Recommender Systems: Latent Factor Models

CS547 Machine Learning for Big Data
Tim Althoff
The Netflix Prize

- **Training data**
 - 100 million ratings, 480,000 users, 17,770 movies
 - 6 years of data: 2000-2005

- **Test data**
 - Last few ratings of each user (2.8 million)
 - **Evaluation criterion**: Root Mean Square Error (RMSE) = \(\sqrt{\frac{1}{|R|} \sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2} \)
 - Netflix’s system RMSE: 0.9514

- **Competition**
 - 2,700+ teams
 - **$1 million** prize for 10% improvement on Netflix
Competition Structure

Labels known publicly

Training Data

100 million ratings

Labels only known to Netflix

Held-Out Data

3 million ratings

1.5m ratings

1.5m ratings

Quiz Set: scores posted on leaderboard

Test Set: scores known only to Netflix

Scores used in determining final winner
The Netflix Utility Matrix R

Matrix R

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

480,000 users

17,700 movies

480,000 users

17,700 movies
Utility Matrix R: Evaluation

Matrix R

- **480,000 users**
- **17,700 movies**
- **Training Data Set**
- **Test Data Set**

RMSE

$$\text{RMSE} = \frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2}$$

- \hat{r}_{xi}: Predicted rating of user x on item i
- r_{xi}: True rating of user x on item i

- **True rating of user x on item i**
- **Predicted rating**

$R_{3,6}$
BellKor Recommender System

- The winner of the Netflix Challenge
- **Multi-scale modeling of the data:** Combine top level, “regional” modeling of the data, with a refined, local view:
 - **Global:**
 - Overall deviations of users/movies
 - **Factorization:**
 - Addressing “regional” effects
 - **Collaborative filtering:**
 - Extract local patterns
Modeling Local & Global Effects

- **Global:**
 - Mean movie rating: 3.7 stars
 - *The Sixth Sense* is 0.5 stars above avg.
 - Joe rates 0.2 stars below avg.
 \[\Rightarrow \text{Baseline estimation:} \]
 \[
 \text{Joe will rate } \textit{The Sixth Sense} \text{ 4 stars}
 \]
 - That is 4 = 3.7+0.5-0.2

- **Local neighborhood (CF/NN):**
 - Joe didn’t like related movie *Signs*
 \[\Rightarrow \text{Final estimate:} \]
 \[
 \text{Joe will rate } \textit{The Sixth Sense} \text{ 3.8 stars}
 \]
Recap: Collaborative Filtering (CF)

- The earliest and the most popular collaborative filtering method
- Derive unknown ratings from those of “similar” movies (item-item variant)
- Define similarity metric \(s_{ij} \) of items \(i \) and \(j \)
- Select \(k \)-nearest neighbors, compute the rating
 - \(N(i; x) \): items most similar to \(i \) that were rated by \(x \)

\[
\hat{r}_{xi} = \frac{\sum_{j \in N(i; x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i; x)} s_{ij}}
\]

- \(s_{ij} \): similarity of items \(i \) and \(j \)
- \(r_{xj} \): rating of user \(x \) on item \(j \)
- \(N(i; x) \): set of items similar to item \(i \) that were rated by \(x \)
In practice we get better estimates if we model deviations:

\[
\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N(i; x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i; x)} s_{ij}}
\]

Baseline estimate for \(r_{xi} \):

\[
b_{xi} = \mu + b_{x} + b_{i}
\]

- \(\mu \) = overall mean rating
- \(b_{x} \) = rating deviation of user \(x \)
 = (avg. rating of user \(x \)) – \(\mu \)
- \(b_{i} \) = (avg. rating of movie \(i \)) – \(\mu \)

Problems/Issues:
1) Similarity metrics are “arbitrary”
2) Pairwise similarities neglect interdependencies among users
3) Taking a weighted average can be restricting

Solution: Instead of \(s_{ij} \) use \(w_{ij} \) that we estimate directly from data
Idea: Interpolation Weights w_{ij}

- Use a **weighted sum** rather than **weighted avg.**:

$$\hat{r}_{xi} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- **A few notes:**
 - $N(i; x)$... set of movies rated by user x that are similar to movie i
 - w_{ij} is the **interpolation weight** (some real number)
 - Note, we allow: $\sum_{j \in N(i;x)} w_{ij} \neq 1$
 - w_{ij} models interaction between pairs of movies (it does not depend on user x)
Idea: Interpolation Weights w_{ij}

- $\hat{r}_{xi} = b_{xi} + \sum_{j \in N(i,x)} w_{ij} (r_{xj} - b_{xj})$
- How to set w_{ij}?
 - Remember, error metric is: $\frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2}$
 - or equivalently $\text{SSE}: \sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2$
 - Find w_{ij} that minimize SSE on training data!
 - Models relationships between item i and its neighbors j
 - w_{ij} can be learned/estimated based on x and all other users that rated i

Why is this a good idea?
Goal: Make good recommendations

- Quantify goodness using **RMSE:** Lower RMSE \Rightarrow better recommendations
- Really want to make good recommendations on items that user has not yet seen. *Can’t really do this!*

- Let’s set build a system such that it works well on known (user, item) ratings

 And **hope** the system will also predict well the unknown ratings
Recommendations via Optimization

- **Idea:** Let’s set values w such that they work well on known (user, item) ratings
- **How to find such values w?**
 - **Idea:** Define an objective function and solve the optimization problem
- Find w_{ij} that minimize $\text{SSE on training data}$!

\[
J(w) = \sum_{x,i \in R} \left(b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right) - r_{xi}^2
\]

- Think of w as a vector of numbers
A simple way to minimize a function $f(x)$:

- Compute the derivative $\nabla f(x)$
- Start at some point y and evaluate $\nabla f(y)$
- Make a step in the reverse direction of the gradient: $y = y - \nabla f(y)$
- Repeat until convergence
Interpolation Weights

- We have the optimization problem, now what?

- Gradient descent:
 - Iterate until convergence: \(w \leftarrow w - \eta \nabla_w J \)
 \(\eta \) … learning rate

where \(\nabla_w J \) is the gradient (derivative evaluated on data):

\[
\nabla_w J = \left[\frac{\partial J(w)}{\partial w_{ij}} \right] = 2 \sum_{x,i \in R} \left(\left[b_{xi} + \sum_{k \in N(i;x)} w_{ik}(r_{xk} - b_{xk}) \right] - r_{xi} \right) (r_{xj} - b_{xj})
\]

for \(j \in \{N(i; x), \forall i, \forall x \} \)

else \(\frac{\partial J(w)}{\partial w_{ij}} = 0 \)

- Note: We fix movie \(i \), go over all \(r_{xi} \), for every movie \(j \in N(i; x) \), we compute \(\frac{\partial J(w)}{\partial w_{ij}} \)

while \(|w_{\text{new}} - w_{\text{old}}| > \varepsilon \):

\[
\begin{align*}
W_{\text{old}} &= W_{\text{new}} \\
W_{\text{new}} &= W_{\text{old}} - \eta \cdot \nabla W_{\text{old}}
\end{align*}
\]
Interpolation Weights

- So far: \(\hat{r}_{xi} = b_{xi} + \sum_{j \in N(i; x)} w_{ij} (r_{xj} - b_{xj}) \)
 - Weights \(w_{ij} \) derived based on their roles; \textbf{no use of an arbitrary similarity metric} (\(w_{ij} \neq s_{ij} \))
 - Explicitly account for interrelationships among the neighboring movies
- \textbf{Next: Latent factor model}
 - Extract “regional” correlations
Performance of Various Methods

Global average: 1.1296
User average: 1.0651
Movie average: 1.0533
Netflix: 0.9514

Basic Collaborative filtering: 0.94
CF+Biases+learned weights: 0.91
Grand Prize: 0.8563
Latent Factor Models (e.g., SVD)

The Color Purple
The Princess Diaries
The Lion King
Ocean’s 11
Dumb and Dumber

Sense and Sensibility
Serious

Braveheart
Lethal Weapon

Geared towards females
Geared towards males

Funny
Independence Day

4/22/21
Latent Factor Models

- “SVD” on Netflix data: \(R \approx Q \cdot P^T \)

For now let’s assume we can approximate the rating matrix \(R \) as a product of “thin” \(Q \cdot P^T \)

- \(R \) has missing entries but let’s ignore that for now!
 - Basically, we want the reconstruction error to be small on known ratings and we don’t care about the values on the missing ones

For now let’s assume we can approximate the rating matrix \(R \) as a product of “thin” \(Q \cdot P^T \)
Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

\[
\hat{r}_{xi} = q_i \cdot p_x = \sum_f q_{if} \cdot p_{xf}
\]

$q_i = \text{row } i \text{ of } Q$

$p_x = \text{column } x \text{ of } P^T$
Ratings as Products of Factors

- How to estimate the missing rating of user x for item i?

$$\hat{r}_{xi} = q_i \cdot p_x = \sum_f q_{if} \cdot p_{xf}$$

$q_i = \text{row } i \text{ of } Q$

$p_x = \text{column } x \text{ of } P^T$
Ratings as Products of Factors

How to estimate the missing rating of user \(x \) for item \(i \)?

\[
\hat{r}_{xi} = q_i \cdot p_x = \sum_f q_{if} \cdot p_{xf}
\]

\(q_i = \text{row } i \text{ of } Q \)
\(p_x = \text{column } x \text{ of } P^T \)
Latent Factor Models

The Color Purple

The Princess Diaries

The Lion King

Ocean’s 11

Lethal Weapon

Braveheart

Sense and Sensibility

Independent Day

Funny

Geared towards females

Geared towards males

Factor 1

Factor 2
Latent Factor Models

The Color Purple
Sense and Sensibility
Geared towards females

The Princess Diaries

Serious
Factor 1

Geared towards males

The Lion King

Factor 2

Funny

Ocean's 11

Lethal Weapon

Braveheart

Dumb and Dumber

Independence Day
Recap: SVD

- **Remember SVD:**
 - \(A \): Input data matrix
 - \(U \): Left singular vecs
 - \(V \): Right singular vecs
 - \(\Sigma \): Singular values

- So in our case:
 "SVD" on Netflix data: \(R \approx Q \cdot P^T \)

\[
A = R, \quad Q = U, \quad P^T = \Sigma \cdot V^T
\]

\[
\hat{r}_{xi} = q_i \cdot p_x
\]
SVD: More good stuff

- We already know that SVD gives minimum reconstruction error (Sum of Squared Errors):

\[
\min_{U,V,\Sigma} \sum_{i,j \in A} (A_{ij} - [U \Sigma V^T]_{ij})^2
\]

- Note two things:
 - **SSE** and **RMSE** are monotonically related:
 - \(RMSE = \frac{1}{c} \sqrt{SSE} \) Great news: SVD is minimizing RMSE!
 - **Complication:** The sum in SVD error term is over all entries (no-rating is interpreted as zero-rating). But our \(R \) has missing entries!
Latent Factor Models

SVD isn’t defined when entries are missing!

Use specialized methods to find \(P, Q \)

\[
\min_{P,Q} \sum_{(i,x) \in \mathbb{R}} \left(r_{xi} - q_i \cdot p_x \right)^2
\]

\(\hat{r}_{xi} = q_i \cdot p_x \)

Note:
- We don’t require cols of \(P, Q \) to be orthogonal/unit length
- \(P, Q \) map users/movies to a latent space
- This was the most popular model among Netflix contestants
Finding the Latent Factors
Our goal is to find P and Q such that:

$$\min_{P,Q} \sum_{(i,x) \in R} (r_{xi} - q_i \cdot p_x)^2$$
Back to Our Problem

- **Want to minimize SSE for unseen test data**
- **Idea:** Minimize SSE on **training data**
 - Want large k (# of factors) to capture all the signals
 - But, **SSE on test data** begins to rise for $k > 2$

- This is a classical example of **overfitting**:
 - With too much freedom (too many free parameters) the model starts fitting noise
 - That is, the model fits too well the training data and is thus **not generalizing** well to unseen test data
Dealing with Missing Entries

- To solve overfitting we introduce regularization:
 - Allow rich model where there is sufficient data
 - Shrink aggressively where data is scarce

\[
\min_{P,Q} \sum_{\text{training}} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_x \|p_x\|^2 + \lambda_2 \sum_i \|q_i\|^2 \right]
\]

\(\lambda_1, \lambda_2 \ldots\) user set regularization parameters

Note: We do not care about the absolute ("raw") value of the objective function, but we care about P,Q that achieve the minimum of the objective.
The Effect of Regularization

\[\min_{P, Q} \sum_{\text{training}} (r_{xi} - q_{i} p_{x})^2 + \lambda \left[\sum_{x} \| p_{x} \|^2 + \sum_{i} \| q_{i} \|^2 \right] \]

\[\min_{\text{factors}} \text{"error"} + \lambda \text{"length"} \]

Geared towards females

The Color Purple

Serious

Amedeus

Sense and Sensibility

The Princess Diaries

Geared towards males

Braveheart

Lethal Weapon

Ocean's 11

The Lion King

Independence Day

Dumb and Dumber

Factor 1

Factor 2

Funny

4/22/21

The Effect of Regularization

Factor 1

Factor 2

The Color Purple

Sense and Sensibility

The Princess Diaries

The Lion King

Ocean’s 11

Lethal Weapon

Braveheart

Geared towards females

Geared towards males

serious

funny

$\min_{P,Q} \sum_{i=1}^{n} (r_{xi} - q_{xi} p_x)^2 + \lambda \left[\sum_x ||p_x||^2 + \sum_i ||q_i||^2 \right]$

$\min_{\text{factors}} \text{“error”} + \lambda \text{“length”}$
The Effect of Regularization

Geared towards females

The Color Purple

Sense and Sensibility

The Princess Diaries

Amadeus

Ocean’s 11

Braveheart

Lethal Weapon

Dumb and Dumber

Geared towards males

The Lion King

Independence Day

The Effect of Regularization

<table>
<thead>
<tr>
<th>Movie</th>
<th>Factor 1</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Color Purple</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Sense and Sensibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Princess Diaries</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>The Lion King</td>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Braveheart</td>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Lethal Weapon</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Dumb and Dumber</td>
<td></td>
<td>↓</td>
</tr>
</tbody>
</table>

\[
\min_{P,Q} \sum_{i} (r_{xi} - q_{i}p_{x})^2 + \lambda \left[\sum_{x} \|p_{x}\|^2 + \sum_{i} \|q_{i}\|^2 \right]
\]

\[
\min_{factors} \text{“error”} + \lambda \text{“length”}
\]

4/22/21
The Effect of Regularization

The Color Purple
Sense and Sensibility
Ocean’s 11
The Lion King
The Princess Diaries

Factor 1
Factor 2
Geared towards females
Geared towards males
serious
funny

4/22/21
Stochastic Gradient Descent

- Want to find matrices P and Q:

$$\min_{P,Q} \sum_{i \in \text{training}} (r_{xi} - q_{i} p_{x})^2 + \left[\lambda_1 \sum_{x} \|p_{x}\|^2 + \lambda_2 \sum_{i} \|q_{i}\|^2 \right]$$

- Gradient descent:
 - Initialize P and Q (using SVD, pretend missing ratings are 0)
 - Do gradient descent:
 - $P \leftarrow P - \eta \cdot \nabla P$
 - $Q \leftarrow Q - \eta \cdot \nabla Q$
 - where ∇Q is gradient/derivative of matrix Q:
 $\nabla Q = [\nabla q_{if}]$ and $\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_{i} p_{x}) p_{xf} + 2\lambda_2 q_{if}$
 - Here q_{if} is entry f of row q_{i} of matrix Q
 - Observation: Computing gradients is slow!
Stochastic Gradient Descent

- **Gradient Descent (GD) vs. Stochastic GD**
 - **Observation:** \(\nabla Q = [\nabla q_{if}] \) where
 \[
 \nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_{if} p_{xf})p_{xf} + 2\lambda q_{if} = \sum_{x,i} \nabla Q(r_{xi})
 \]
 - Here \(q_{if} \) is entry \(f \) of row \(q_i \) of matrix \(Q \)
 - **Q**: \(Q \leftarrow Q - \eta \nabla Q = Q - \eta \left[\sum_{x,i} \nabla Q(r_{xi}) \right] \)
 - **Idea:** Instead of evaluating gradient over all ratings evaluate it for each individual rating and make a step
 - **GD:** \(Q \leftarrow Q - \eta \left[\sum_{x,i} \nabla Q(r_{xi}) \right] \)
 - **SGD:** \(Q \leftarrow Q - \mu \nabla Q(r_{xi}) \)
 - **Faster convergence!**
 - Need more steps but each step is computed much faster
SGD vs. GD

- Convergence of GD vs. SGD

GD improves the value of the objective function at every step. SGD improves the value but in a “noisy” way. GD takes fewer steps to converge but each step takes much longer to compute. In practice, SGD is much faster!
Extending Latent Factor Model to Include Biases
Modeling Biases and Interactions

- **User bias**
- **Movie bias**
- **User-movie interaction**

Global: Baseline predictor
- Separates users and movies
- Benefits from insights into user’s behavior
- Among the main practical contributions of the competition

Local: User-Movie interaction
- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations

- μ = overall mean rating
- b_x = bias of user x
- b_i = bias of movie i
Baseline Predictor

- We have expectations on the rating by user x of movie i, even without estimating x’s attitude towards movies like i

- Rating scale of user x
- Values of other ratings user gave recently (day-specific mood, anchoring, multi-user accounts)
- (Recent) popularity of movie i
- Selection bias; related to number of ratings user gave on the same day (“frequency”)
Putting It All Together

\[r_{xi} = \mu + b_x + b_i + q_i \cdot p_x \]

- **Example:**
 - Mean rating: \(\mu = 3.7 \)
 - You are a critical reviewer: your mean rating is 1 star lower than the mean: \(b_x = -1 \)
 - Star Wars gets a mean rating of 0.5 higher than average movie: \(b_i = +0.5 \)
 - Predicted rating for you on Star Wars:
 \[= 3.7 - 1 + 0.5 = 3.2 \] (before user movie interaction)
Fitting the New Model

- Solve:

\[
\min_{Q,P} \sum_{(x,i) \in R} \left(r_{xi} - (\mu + b_x + b_i + q_i p_x) \right)^2
\]

- Note: Both biases \(b_x, b_i \) as well as interactions \(q_i, p_x \) are treated as parameters (and we learn them).

- Stochastic gradient decent to find parameters

 - \(\lambda \) is selected via grid-search on a validation set
Performance of Various Methods

Global average: 1.1296
User average: 1.0651
Movie average: 1.0533
Netflix: 0.9514
Basic Collaborative filtering: 0.94
CF with learned weights: 0.91
Latent factors: 0.90
Latent factors + Biases: 0.89
Grand Prize: 0.8563
The Netflix Challenge: 2006-09
Temporal Biases Of Users

- **Sudden rise in the average movie rating** (early 2004)
 - Improvements in Netflix
 - GUI improvements
 - Meaning of rating changed

- **Movie age**
 - Users prefer new movies without any reasons
 - Older movies that are rated seem inherently better than newer ones

[Y. Koren, Collaborative filtering with temporal dynamics, KDD '09]
Temporal Biases & Factors

- **Original model:**
 \[r_{xi} = \mu + b_x + b_i + q_i \cdot p_x \]

- **Add time dependence to biases:**
 \[r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x \]
 - Make parameters \(b_x \) and \(b_i \) to depend on time
 - (1) Parameterize time-dependence by linear trends
 - (2) Each bin corresponds to 10 consecutive weeks
 \[b_i(t) = b_i + b_{i, Bin(t)} \]

- **Add temporal dependence to factors**
 - \(p_x(t) \)... user preference vector on day \(t \)
Performance of Various Methods

Global average: 1.1296
User average: 1.0651
Movie average: 1.0533
Netflix: 0.9514

Basic Collaborative filtering: 0.94
Collaborative filtering++: 0.91
Latent factors: 0.90
Latent factors+Biases: 0.89
Latent factors+Biases+Time: 0.876
Grand Prize: 0.8563

Still no prize! 😞
Getting desperate.
Try a “kitchen sink” approach!
The big picture

Solution of BellKor's Pragmatic Chaos

All developed CF models

Latent User and Movie Features

Probe Blending

200 blends

Probe Blending

30 blends

Linear Blend 10.09% improvement
Standing on June 26th 2009

June 26th submission triggers 30-day “last call”
The Last 30 Days

- **Ensemble team formed**
 - Group of other teams on leaderboard forms a new team
 - Relies on combining their models
 - Quickly also get a qualifying score over 10%

- **BellKor**
 - Continue to get small improvements in their scores
 - Realize they are in direct competition with team Ensemble

- **Strategy**
 - Both teams carefully monitoring the leader board
 - Only sure way to check for improvement is to submit a set of predictions
 - This alerts the other team of your latest score
24 Hours from the Deadline

- **Submissions limited to 1 a day**
 - Only 1 final submission could be made in the last 24h

- **24 hours before deadline...**
 - **BellKor** team member in Austria notices (by chance) that **Ensemble** posts a score that is slightly better than BellKor’s

- **Frantic last 24 hours for both teams**
 - Much computer time on final optimization
 - Carefully calibrated to end about **an hour before deadline**

- **Final submissions**
 - **BellKor** submits a little early (on purpose), 40 mins before deadline
 - **Ensemble** submits their final entry 20 mins later
 - ….and everyone waits....
<table>
<thead>
<tr>
<th>Rank</th>
<th>Team Name</th>
<th>Best Test Score</th>
<th>% Improvement</th>
<th>Best Submit Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BellKor's Pragmatic Chaos</td>
<td>0.8567</td>
<td>10.06</td>
<td>2009-07-26 18:18:28</td>
</tr>
<tr>
<td>2</td>
<td>The Ensemble</td>
<td>0.8567</td>
<td>10.06</td>
<td>2009-07-26 18:38:22</td>
</tr>
<tr>
<td>3</td>
<td>Grand Prize Team</td>
<td>0.8562</td>
<td>9.88</td>
<td>2009-07-10 00:00:00</td>
</tr>
<tr>
<td>4</td>
<td>Opera Solutions and Vandelay United</td>
<td>0.8588</td>
<td>9.84</td>
<td>2009-07-10 01:12:31</td>
</tr>
<tr>
<td>5</td>
<td>Vandelay Industries I</td>
<td>0.8591</td>
<td>9.81</td>
<td>2009-07-10 00:32:20</td>
</tr>
<tr>
<td>6</td>
<td>PragmaticTheory</td>
<td>0.8594</td>
<td>9.77</td>
<td>2009-06-24 12:06:56</td>
</tr>
<tr>
<td>7</td>
<td>BellKor in BigChaos</td>
<td>0.8601</td>
<td>9.70</td>
<td>2009-05-13 08:14:09</td>
</tr>
<tr>
<td>8</td>
<td>Dace</td>
<td>0.8612</td>
<td>9.59</td>
<td>2009-07-24 17:18:43</td>
</tr>
<tr>
<td>9</td>
<td>Feeds2</td>
<td>0.8622</td>
<td>9.48</td>
<td>2009-07-12 13:11:51</td>
</tr>
<tr>
<td>10</td>
<td>BigChaos</td>
<td>0.8623</td>
<td>9.47</td>
<td>2009-04-07 12:33:59</td>
</tr>
<tr>
<td>11</td>
<td>Opera Solutions</td>
<td>0.8624</td>
<td>9.46</td>
<td>2009-07-26 17:19:11</td>
</tr>
<tr>
<td>12</td>
<td>BellKor</td>
<td>0.8624</td>
<td>9.46</td>
<td></td>
</tr>
</tbody>
</table>

Progress Prize 2008 - RMSE = 0.8627 - Winning Team: BellKor in BigChaos

<table>
<thead>
<tr>
<th>Rank</th>
<th>Team Name</th>
<th>Best Test Score</th>
<th>% Improvement</th>
<th>Best Submit Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>xiangliang</td>
<td>0.8642</td>
<td>9.27</td>
<td>2009-07-15 14:53:22</td>
</tr>
<tr>
<td>14</td>
<td>Gravity</td>
<td>0.8643</td>
<td>9.26</td>
<td>2009-04-22 18:31:32</td>
</tr>
<tr>
<td>15</td>
<td>Ces</td>
<td>0.8651</td>
<td>9.18</td>
<td>2009-06-21 19:24:53</td>
</tr>
<tr>
<td>16</td>
<td>Invisible Ideas</td>
<td>0.8653</td>
<td>9.15</td>
<td>2009-07-15 15:53:04</td>
</tr>
<tr>
<td>17</td>
<td>Just a guy in a garage</td>
<td>0.8662</td>
<td>9.06</td>
<td>2009-05-24 10:02:54</td>
</tr>
<tr>
<td>18</td>
<td>J Dennis Su</td>
<td>0.8666</td>
<td>9.02</td>
<td>2009-03-07 17:16:17</td>
</tr>
<tr>
<td>19</td>
<td>Craig Carmichael</td>
<td>0.8666</td>
<td>9.02</td>
<td>2009-07-25 16:00:54</td>
</tr>
<tr>
<td>20</td>
<td>acmehill</td>
<td>0.8668</td>
<td>9.00</td>
<td>2009-03-21 16:20:50</td>
</tr>
</tbody>
</table>

Progress Prize 2007:
Million $ Awarded Sept 21st 2009
What’s the moral of the story?

Submit early! 😊
Acknowledgments

- Some slides and plots borrowed from Yehuda Koren, Robert Bell and Padhraic Smyth, Jure Leskovec
- **Further reading:**
 - Y. Koren, Collaborative filtering with temporal dynamics, KDD ’09