructions

- **Example:** Apply the (4,4) OR-AND construction followed by the (4,4) AND-OR construction

- Transforms a (.2, .8, .8, .2)-sensitive family into a (.2, .8, .9999996, .0008715)-sensitive family

 - Note this family uses 256 (=4*4*4*4) of the original hash functions
Summary

- Pick any two distances $d_1 < d_2$
- Start with a $(d_1, d_2, (1 - d_1), (1 - d_2))$-sensitive family
- Apply constructions to amplify (d_1, d_2, p_1, p_2)-sensitive family, where p_1 is almost 1 and p_2 is almost 0
- The closer to 0 and 1 we want to get, the more hash functions must be used!
LSH for other distance metrics
LSH for other Distance Metrics

- **LSH methods for other distance metrics:**
 - **Cosine distance:** Random hyperplanes
 - **Euclidean distance:** Project on lines

Design a \((d_1, d_2, p_1, p_2)\)-sensitive family of hash functions (for that particular distance metric)

Signatures: short integer signatures that reflect their similarity

Candidate pairs: those pairs of signatures that we need to test for similarity

Depends on the distance function used

Amplify the family using \(AND\) and \(OR\) constructions

01/22/2023
Summary of what we will learn

Signatures: short integer signatures that reflect their similarity

Locality-sensitive Hashing

Candidate pairs: those pairs of signatures that we need to test for similarity
Summary of what we will learn

Documents

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

MinHash

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

“Bands” technique

Candidate pairs

Data points

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Random Hyperplanes

<table>
<thead>
<tr>
<th></th>
<th>-1</th>
<th>+1</th>
<th>-1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

“Bands” technique

Candidate pairs
Cosine Distance

- **Cosine distance** = angle between vectors from the origin to the points in question

 \[d(A, B) = \theta = \arccos\left(\frac{A \cdot B}{\|A\| \cdot \|B\|}\right) \]

 - Has range \([0, \pi]\) (equivalently \([0,180^\circ]\))
 - Can divide \(\theta\) by \(\pi\) to have distance in range \([0,1]\)

- **Cosine similarity** = 1-\(d(A,B)\)

 - But often defined as **cosine sim**: \(\cos(\theta) = \frac{A \cdot B}{\|A\| \cdot \|B\|}\)

 - Has range \(-1...1\) for general vectors
 - Range \(0..1\) for non-negative vectors (angles up to \(90^\circ\))
LSH for Cosine Distance

- For **cosine distance**, there is a technique called **Random Hyperplanes**
 - Technique similar to Min-Hashing

- **Random Hyperplanes** method is a
 \[(d_1, d_2, (1-d_1/\pi), (1-d_2/\pi))\)-sensitive family for any \(d_1\) and \(d_2\)

- Reminder: \((d_1, d_2, p_1, p_2)\)-sensitive
 1. If \(d(x,y) \leq d_1\), then prob. that \(h(x) = h(y)\) is at least \(p_1\)
 2. If \(d(x,y) > d_2\), then prob. that \(h(x) = h(y)\) is at most \(p_2\)
Random Hyperplanes

- Each vector \mathbf{v} determines a hash function $h_{\mathbf{v}}$ with two buckets.

- $h_{\mathbf{v}}(x) = +1$ if $\mathbf{v} \cdot x \geq 0$; $= -1$ if $\mathbf{v} \cdot x < 0$

- LS-family $\mathcal{H} = \text{set of all functions derived from any vector}$

- **Claim:** For points \mathbf{x} and \mathbf{y},

 $$\Pr[h(\mathbf{x}) = h(\mathbf{y})] = 1 - \frac{d(\mathbf{x}, \mathbf{y})}{\pi}$$
Proof of Claim

Look in the plane of x and y.
Proof of Claim

Look in the plane of x and y.

Hyperplane normal to \mathbf{v}. Here $h(x) = h(y)$.
Proof of Claim

Look in the plane of x and y.

Hyperplane normal to v'. Here $h(x) \neq h(y)$.
Proof of Claim

So: \[\text{Prob[Red case]} = \frac{\theta}{\pi} \]

So: \[P[h(x)=h(y)] = 1 - \frac{\theta}{\pi} = 1 - \frac{d(x,y)}{\pi} \]
Signatures for Cosine Distance

- Pick some number of random vectors, and hash your data for each vector

- The result is a signature (sketch) of +1’s and −1’s for each data point

- Can be used for LSH like we used the Min-Hash signatures for Jaccard distance

- Amplify using AND/OR constructions
How to pick random vectors?

- Expensive to pick a random vector in M dimensions for large M
 - Would have to generate M random numbers

- A more efficient approach
 - It suffices to consider only vectors \mathbf{v} consisting of +1 and –1 components
 - *Why?* Assuming data is random, then vectors of +/-1 cover the entire space evenly (and does not bias in any way)
LSH for Euclidean Distance

- **Idea:** Hash functions correspond to lines
- Partition the line into buckets of size a
- Hash each point to the bucket containing its projection onto the line
 - An element of the “Signature” is a bucket id for that given projection line
- Nearby points are always close; distant points are rarely in same bucket
“Lucky” case:

- Points that are close hash in the same bucket
- Distant points end up in different buckets
Projection of Points

- **“Lucky” case:**
 - Points that are close hash in the same bucket
 - Distant points end up in different buckets

- **Two “unlucky” cases:**
 - **Top:** unlucky quantization
 - **Bottom:** unlucky projection
Multiple Projections
Projection of Points

Points at distance d

If $d << a$, then the chance the points are in the same bucket is at least $1 - \frac{d}{a}$.

Exactly $1 - \frac{d}{a}$ when the randomly chosen line is parallel to the line from x to y.

Randomly chosen line
Projection of Points

If $d \gg a$, θ must be close to 90° for there to be any chance points go to the same bucket.
Then: $d \cos \theta \leq a$
A LS-Family for Euclidean Distance

- If points are distance $d \leq a/2$, prob. they are in same bucket $\geq 1 - d/a = \frac{1}{2}$
- If points are distance $d \geq 2a$ apart, then they can be in the same bucket only if $d \cos \theta \leq a$
 - $\cos \theta \leq \frac{1}{2}$
 - $60 \leq \theta \leq 90$, i.e., at most $1/3$ probability

- Yields a $(a/2, 2a, 1/2, 1/3)$-sensitive family of hash functions for any a
- Amplify using AND-OR cascades
Summary

Data → Hash func. → Signatures: short integer signatures that reflect their similarity → Locality-sensitive Hashing → Candidate pairs: those pairs of signatures that we need to test for similarity

Design a \((d_1, d_2, p_1, p_2)\)-sensitive family of hash functions (for that particular distance metric)

Design a family of hash functions for that particular distance metric using AND and OR constructions

Documents

<table>
<thead>
<tr>
<th>0 1 0 0</th>
<th>1 1 1 0</th>
<th>0 0 0 1</th>
<th>0 1 0 1</th>
<th>0 0 1 0</th>
<th>1 0 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MinHash</td>
<td>1 5 1 5</td>
<td>2 3 1 3</td>
<td>6 4 6 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data points

<table>
<thead>
<tr>
<th>0 1 0 0</th>
<th>1 1 1 0</th>
<th>0 0 0 1</th>
<th>0 1 0 1</th>
<th>0 0 1 0</th>
<th>0 1 0 1</th>
<th>0 0 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Hyperplanes</td>
<td>-1 +1 -1 -1</td>
<td>+1 +1 +1 -1</td>
<td>-1 -1 -1 -1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Bands” technique

Candidate pairs
Two Important Points

- Property $P(h(C_1)=h(C_2))=\text{sim}(C_1,C_2)$ of hash function h is the essential part of LSH, without which we can’t do anything.

- LS-hash functions transform data to signatures so that the bands technique (AND, OR constructions) can then be applied.
Please give us feedback 😊

https://bit.ly/547feedback