
Ed Discussion Board

Recitation session:
¡ Review of linear algebra

§ Location: Thursday, April 8, 1-3 PM, Zoom

Deadlines today, 11:59 PM:
¡ Colab 0, Colab 1

Deadlines next Thu, 11:59 PM:
¡ HW1, Colab 2

How to find teammates for project?
¡ Ed Discussion Board
¡ Make sure you have a good dataset accessible

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 1

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

http://cs246.stanford.edu

¡ Task: Given a large number (N in the millions or
billions) of documents, find “near duplicates”

¡ Problem:
§ Too many documents to compare all pairs

¡ Solution: Hash documents so that similar
documents hash into the same bucket
§ Documents in the same bucket are then

candidate pairs whose similarity is then evaluated

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 3

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 4

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Min-Hash-
ing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

¡ A k-shingle (or k-gram) is a sequence of k
tokens that appears in the document
§ Example: k=2; D1 = abcab

Set of 2-shingles: C1 = S(D1) = {ab, bc, ca}
¡ Represent a doc by a set of hash values of its

k-shingles
¡ A natural similarity measure is then the

Jaccard similarity:
sim(D1, D2) = |C1ÇC2|/|C1ÈC2|
§ Similarity of two documents is the Jaccard similarity of

their shingles
4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 6

¡ Min-Hashing: Convert large sets into short signatures,
while preserving similarity: Pr[h(C1) = h(C2)] = sim(D1, D2)

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 7

Similarities of columns and
signatures (approx.) match!

1-3 2-4 1-2 3-4
Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

5

7

6

3

1

2

4

4

5

1

6

7

3

2

0101

0101

1010

1010

1010

1001

0101
Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation p

1212

1412

2121

¡ Hash columns of the signature matrix M:
Similar columns likely hash to same bucket
§ Divide matrix M into b bands of r rows (M=b·r)
§ Candidate column pairs are those that hash

to the same bucket for ≥ 1 band

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 8

r rows

b bands

Buckets

Matrix M
Similarity

Pr
ob

. o
f s

ha
rin

g
≥

1
bu

ck
et

Th
re

sh
ol

d
s

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 9

Points
Hash
func.

Signatures: short
integer signatures that
reflect point similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of
signatures that
we need to test
for similarity

Design a locality sensitive
hash function (for a given

distance metric)

Apply the
“Bands” technique

¡ The S-curve is where the “magic” happens

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 10

Similarity t of two sets

Pr
ob

ab
ilit

y
of

 s
ha

rin
g

≥
1

bu
ck

et

Remember:
Probability of
equal hash-values
= similarity

This is what 1 hash-code gives you
Pr[hp(C1) = hp(C2)] = sim(D1, D2)

No chance
if t<s

Probability=1
if t>s

This is what we want!
How to get a step-function?

By choosing r and b!

Th
re

sh
ol

d
s

Similarity t of two sets

¡ Remember: b bands, r rows/band
¡ Let sim(C1 , C2) = s
What’s the prob. that at least 1 band is equal?
¡ Pick some band (r rows)
§ Prob. that elements in a single row of

columns C1 and C2 are equal = s
§ Prob. that all rows in a band are equal = sr

§ Prob. that some row in a band is not equal = 1 - sr

¡ Prob. that all bands are not equal = (1 - sr)b
¡ Prob. that at least 1 band is equal = 1 - (1 - sr)b

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 11

P(C1, C2 is a candidate pair) = 1 - (1 - sr)b

¡ Picking r and b to get the best S-curve
§ 50 hash-functions (r=5, b=10)

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity, s

Pr
ob

. s
ha

rin
g

a
bu

ck
et

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity

r = 1..10, b = 1

Pr
ob

(C
an

di
da

te
 p

ai
r)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

(C
an

di
da

te
 p

ai
r)

r = 1, b = 1..10

r = 5, b = 1..50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 10, b = 1..50

Similarity
prob = 1 - (1 - t r)b

Given a fixed
threshold s.

We want choose
r and b such
that the
P(Candidate
pair) has a
“step” right
around s.

Min-Hash-
ing

Signatures:
short vectors
that represent
the sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

¡ We have used LSH to find similar documents
§ More generally, we found similar columns in large

sparse matrices with high Jaccard similarity

¡ Can we use LSH for other distance measures?
§ e.g., Euclidean distances, Cosine distance
§ Let’s generalize what we’ve learned!

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 15

¡ d() is a distance metric if it is a function from pairs of points
x,y to real numbers such that:
§ 𝑑 𝑥, 𝑦 ≥ 0
§ 𝑑 𝑥, 𝑦 = 0 𝑖𝑓𝑓 𝑥 = 𝑦
§ 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
§ 𝑑 𝑥, 𝑦 ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (triangle inequality)

¡ Jaccard distance for sets = 1 - Jaccard similarity
¡ Cosine distance for vectors = angle between the vectors
¡ Euclidean distances:

§ L2 norm: d(x,y) = square root of the sum of the squares of the
differences between x and y in each dimension
§ The most common notion of “distance”

§ L1 norm: sum of absolute value of the differences in each dimension
§ Manhattan distance = distance if you travel along coordinates only

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 16

¡ For Min-Hashing signatures, we got a Min-Hash
function for each permutation of rows

¡ A “hash function” is any function that allows us
to say whether two elements are “equal”

§ Shorthand: h(x) = h(y) means “h says x and y are equal”

¡ A family of hash functions is any set of hash
functions from which we can pick one at
random efficiently
§ Example: The set of Min-Hash functions generated

from permutations of rows
4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 20

¡ Suppose we have a space S of points with
a distance metric d(x,y)

¡ A family H of hash functions is said to be
(d1, d2, p1, p2)-sensitive if for any x and y in S:

1. If d(x, y) < d1, then the probability over all hÎ H,
that h(x) = h(y) is at least p1

2. If d(x, y) > d2, then the probability over all hÎ H,
that h(x) = h(y) is at most p2

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 21

With a LS Family we can do LSH!

Critical assumption

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 22

y2

d1 d2

x

y1

For all hÎ H,
P[h(x) = h(y1)] ≥ p1
P[h(x) = h(y2)] ≤ p2

?

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 23

Pr
[h

(x
) =

 h
(y

)]

Distance d(x,y)

d1 d2

p2

p1

Small distance,
high probability

Large distance,
low probability
of hashing to
the same value

Distance
threshold t

Notice it’s a distance, not similarity,
hence the S-curve is flipped!

¡ Let:
§ S = space of all sets,
§ d = Jaccard distance,
§ H is family of Min-Hash functions for all

permutations of rows
¡ Then for any hash function hÎ H:

Pr[h(x) = h(y)] = 1 - d(x, y)

§ Simply restates theorem about Min-Hashing
in terms of distances rather than similarities

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 24

¡ Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3)-
sensitive family for S and d.

¡ For Jaccard similarity, Min-Hashing gives a
(d1,d2,(1-d1),(1-d2))-sensitive family for any d1<d2

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 25

If distance < 1/3
(so similarity ≥ 2/3)

Then probability
that Min-Hash values
agree is > 2/3

¡ Can we reproduce the
“S-curve” effect we saw
before for any LS family?

¡ The “bands” technique we learned for signature
matrices carries over to this more general setting

¡ Can do LSH with any (d1, d2, p1, p2)-sensitive
family!

¡ Two constructions:
§ AND construction like “rows in a band”
§ OR construction like “many bands”

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 26

Similarity t

Pr
ob

. o
f s

ha
rin

g
a

bu
ck

et

¡ Given family H, construct family H’ consisting
of r independent functions from H

¡ For h = [h1,…,hr] in H’, we say
h(x) = h(y) if and only if hi(x) = hi(y) for all i
§ Note this corresponds to creating a band of size r

¡ Theorem: If H is (d1, d2, p1, p2)-sensitive,
then H’ is (d1,d2, (p1)r, (p2)r)-sensitive

¡ Proof: Use the fact that hi ’s are independent

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 28

1 £ i £ r

Lowers probability for
large distances (Good)

Also lowers probability
for small distances (Bad)

¡ Independence of hash functions (HFs) really
means that the prob. of two HFs saying “yes”
is the product of each saying “yes”
§ But two particular hash functions could be highly

correlated
§ For example, in Min-Hash if their permutations agree in

the first one million entries

§ However, the probabilities in definition of a
LSH-family are over all possible members of H, H’
(i.e., average case and not the worst case)

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 29

¡ Given family H, construct family H’ consisting
of b independent functions from H

¡ For h = [h1,…,hb] in H’,
h(x) = h(y) if and only if hi(x) = hi(y) for at least 1 i

¡ Theorem: If H is (d1, d2, p1, p2)-sensitive,
then H’ is (d1, d2, 1-(1-p1)b, 1-(1-p2)b)-sensitive

¡ Proof: Use the fact that hi’s are independent

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 30

Raises probability for
small distances (Good)

Raises probability for
large distances (Bad)

¡ AND makes all probs. shrink, but by choosing r
correctly, we can make the lower prob. approach 0
while the higher does not

¡ OR makes all probs. grow, but by choosing b correctly,
we can make the higher prob. approach 1 while the
lower does not

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AND
r=1..10, b=1

P
ro

b.
 s

ha
rin

g
a

bu
ck

et

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b.
 s

ha
rin

g
a

bu
ck

et

OR
r=1, b=1..10

Similarity of a pair of items Similarity of a pair of items

¡ By choosing b and r correctly, we can make
the lower probability approach 0 while the
higher approaches 1

¡ As for the signature matrix, we can use the
AND construction followed by the OR
construction
§ Or vice-versa
§ Or any sequence of AND’s and OR’s alternating

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 32

¡ r-way AND followed by b-way OR construction
§ Exactly what we did with Min-Hashing

§ AND: If bands match in all r values hash to same bucket
§ OR: Cols that have ³ 1 common bucket à Candidate

¡ Take points x and y s.t. Pr[h(x) = h(y)] = s
§ H will make (x,y) a candidate pair with prob. s

¡ Construction makes (x,y) a candidate pair with
probability 1-(1-sr)b The S-Curve!
§ Example: Take H and construct H’ by the AND

construction with r = 4. Then, from H’, construct H’’
by the OR construction with b = 4

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 33

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 35

s p=1-(1-s4)4
.2 .0064
.3 .0320
.4 .0985
.5 .2275
.6 .4260
.7 .6666
.8 .8785
.9 .9860

r = 4, b = 4 transforms a
(.2,.8,.8,.2)-sensitive family into a
(.2,.8,.8785,.0064)-sensitive family.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
Similarity s

Pr
ob

(c
an

di
da

te
 p

ai
r)

¡ Picking r and b to get desired performance
§ 50 hash-functions (r = 5, b = 10)

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Blue area X: False Negative rate
These are pairs with sim > s but the X
fraction won’t share a band and then
will never become candidates. This
means we will never consider these
pairs for (slow/exact) similarity
calculation!
Green area Y: False Positive rate
These are pairs with sim < s but
we will consider them as candidates.
This is not too bad, we will consider
them for (slow/exact) similarity
computation and discard them.

Similarity s

Pr
ob

(C
an

di
da

te
 p

ai
r)

Th
re

sh
ol

d
s

¡ Picking r and b to get desired performance
§ 50 hash-functions (r * b = 50)

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r=2, b=25
r=5, b=10
r=10, b=5

Th
re

sh
ol

d
s

Similarity s

Pr
ob

(C
an

di
da

te
 p

ai
r)

¡ Apply a b-way OR construction followed by
an r-way AND construction

¡ Transforms similarity s (probability p)
into (1-(1-s)b)r
§ The same S-curve, mirrored horizontally and

vertically

¡ Example: Take H and construct H’ by the OR
construction with b = 4. Then, from H’,
construct H’’ by the AND construction
with r = 4

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 39

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 41

s p=(1-(1-s)4)4
.1 .0140
.2 .1215
.3 .3334
.4 .5740
.5 .7725
.6 .9015
.7 .9680
.8 .9936

The example transforms a
(.2,.8,.8,.2)-sensitive family into a
(.2,.8,.9936,.1215)-sensitive family

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
Similarity s

Pr
ob

(c
an

di
da

te
 p

ai
r)

¡ Example: Apply the (4,4) OR-AND construction
followed by the (4,4) AND-OR construction

¡ Transforms a (.2, .8, .8, .2)-sensitive family into
a (.2, .8, .9999996, .0008715)-sensitive family

§ Note this family uses 256 (=4*4*4*4) of the
original hash functions

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 42

¡ Pick any two distances d1 < d2

¡ Start with a (d1, d2, (1- d1), (1- d2))-sensitive
family

¡ Apply constructions to amplify
(d1, d2, p1, p2)-sensitive family,
where p1 is almost 1 and p2 is almost 0

¡ The closer to 0 and 1 we want to get,
the more hash functions must be used!

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 45

¡ LSH methods for other distance metrics:
§ Cosine distance: Random hyperplanes
§ Euclidean distance: Project on lines

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 47

Points
Hash
func.

Signatures: short
integer signatures that
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of
signatures that
we need to test
for similarity

Design a (d1, d2, p1, p2)-sensitive
family of hash functions (for that

particular distance metric)

Amplify the family
using AND and OR

constructions

Depends on the
distance function used

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 48

Data
Hash
func.

Signatures: short
integer signatures that
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of
signatures that
we need to test
for similarity

MinHash 1 5 1 5
2 3 1 3
6 4 6 4

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

Random
Hyperplanes -1 +1 -1 -1

+1 +1 +1 -1
-1 -1 -1 -1

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

D
oc

um
en

ts
D

at
a

po
in

ts

Candidate pairs

Candidate pairs

¡ Cosine distance = angle between vectors
from the origin to the points in question
d(A, B) = q = arccos(A×B / ǁAǁ·ǁBǁ)
§ Has range [𝟎, 𝝅] (equivalently [0,180°])
§ Can divide q by 𝝅 to have distance in range [0,1]

¡ Cosine similarity = 1-d(A,B)
§ But often defined as cosine sim: cos(𝜃) = !⋅#

! #

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 49

A

B

A×B
ǁBǁ

- Has range -1…1 for
general vectors
- Range 0..1 for
non-negative vectors
(angles up to 90°)

¡ For cosine distance, there is a technique
called Random Hyperplanes
§ Technique similar to Min-Hashing

¡ Random Hyperplanes method is a
(d1, d2, (1-d1/𝝅), (1-d2/𝝅))-sensitive family for
any d1 and d2

¡ Reminder: (d1, d2, p1, p2)-sensitive
1. If d(x,y) < d1, then prob. that h(x) = h(y) is at least p1

2. If d(x,y) > d2, then prob. that h(x) = h(y) is at most p2

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 50

¡ Each vector v determines a hash function hv
with two buckets

¡ hv(x) = +1 if v×x ³ 0; = -1 if v×x < 0

¡ LS-family H = set of all functions derived
from any vector

¡ Claim: For points x and y,
Pr[h(x) = h(y)] = 1 – d(x,y) / 𝝅

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 51

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 52

x

y

Look in the
plane of x
and y.

θ
Hyperplane
normal to v’.
Here h(x) ≠ h(y)

v’

Hyperplane
normal to v.
Here h(x) = h(y)

v

Note: what is important is that
hyperplane is outside the angle,
not that the vector is inside.

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 53

So: Prob[Red case] = θ / 𝝅
So: P[h(x)=h(y)] = 1- θ/𝜋 = 1-d(x,y)/𝜋

¡ Pick some number of random vectors, and
hash your data for each vector

¡ The result is a signature (sketch) of
+1’s and –1’s for each data point

¡ Can be used for LSH like we used the
Min-Hash signatures for Jaccard distance

¡ Amplify using AND/OR constructions

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 55

¡ Expensive to pick a random vector in M
dimensions for large M
§ Would have to generate M random numbers

¡ A more efficient approach
§ It suffices to consider only vectors v

consisting of +1 and –1 components
§ Why? Assuming data is random, then vectors of +/-1 cover

the entire space evenly (and does not bias in any way)

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 56

¡ Idea: Hash functions correspond to lines

¡ Partition the line into buckets of size a

¡ Hash each point to the bucket containing its
projection onto the line
§ An element of the “Signature” is a bucket id for

that given projection line

¡ Nearby points are always close;
distant points are rarely in same bucket

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 57

¡ “Lucky” case:
§ Points that are close

hash in the same bucket
§ Distant points end up in

different buckets

¡ Two “unlucky” cases:
§ Top: unlucky

quantization
§ Bottom: unlucky

projection
4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 58

v
v

Line

Buckets of size a
v v

v
v

v v

v
v

v
v

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 59

v v

v
v

v
v

vv

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 60

Bucket
width a

Randomly
chosen line

Points at
distance d

If d << a, then
the chance the
points are in the
same bucket is
at least 1 – d/a.

exactly 1 – d/a when the
randomly chosen line is
parallel to the line from x
to y

x

y

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 61

Bucket
width a

Points at
distance d

θ

d cos θ

If d >> a, θ must
be close to 90o
for there to be
any chance points
go to the same
bucket.

Randomly
chosen line

¡ If points are distance d < a/2, prob.
they are in same bucket ≥ 1- d/a = ½

¡ If points are distance d > 2a apart, then they
can be in the same bucket only if d cos θ ≤ a
§ cos θ ≤ ½
§ 60 < θ < 90, i.e., at most 1/3 probability

¡ Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of
hash functions for any a

¡ Amplify using AND-OR cascades

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 62

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 65

Data
Hash
func.

Signatures: short
integer signatures that
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of
signatures that
we need to test
for similarity

Design a (d1, d2, p1, p2)-sensitive
family of hash functions (for that

particular distance metric)

Amplify the family
using AND and OR

constructions

MinHash 1 5 1 5
2 3 1 3
6 4 6 4

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

Random
Hyperplanes -1 +1 -1 -1

+1 +1 +1 -1
-1 -1 -1 -1

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

D
oc

um
en

ts
D

at
a

po
in

ts

Candidate pairs

Candidate pairs

¡ Property P(h(C1)=h(C2))=sim(C1,C2) of
hash function h is the essential part of
LSH, without which we can’t do
anything

¡ LS-hash functions transform data to
signatures so that the bands technique
(AND, OR constructions) can then be
applied

4/5/21 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 66

