Announcements:
- Apologies for last minute recording on Thursday due to illness.
- Project Milestone feedback this week
- Thu this week: HW3 due / HW4 released (start early 😊)

Large-Scale Machine Learning (1)
New Topic: ML that scales!

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- PageRank, SimRank
- Community Detection
- Spam Detection

Infinite data
- Sampling data streams
- Filtering data streams
- Queries on streams

Machine learning
- Decision Trees
- SVM / Max Margin
- Parallel SGD

Apps
- Recommender systems
- Association Rules
- Duplicate document detection
Supervised Learning

Given some data:

- “Learn” a function to map from the input to the output

- Given:

 Training examples \((x_i, y_i = f(x_i))\) for some unknown function \(f\)

- Find:

 A good approximation to \(f\)
Many Other ML Paradigms

- **Supervised:**
 - Given “labeled data” \(\{x, y\} \), learn \(f(x) = y \)

- **Unsupervised:**
 - Given only “unlabeled data” \(\{x\} \), learn \(f(x) \)

- **Semi-supervised:**
 - Given some labeled \(\{x, y\} \) and some unlabeled data \(\{x\} \), learn \(f(x) = y \)

- **Active learning:**
 - When we predict \(f(x) = y \), we then receive true \(y^* \)

- **Transfer learning:**
 - Learn \(f(x) \) so that it works well on new domain \(f(z) \)
Supervised Learning

- Would like to do prediction: estimate a function $f(x)$ so that $y = f(x)$

- Where y can be:
 - Continuous / Real number: Regression
 - Categorical: Classification
 - Complex object:
 - Ranking of items, Parse tree, etc.

- Data is labeled:
 - Have many pairs $\{(x, y)\}$
 - x ... vector of binary, categorical, real valued features
 - y ... class, or a real number
Supervised Learning

- **Task:** Given data \((X, Y)\) build a model \(f()\) to predict \(Y'\) based on \(X'\)
- **Strategy:** Estimate \(y = f(x)\) on \((X, Y)\)

Hope that the same \(f(x)\) also works to predict unknown \(Y'\)

- The “hope” is called **generalization**
 - **Overfitting:** If \(f(x)\) predicts \(Y\) well, but is unable to predict \(Y'\)
- **We want to build a model that generalizes well to unseen data**
Why Large-Scale ML?

- **Brawn or Brains?**
 - In 2001, Microsoft researchers ran a test to evaluate 4 of different approaches to ML-based language translation

- **Findings:**
 - **Size of the dataset** used to train the model mattered **more** than the model itself
 - As the dataset grew large, performance difference between the models became small

Why Large-Scale ML?

- The Unreasonable Effectiveness of Big Data
 - In 2017, Google revisited the same type of experiment with the latest Deep Learning models in computer vision

- Findings:
 - Performance increases logarithmically based on volume of training data
 - Complexity of modern ML models (i.e., deep neural nets) allows for even further performance gains

- Large datasets + large ML models => amazing results!!

Decision Trees
Given one attribute (e.g., lifespan), try to predict the value of new people’s lifespans by means of some of the other available attribute

Input attributes:
- d features/attributes: $x^{(1)}, x^{(2)}, \ldots, x^{(d)}$
- Each $x^{(i)}$ has **domain** O_j
 - **Categorical:** $O_j = \{brown, blue, gray\}$
 - **Numerical:** $H_j = (0, 10)$
- Y is output variable with domain O_Y:
 - **Categorical:** Classification, **Numerical:** Regression

Data D:
- n examples (x_i, y_i) where x_i is a d-dim feature vector, $y_i \in O_Y$ is output variable

Task:
- Given an input data vector x predict output label y
A Decision Tree is a tree-structured plan of a set of attributes to test in order to predict the output.
Decision Trees

- **Decision trees:**
 - Split the data at each internal node
 - Each leaf node makes a prediction

- **Lecture today:**
 - Binary splits: $X^{(j)} < v$
 - Numerical attributes
 - Regression
How to make predictions?

- **Input:** Example x_i
- **Output:** Predicted \hat{y}_i

- “Drop” x_i down the tree until it hits a leaf node
- Predict the value stored in the leaf that x_i hits
How to construct a tree?

- Training dataset D^*, $|D^*| = 100$ examples

```
\begin{align*}
|D| &= 10 \\
Y &= 0.42 \\
X^{(1)} &< v^{(1)} \\
|D| &= 90 \\
|D| &= 45 \\
X^{(2)} &< v^{(2)} \\
|D| &= 45 \\
X^{(3)} &< v^{(4)} \\
|D| &= 25 \\
|D| &= 20 \\
|D| &= 15 \\
X^{(2)} &< v^{(5)} \\
|D| &= 30 \\
|D| &= 10 \\
|D| &= 25 \\
|D| &= 20 \\
|D| &= 15 \\
|D| &= 30 \\
\end{align*}
```
How to construct a tree?

- Imagine we are currently at some node G
 - Let D_G be the data that reaches G
- There is a decision we have to make: Do we continue building the tree?
 - If yes, which variable and which value do we use for a split?
 - Continue building the tree recursively
 - If not, how do we make a prediction?
 - We need to build a “predictor node”
3 steps in constructing a tree

Algorithm 1: **BuildSubtree**

Require: Node n, Data $D \subseteq D^*$

1: $(n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)$ (1)
2: if \text{StoppingCriteria}(D_L) then (2)
3: \hspace{0.5cm} $n \rightarrow \text{left_prediction} = \text{FindPrediction}(D_L)$ (3)
4: else
5: \hspace{0.5cm} \text{BuildSubtree} \hspace{0.5cm} $(n \rightarrow \text{left}, D_L)$
6: \hspace{0.5cm} \text{if} \hspace{0.5cm} \text{StoppingCriteria}(D_R) \text{ then}
7: \hspace{1cm} $n \rightarrow \text{right_prediction} = \text{FindPrediction}(D_R)$
8: \hspace{0.5cm} else
9: \hspace{0.5cm} \text{BuildSubtree} \hspace{0.5cm} $(n \rightarrow \text{right}, D_R)$

- Requires at least a single pass over the data!
How to construct a tree?

(1) How to split? Pick attribute & value that optimizes some criterion

- **Regression**: Purity
 - Find split \((X^{(i)}, v)\) that creates \(D, D_L, D_R\): parent, left, right child datasets and maximizes:
 \[
 |D| \cdot \text{Var}(D) - \left(|D_L| \cdot \text{Var}(D_L) + |D_R| \cdot \text{Var}(D_R) \right)
 \]
 - \(\text{Var}(D) = \frac{1}{n} \sum_{i \in D} (y_i - \bar{y})^2\) ... variance of \(y_i\) in \(D\)
How to construct a tree?

(1) **How to split?** Pick attribute & value that optimizes some criterion

- Classification: Information Gain
 - Measures how much a given attribute X tells us about the class Y
 - $IG(Y \mid X)$: We must transmit Y over a binary link. How many bits on average would it save us if both ends of the line knew X?
Why Information Gain? Entropy

Entropy: What’s the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X’s distribution?

The entropy of X: $H(X) = -\sum_{j=1}^{m} p(X_j) \log p(X_j)$

- “High Entropy”: X is from a uniform (flat) distribution
 - A histogram of the frequency distribution of values of X is **flat**
- “Low Entropy”: X is from a varied (peaks/valleys) distrib.
 - A histogram of the frequency distribution of values of X would have many lows and one or two peaks
Why Information Gain? Entropy

- Suppose I want to predict Y and I have input X
 - $X =$ College Major
 - $Y =$ Likes Movie “Casablanca”

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
</tbody>
</table>

- From this data we estimate
 - $P(Y = Yes) = 0.5$
 - $P(X = Math \& Y = No) = 0.25$
 - $P(X = Math) = 0.5$
 - $P(Y = Yes \mid X = History) = 0$

- Note:
 - $H(Y) = -\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\log_2(\frac{1}{2}) = 1$
 - $H(X) = 1.5$
Why Information Gain? Entropy

- Suppose I want to predict Y and I have input X
 - $X = \text{College Major}$
 - $Y = \text{Likes “Casablanca”}$

Def: Specific Conditional Entropy

- $H(Y \mid X = v) = \text{The entropy of } Y \text{ among only those records in which } X \text{ has value } v$

Example:

- $H(Y\mid X = Math) = 1$
- $H(Y\mid X = History) = 0$
- $H(Y\mid X = CS) = 0$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
</tbody>
</table>
Why Information Gain?

- Suppose I want to predict Y and I have input X
 - $X = \text{College Major}$
 - $Y = \text{Likes “Casablanca”}$

- **Def: Conditional Entropy**
 - $H(Y \mid X) = \text{The average specific conditional entropy of } Y$
 - = if you choose a record at random what will be the conditional entropy of Y, conditioned on that row’s value of X
 - = Expected number of bits to transmit Y if both sides will know the value of X
 - $= \sum_j P(X = v_j)H(Y \mid X = v_j)$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
</tbody>
</table>
| History | No }
Why Information Gain?

- Suppose I want to predict Y and I have input X

 $H(Y \mid X) = \text{The average specific conditional entropy of } Y$

 $$= \sum_{j} P(X = v_j)H(Y \mid X = v_j)$$

- Example:

<table>
<thead>
<tr>
<th>v_j</th>
<th>$P(X=v_j)$</th>
<th>$H(Y\mid X=v_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>History</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>CS</td>
<td>0.25</td>
<td>0</td>
</tr>
</tbody>
</table>

 So: $H(Y \mid X) = 0.5 \times 1 + 0.25 \times 0 + 0.25 \times 0 = 0.5$
Why Information Gain?

- Suppose I want to predict Y and I have input X

- Def: Information Gain
 - $IG(Y|X) = I$ must transmit Y. How many bits on average would it save me if both ends of the line knew X?
 - $IG(Y|X) = H(Y) - H(Y | X)$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
</tbody>
</table>

- Example:
 - $H(Y) = 1$
 - $H(Y|X) = 0.5$
 - Thus $IG(Y|X) = 1 - 0.5 = 0.5$
Suppose you are trying to predict whether someone is going to live past 80 years.

From historical data you might find:

- $IG(\text{LongLife} \mid \text{HairColor}) = 0.01$
- $IG(\text{LongLife} \mid \text{Smoker}) = 0.4$
- $IG(\text{LongLife} \mid \text{Gender}) = 0.25$
- $IG(\text{LongLife} \mid \text{LastDigitOfSSN}) = 0.00001$

IG tells us how much information about Y is contained in X.

So attribute X that has high $IG(Y \mid X)$ is a good split!
3 steps in constructing a tree

Algorithm 1: BuildSubtree

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D))</td>
</tr>
<tr>
<td>2</td>
<td>if (\text{StoppingCriteria}(D_L)) then</td>
</tr>
<tr>
<td>3</td>
<td>(n \rightarrow \text{left_prediction} = \text{FindPrediction}(D_L))</td>
</tr>
<tr>
<td>4</td>
<td>else</td>
</tr>
<tr>
<td>5</td>
<td>BuildSubtree ((n \rightarrow \text{left}, D_L))</td>
</tr>
<tr>
<td>6</td>
<td>if (\text{StoppingCriteria}(D_R)) then</td>
</tr>
<tr>
<td>7</td>
<td>(n \rightarrow \text{right_prediction} = \text{FindPrediction}(D_R))</td>
</tr>
<tr>
<td>8</td>
<td>else</td>
</tr>
<tr>
<td>9</td>
<td>BuildSubtree ((n \rightarrow \text{right}, D_R))</td>
</tr>
</tbody>
</table>
When to stop?

(2) When to stop?
- Many different heuristic options to avoid overfitting
- Two ideas:
 - (1) When the leaf is “pure”
 - The target variable does not vary too much: \(\text{Var}(y) < \varepsilon \)
 - (2) When # of examples in the leaf is too small
 - For example, \(|D| \leq 100\)
 - (3) Stop at a fixed depth
 - For example, max depth = 4.
How to predict?

(3) How to predict?
- Many options
 - Regression:
 - Typically: Predict average y_i of the examples in the leaf
 - Build a linear regression model on the examples in the leaf
 - Classification:
 - Predict most common y_i of the examples in the leaf
Building Decision Trees Using MapReduce
Problem: Building a tree

- Given a large dataset with hundreds of attributes
- Build a decision tree!

General considerations:
- **Tree is small** (can keep it memory):
 - Shallow (~10 levels)
- Dataset too large to keep in memory (Petabytes)
- Dataset too big to scan over on a single machine
- **MapReduce to the rescue!**

Algorithm 1
`BuildSubTree`

Require: Node n, Data $D \subseteq D^*$

1. $(n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)$
2. if StoppingCriteria(D_L) then
3. \hspace{1cm} $n \rightarrow \text{left_prediction} = \text{FindPrediction}(D_L)$
4. else
5. \hspace{1cm} `BuildSubTree($n \rightarrow \text{left}, D_L$)`
6. if StoppingCriteria(D_R) then
7. \hspace{1cm} $n \rightarrow \text{right_prediction} = \text{FindPrediction}(D_R)$
8. else
9. \hspace{1cm} `BuildSubTree($n \rightarrow \text{right}, D_R$)`
Today’s Lecture: PLANET

Parallel Learner for Assembling Numerous Ensemble Trees [Panda et al., VLDB ‘09]

- A sequence of MapReduce jobs that builds a decision tree
- Spark MLlib Decision Trees are based on PLANET

Setting:

- Hundreds of numerical (discrete & continuous, but not categorical) attributes
- Target variable is numerical: Regression
- Splits are binary: $X^{(i)} < v$
- Decision tree is small enough for each Mapper to keep it in memory
- Data too large to keep in memory
PLANT Architecture

- **Input data**
- **Model**
- **Attribute metadata**
- **Intermediate results**

MapReduce
- Given a set of split candidates compute their quality
- Keeps track of the model and decides how to grow the tree
PLANET: Building the Tree

- The tree will be built in levels
 - One level at a time:

Steps:
- 1) Master decides candidate splits \((n, X^{(j)}, v)\)
- 2) MapReduce computes quality of those splits
- 3) Master then grows the tree for a level
- 4) Goto (1)
Hard part: Computing “quality” of a split
1) **Master** tells the **Mappers** which splits \((n, X(i), v)\) to consider
2) Each **Mapper** gets a subset of data and computes partial statistics for a given split
3) **Reducers** collect partial statistics and output the final quality for a given split \((n, X(i), v)\)
4) **Master** makes final decision where to split
PLANET Overview

- **We build the tree level by level**
 - One MapReduce step builds **one level of the tree**

- **Mapper**
 - Considers a number of candidate splits *(node, attribute, value)* on its subset of the data
 - For each split it stores **partial statistics**
 - Partial split-statistics is sent to **Reducers**

- **Reducer**
 - Collects all partial statistics and determines best split

- **Master** grows the tree for one level
PLANET Overview

- **Mapper** loads the **DT model** and info about which **attribute splits** (split is a tuple `<NodeID, Attribute, Value>`) to consider
 - Each mapper sees a subset of the data D^*
 - Mapper “drops”/classifies each datapoint d using the tree to find the leaf node L where d lands
 - For each leaf node L mapper keeps statistics about
 - (1) the data reaching L
 - (2) the data in left/right subtree under some split S
- **Reducer** aggregates the statistics (1), (2) and determines the best split for each tree node
PLANET: Components

- **Master**
 - Monitors everything (runs multiple MapReduce jobs)

- **Three types of MapReduce jobs:**
 - **(1) MapReduce Initialization** (run once first)
 - For each attribute identify values to be considered for splits
 - **(2) MapReduce FindBestSplit** (run multiple times)
 - MapReduce job to find best split (when there is too much data to fit in memory)
 - **(3) MapReduce InMemoryBuild** (run once last)
 - Similar to BuildSubTree (but for small data)
 - Grows an entire sub-tree once the data fits in memory

- **Model file**
 - A file describing the state of the model
PLANET: Components

(1) Master Node
(2) MapReduce **Initialization** (run once first)
(3) MapReduce **FindBestSplit** (run multiple times)
(4) MapReduce **InMemoryBuild** (run once last)
Master controls the entire process
Determines the state of the tree and grows it:

1. Decides if nodes should be split
2. If there is little data entering a tree node, Master runs an InMemoryBuild MapReduce job to grow the entire subtree below that node
3. For larger nodes, Master launches MapReduce FindBestSplit to evaluate candidates for best split
 - Master also collects results from FindBestSplit and chooses the best split for a node
4. Updates the model
PLANET: Components

(1) Master Node
(2) MapReduce Initialization (run once first)
(3) MapReduce FindBestSplit (run multiple times)
(4) MapReduce InMemoryBuild (run once last)
Initialization: Attribute metadata

- **Initialization job:** Identifies all the attribute values which need to be considered for splits
 - Initialization process generates “attribute metadata” to be loaded in memory by other tasks

- **Main question:** Which splits to even consider?

- **A split is defined by a triple:**
 (node \(n\), attribute \(X^{(i)}\), value \(v\))
Initialization: Attribute metadata

- **Which splits to even consider?**
 - For small data we can sort the values along a particular feature and consider every possible split
 - But data values may not be uniformly populated so many splits may not really make a difference

\[X^{(j)}: 1.2, 1.3, 1.4, 1.6, 2.1, 7.2, 8.1, 9.8, 10.1, 10.2, 10.3, 10.4, 11.5, 11.7, 12.8, 12.9 \]

- **Idea:** Consider a limited number of splits such that splits “move” about the same amount of data (e.g. percentiles)
Splits for numerical attributes:

- For attribute $X^{(j)}$ we would like to consider every possible value $v \in O_j$
- Compute an approx. equi-depth histogram on D^*
 - Idea: Select buckets such that counts per bucket are equal
- Use boundary points of histogram as splits
Side note: Computing Equi-Depth

- **Goal:** Equal number of elements per bucket
 (B buckets total)
- **Construct by first** sorting **and then taking**
 $B-1$ equally-spaced splits
- **Faster construction:**
 Sample & take equally-spaced splits in the sample
 - Nearly equal buckets
PLANET: Components

(1) Master Node
(2) MapReduce **Initialization** (run once first)
(3) MapReduce **FindBestSplit** (run multiple times)
(4) MapReduce **InMemoryBuild** (run once last)
FindBestSplit

- **Goal:** For a particular split node \(n \) find attribute \(X^{(j)} \) and value \(v \) that maximize Purity:

 \[|D| \cdot Var(D) - (|D_L| \cdot Var(D_L) + |D_R| \cdot Var(D_R)) \]

 - \(D \) ... training data \((x_i, y_i)\) reaching the node \(n \)
 - \(D_L \) ... training data \(x_i \), where \(x_i^{(j)} < v \)
 - \(D_R \) ... training data \(x_i \), where \(x_i^{(j)} \geq v \)

 \[Var(D) = \frac{1}{n} \sum_{i \in D} y_i^2 - \left(\frac{1}{n} \sum_{i \in D} y_i \right)^2 \]
FindBestSplit

To compute Purity we need

\[\text{Var}(D) = \frac{1}{n} \sum_{i \in D} y_i^2 - \left(\frac{1}{n} \sum_{i \in D} y_i \right)^2 \]

Important observation: Variance can be computed from sufficient statistics: \(N, S=\Sigma y_i, Q=\Sigma y_i^2 \)

- Each **Mapper** \(m \) processes subset of data \(D_m \), and computes \(N_m, S_m, Q_m \) for its own \(D_m \)
- **Reducer** combines the statistics and computes global variance and then Purity:

\[\text{Var}(D) = \frac{1}{\sum_m N_m} \sum_m Q_m - \left(\frac{1}{\sum_m N_m} \sum_m S_m \right)^2 \]
FindBestSplit: Map

- **Mapper:**
 - Initialized by loading results of **Initialization task**
 - **Current model** (to find which node each datapoint \(x_i \) ends up)
 - **Attribute metadata** (all split points for each attribute)
 - Load the set of **candidate splits**: \{ \((\text{node}, \text{attribute}, \text{value}) \) \}
 - For each data record run the **Map algorithm**:
 - For each tree node store statistics of the data entering the node and at the end emit (to all reducers):
 - \(<\text{NodeID}, \{ S=\Sigma y, Q=\Sigma y^2, N=\Sigma 1 \}>\)
 - For each split store statistics and at the end emit:
 - \(<\text{SplitID}, \{ S, Q, N \}>\)
 - \(\text{SplitID} = (\text{node id, attribute } X^{(j)}, \text{split value } v)\)
FindBestSplit: Reducer

Reducer:

- **(1)** Load all the `<NodeID, List {S_m, Q_m, N_m}>` pairs and **aggregate** the per node statistics
- **(2)** For all the `<SplitID, List {S_m, Q_m, N_m}>` **aggregate** the statistics

- \[\text{Var}(D) = \frac{1}{\sum_m N_m} \sum_m Q_m - \left(\frac{1}{\sum_m N_m} \sum_m S_m \right)^2 \]

- For each NodeID, output the best split found
Overall system architecture

- **Master gives the mappers:**
 1. Tree
 2. Set of nodes
 3. Set of candidate splits

Nodes: F, G, H, I

Split candidates:
- (G, X^{(1)}, v^{(1)})
- (G, X^{(2)}, v^{(2)})
- (H, X^{(3)}, v^{(3)})
- (H, X^{(4)}, v^{(4)})

Mappers output 2 types of key-value pairs:
- (NodeID: S, Q, N)
- (Split: S, Q, N)

For every (NodeID, Split)
Reducer(s) compute the Purity and output the best split
Overall system architecture

- **Example:** Need to split nodes F, G, H, I
- **Map and Reduce:**
 - **FindBestSplit::Map** (each mapper)
 - Load the current model M
 - Drop every example x_i down the tree
 - If it hits $F/G/H/I$, update in-memory hash tables:
 - For each node: $T_n: (\text{Node}) \rightarrow \{S, Q, N\}$
 - For each $(\text{Split}, \text{Node})$: $T_{n,j,s}: (\text{Node, Attribute, SplitValue}) \rightarrow \{S, Q, N\}$
 - **Map::Finalize:** output the key-value pairs from above hashtables
 - **FindBestSplit::Reduce** (each reducer)
 - Collect:
 - $T_1: \langle \text{Node, List\{S, Q, N\}} \rangle \rightarrow \langle \text{Node, \{\Sigma S, \Sigma Q, \Sigma N\}} \rangle$
 - $T_2: \langle (\text{Node, Attr., Val}), \text{List\{S, Q, N\}} \rangle \rightarrow \langle (\text{Node, Attr., Val}), \{\Sigma S, \Sigma Q, \Sigma N\} \rangle$
 - Compute Purity for each node using T_1, T_2
 - Return **best split** to Master (which then decides on globally best split)
Back to the Master

- Collects outputs from FindBestSplit reducers
 `<Split.NodeID, Attribute, Value, Purity>`

- For each node decides the best split
 - If data in D_L/D_R is small enough, later run a MapReduce job `InMemoryBuild` on the node
 - Else run MapReduce `FindBestSplit` job for both nodes
Decision Trees: Conclusion
Decision Trees

- **Characteristics**
 - Classification & Regression
 - Multiple (~10) classes
 - Real valued and categorical features
 - Few (hundreds) of features
 - Usually dense features
 - Complicated decision boundaries
 - Early stopping to avoid overfitting!

- **Example applications**
 - User profile classification
 - Landing page bounce prediction
Decision Trees

- Decision trees are the single most popular data mining tool:
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap
 - Easy to parallelize
 - It’s possible to mitigate overfitting (i.e., with ensemble methods or early stopping)
 - They do classification as well as regression!
Learning Ensembles

- Learn multiple trees and combine their predictions
 - Gives better performance in practice

- Bagging:
 - Learns multiple trees over independent samples of the training data
 - For a dataset D on n data points: Create dataset D' of n points but sample from D with replacement
 - Dataset D' will include duplicate data points
 - Predictions from each tree are averaged to compute the final model prediction
Bagging Decision Trees

Random Forest

Tree-1
Class-A

Tree-2
Class-B

Tree-n
Class-B

Instance

Majority-Voting

Final-Class
Improvement: Random Forests

- Train a **Bagged Decision Tree**
- But use a modified tree learning algorithm that selects (at each candidate split) a random subset of the features
 - If we have d features, consider \sqrt{d} random features

- **This is called: Feature bagging**
 - **Benefit:** Breaks correlation between trees
 - Otherwise, if one feature is very strong predictor, then every tree will select it, causing trees to be correlated.

- **Random Forests achieve state-of-the-art results in many classification problems!**