We are releasing HW1 today
- It is due in 2 weeks (4/15 at 23:59pm)
- The homework is long
 - Requires proving theorems as well as coding
- Please start early

Releasing Colab 0 and Colab 1 today

Recitation sessions:
- Spark Tutorial using Colab 0:
 Today, April 1, 4-6pm on Zoom
Frequent Itemset Mining & Association Rules

CS547 Machine Learning for Big Data
Tim Althoff

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING
Association Rule Discovery

Supermarket shelf management – Market-basket model:

- **Goal:** Identify items that are bought together by sufficiently many customers
- **Approach:** Process the sales data collected with barcode scanners to find dependencies among items
- **A “classic” rule:**
 - If someone buys diaper and milk, then he/she is likely to buy beer
 - Don’t be surprised if you find six-packs next to diapers!
The Market-Basket Model

- **A large set of items**
 - e.g., things sold in a supermarket
- **A large set of baskets**
 - Each basket is a small subset of items
 - e.g., the things one customer buys on one day (or “cart”)
- **Discover association rules:**
 People who bought \{x,y,z\} tend to buy \{v,w\}
 - Example applications: Amazon, Spotify, Walmart…

Input:

<table>
<thead>
<tr>
<th>Basket</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Output:

Rules Discovered:

- \{Milk\} --> \{Coke\}
- \{Diaper, Milk\} --> \{Beer\}
More generally

- A general many-to-many mapping (association) between two kinds of things
 - But we ask about connections among “items”, not “baskets”
- Items and baskets are abstract:
 - For example:
 - Items/baskets can be products/shopping basket
 - Items/baskets can be words/documents
 - Items/baskets can be basepairs/genes
 - Items/baskets can be drugs/patients
Applications – (1)

- **Items** = products; **Baskets** = sets of products someone bought in one trip to the store
- **Real market baskets:** Chain stores keep TBs of data about what customers buy together
 - Tells how typical customers navigate stores, lets them position tempting items:
 - Apocryphal story of “diapers and beer” discovery
 - Used to position potato chips between diapers and beer to enhance sales of potato chips
- **Amazon’s ‘people who bought X also bought Y’**
Applications – (2)

- **Baskets** = sentences; **Items** = documents in which those sentences appear
 - Items that appear together too often could represent plagiarism
 - Notice items do not have to be “in” baskets

- **Baskets** = patients; **Items** = drugs & side-effects
 - Has been used to detect combinations of drugs that result in particular side-effects
 - **But requires extension:** Absence of an item needs to be observed as well as presence
Outline

First: Define

- Frequent itemsets
- Association rules:
 - Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets

- Finding frequent pairs
- A-Priori algorithm
- PCY algorithm
Frequent Itemsets

- **Simplest question:** Find sets of items that appear together “frequently” in baskets
- **Support** for itemset I: Number of baskets containing all items in I
 - (Often expressed as a fraction of the total number of baskets)
- Given a **support threshold** s, then sets of items that appear in at least s baskets are called **frequent itemsets**

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Support of \{Beer, Bread\} = 2
Example: Frequent Itemsets

- **Items** = \{milk, coke, pepsi, beer, juice\}

- **Support threshold** = 3 baskets

 \[
 \begin{align*}
 B_1 &= \{m, c, b\} & B_2 &= \{m, p, j\} \\
 B_3 &= \{m, b\} & B_4 &= \{c, j\} \\
 B_5 &= \{m, p, b\} & B_6 &= \{m, c, b, j\} \\
 B_7 &= \{c, b, j\} & B_8 &= \{b, c\}
 \end{align*}
 \]

- **Frequent itemsets:** \{m\}, \{c\}, \{b\}, \{j\}, \{m,b\}, \{b,c\}, \{c,j\}.
Define: Association Rules:
If-then rules about the contents of baskets

\{i_1, i_2, \ldots, i_k\} \rightarrow j \text{ means: “if a basket contains all of } i_1, \ldots, i_k \text{ then it is likely to contain } j”

In practice there are many rules, want to find significant/interesting ones!

Confidence of association rule is the probability of } j \text{ given } I = \{i_1, \ldots, i_k\}

\[
\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}
\]
Where confidence falls short

What if everyone buys milk?

\[
\text{conf}\{\{\text{Beer}\} \rightarrow \text{Milk}\} = 1 \\
\text{conf}\{\{\text{Bread}\} \rightarrow \text{Milk}\} = 1 \\
\ldots
\text{conf}\{\{\text{Beer, Bread, Diapers}\} \rightarrow \text{Milk}\} = 1
\]

We have 100% confidence for \(I \rightarrow \text{milk} \), no matter what \(I \) we choose!

Observations

<table>
<thead>
<tr>
<th>Bread, Coke, Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beer, Bread, Milk</td>
</tr>
<tr>
<td>Beer, Coke, Diapers, Milk</td>
</tr>
<tr>
<td>Beer, Bread, Diapers, Milk</td>
</tr>
<tr>
<td>Coke, Diapers, Milk</td>
</tr>
</tbody>
</table>
Interesting Association Rules

- Not all high-confidence rules are interesting
 - The rule \(X \rightarrow \text{milk} \) may have high confidence for many itemsets \(X \), because milk is just purchased very often (independent of \(X \)) and the confidence will be high
 - **Interest** of an association rule \(I \rightarrow j \):
 abs. difference between its confidence and the fraction of baskets that contain \(j \)

 \[
 \text{Interest}(I \rightarrow j) = | \text{conf}(I \rightarrow j) - \Pr[j] |
 \]
 - Interesting rules are those with high positive or negative interest values (usually above 0.5)
Example: Confidence and Interest

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- **Association rule:** \(\{m, b\} \rightarrow c \)
 - **Support** = 2
 - **Confidence** = \(\frac{2}{4} = 0.5 \)
 - **Interest** = \(|0.5 - \frac{5}{8}| = \frac{1}{8} \)
 - Item \(c \) appears in \(\frac{5}{8} \) of the baskets
 - The rule is not very interesting!
Association Rule Mining

- **Problem:** Find all association rules with support $\geq s$ and confidence $\geq c$

- **Note:** Support of an association rule is the support of the set of items in the rule (left and right side)

- **Hard part:** Finding the frequent itemsets!

 - If $\{i_1, i_2, \ldots, i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, \ldots, i_k\}$ and $\{i_1, i_2, \ldots, i_k, j\}$ will be “frequent”

 $$\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}$$
Mining Association Rules

- **Step 1:** Find all frequent itemsets I (we will explain this next)
- **Step 2:** Rule generation
 - For every subset A of I, generate a rule $A \rightarrow I \setminus A$
 - Since I is frequent, A is also frequent (monotonicity)
 - **Variant 1:** Single pass to compute the rule confidence
 - $\text{confidence}(A,B \rightarrow C,D) = \frac{\text{support}(A,B,C,D)}{\text{support}(A,B)}$
 - **Variant 2:**
 - **Observation:** If $A,B,C \rightarrow D$ is below confidence, so is $A,B \rightarrow C,D$
 - Can generate “bigger” rules from smaller ones!
 - **Output the rules above the confidence threshold**
Example

$B_1 = \{m, c, b\}$ $B_2 = \{m, p, j\}$
$B_3 = \{m, c, b, n\}$ $B_4 = \{c, j\}$
$B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
$B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

- **Support threshold** $s = 3$, **confidence** $c = 0.75$

- **Step 1) Find frequent itemsets:**
 - $\{b,m\}$ $\{b,c\}$ $\{c,m\}$ $\{c,j\}$ $\{m,c,b\}$

- **Step 2) Generate rules:**
 - $b \rightarrow m: c = 4/6$ $b \rightarrow c: c = 5/6$ $b,c \rightarrow m: c = 3/5$
 - $m \rightarrow b: c = 4/5$... $b,m \rightarrow c: c = 3/4$ $b \rightarrow c,m: c = 3/6$
Compacting the Output

- To reduce the number of rules, we can post-process them and only output:
 - Maximal frequent itemsets:
 No immediate superset (same set and one additional item) is frequent
 - Gives more pruning
 - Closed itemsets:
 No immediate superset has the same support (> 0)
 - Stores not only frequent information, but exact supports/counts
Example: Maximal/Closed

<table>
<thead>
<tr>
<th>Support</th>
<th>Frequent (s=3)</th>
<th>Maximal</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AC</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ABC</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Superset AB also frequent
- Superset BC has same support
- ABC (only superset) not freq
- ABC (only superset) has smaller support
Step 1: Finding Frequent Itemsets
Back to finding frequent itemsets

Typically, data is kept in flat files rather than in a database system:

- Stored on disk
- Stored basket-by-basket
- Baskets are small but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to enumerate them.
The true cost of mining disk-resident data is usually the **number of disk I/Os**.

In practice, association-rule algorithms read the data in **passes** — all baskets read in turn.

We measure the cost by the **number of passes** an algorithm makes over the data.
Main-Memory Bottleneck

For many frequent-itemset algorithms, main-memory is the critical resource

- As we read baskets, we need to count something, e.g., occurrences of pairs of items
- The number of different things we can count is limited by main memory
- Swapping counts in/out is a disaster
 - Swapping means having to push memory to/from disk because memory was too small.
Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs of items \(\{i_1, i_2\} \)
 - Why? Freq. pairs are common, freq. triples are rare
 - Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size
- Let’s first concentrate on pairs, then extend to larger sets
- The approach:
 - We always need to generate all the itemsets
 - But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent
Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of n items, generate its $\frac{n(n-1)}{2}$ pairs by two nested loops
- Fails if $(\#\text{items})^2$ exceeds main memory
 - Remember: $\#\text{items}$ can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10^5 items, counts are 4-byte integers
 - Number of pairs of items: $10^5(10^5-1)/2 \approx 5*10^9$
 - Therefore, $2*10^{10}$ (20 gigabytes) of memory is needed
Counting Pairs in Memory

Goal: Count the number of occurrences of each pair of items \((i,j)\):

- **Approach 1:** Count all pairs using a matrix

- **Approach 2:** Keep a table of triples \([i, j, c]\) = “the count of the pair of items \(\{i, j\}\) is \(c\).”
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hashtable
Comparing the 2 Approaches

Triangular Matrix

4 bytes per pair

Triples

12 per occurring pair
Comparing the two approaches

- **Approach 1: Triangular Matrix**
 - \(n = \) total number items
 - Count pair of items \(\{i, j\} \) only if \(i < j \)
 - Keep pair counts in lexicographic order:
 - \(\{1,2\}, \{1,3\}, \ldots, \{1,n\}, \{2,3\}, \{2,4\}, \ldots, \{2,n\}, \{3,4\}, \ldots \)
 - Pair \(\{i, j\} \) is at position: \(\frac{n(n-1) - (n-i)(n-i+1)}{2} + (j-i) \)
 - Total number of pairs \(n(n-1)/2 \); total bytes = \(O(n^2) \)
 - **Triangular Matrix** requires 4 bytes per pair

- **Approach 2** uses \(12 \) bytes per occurring pair (but only for pairs with count > 0)

- Approach 2 beats Approach 1 if less than \(1/3 \) of possible pairs actually occur
Comparing the two approaches

- **Approach 1: Triangular Matrix**
 - \(n = \text{total number items} \)
 - Count pair of items \(\{i, j\} \) only if \(i < j \)
 - Keep pair counts in lexicographic order:
 - \(\{1, 2\}, \{1, 3\}, \ldots, \{1, n\}, \{2, 3\}, \{2, 4\}, \ldots, \{2, n\}, \{3, 4\}, \ldots \)
 - Pair \(\{i, j\} \) is at position:
 \[\frac{n(n-1)}{2} + (j-i)]\]
 - Total number of pairs \(n(n-1)/2 \); total bytes \(O(n^2) \)
 - Triangular Matrix requires 4 bytes per pair

- **Approach 2** uses 12 bytes per occurring pair (but only for pairs with count > 0)

- Approach 2 beats Approach 1 if less than \(1/3 \) of possible pairs actually occur

Problem is if we have too many items so the pairs do not fit into memory.

Can we do better?
A-Priori Algorithm

- Monotonicity of “Frequent”
- Notion of Candidate Pairs
- Extension to Larger Itemsets
A two-pass approach called A-Priori limits the need for main memory

Key idea: monotonicity
- If a set of items I appears at least s times, so does every subset J of I

Contrapositive for pairs:
If item i does not appear in s baskets, then no pair including i can appear in s baskets

So, how does A-Priori find freq. pairs?
A-Priori Algorithm – (2)

- **Pass 1:** Read baskets and count in main memory the # of occurrences of each *individual item*
 - Requires only memory proportional to #items

- **Items that appear ≥ \(s \) times are the frequent items**

- **Pass 2:** Read baskets again and keep track of the count of *only* those pairs where both elements are frequent (from Pass 1)
 - Requires memory proportional to square of frequent items only (for counts)
 - Plus a list of the frequent items (so you know what must be counted)
Main-Memory: Picture of A-Priori

Green box represents the amount of available main memory. Smaller boxes represent how the memory is used.

- **Item counts**
- **Frequent items**
 - Counts of pairs of frequent items (candidate pairs)
You can use the triangular matrix method with $n = \text{number of frequent items}$
- May save space compared with storing triples

Trick: re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers
For each k, we construct two sets of k-tuples (sets of size k):

- $C_k = \textit{candidate } k\text{-tuples} = \text{those that might be frequent sets (support } \geq s\text{) based on information from the pass for } k-1$
- $L_k = \text{the set of truly frequent } k\text{-tuples}$
Example

\[C_1 = \{ \{b\}, \{c\}, \{j\}, \{m\}, \{n\}, \{p\} \} \]

Supports: \(b\) \(\rightarrow\) 6, \(c\) \(\rightarrow\) 6, \(j\) \(\rightarrow\) 4, \(m\) \(\rightarrow\) 5, \(n\) \(\rightarrow\) 1, \(p\) \(\rightarrow\) 2

\[L_1 = \{ \{b\}, \{c\}, \{j\}, \{m\} \} \]

Supports: \(b, c\) \(\rightarrow\) 5, \(b, j\) \(\rightarrow\) 2, \(b, m\) \(\rightarrow\) 4, \(c, j\) \(\rightarrow\) 3, \(c, m\) \(\rightarrow\) 3, \(j, m\) \(\rightarrow\) 2

\[C_2 = \{ \{b, c\}, \{b, j\}, \{b, m\}, \{c, j\}, \{c, m\}, \{j, m\} \} \]

Supports: \(b, c\) \(\rightarrow\) 5, \(b, j\) \(\rightarrow\) 2, \(b, m\) \(\rightarrow\) 4, \(c, j\) \(\rightarrow\) 3, \(c, m\) \(\rightarrow\) 3, \(j, m\) \(\rightarrow\) 2

\[L_2 = \{ \{b, c\}, \{b, m\}, \{c, j\}, \{c, m\} \} \]

\[C_3 = \{ \{b, c, m\} \} \]

Supports: \(b, c, m\) \(\rightarrow\) 3

\[L_3 = \{ \{b, c, m\} \} \]

** In order for a triple to be frequent, the three pairs it contains must all be frequent.
A-Priori for All Frequent Itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate k–tuple
- For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory

Many possible extensions:

- Association rules with intervals:
 - For example: Men over 65 have 2 cars
- Association rules when items are in a taxonomy
 - Bread, Butter \rightarrow FruitJam
 - BakedGoods, MilkProduct \rightarrow PreservedGoods
- Lower the support s as itemset gets bigger
PCY (Park-Chen-Yu) Algorithm

- Improvement to A-Priori
- Exploits Empty Memory on First Pass
- Frequent Buckets
Observation:
In pass 1 of A-Priori, most memory is idle
- We store only individual item counts
- Can we use the idle memory to reduce memory required in pass 2?

Pass 1 of PCY: In addition to item counts, maintain a hash table with as many buckets as fit in memory
- Keep a count for each bucket into which pairs of items are hashed
 - For each bucket just keep the count, not the actual pairs that hash to the bucket!

Note: Bucket≠Basket
Hash Functions

- A **hash function** maps items to buckets

Collisions

- # buckets < # possible pairs
- A **collision** occurs when h maps multiple items to the same bucket

Bucket 1 contains counts for \{c,j\} only, but bucket 2 contains counts for **both** \{b,c\} and \{c,m\}

Frequent pair \rightarrow Frequent bucket

Not frequent bucket \rightarrow Not frequent pair(s)

Frequent bucket \rightarrow Frequent pair(s)
PCY Algorithm – First Pass

FOR (each basket) :
 FOR (each item in the basket) :
 add 1 to item’s count;
 FOR (each pair of items) :
 hash the pair to a bucket;
 add 1 to the count for that bucket;

- Few things to note:
 - Pairs of items need to be generated from the input file; they are not present in the file
 - We are not just interested in the presence of a pair, but we need to see whether it is present at least s (support) times
Observations about Buckets

- **Observation**: If a bucket contains a frequent pair, then the bucket is surely frequent.
- However, even without any frequent pair, a bucket can still be frequent.
 - So, we cannot use the hash to eliminate any member (pair) of a “frequent” bucket.
- **But, for a bucket with total count less than s, none of its pairs can be frequent**.
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items).

- **Pass 2**: Only count pairs that hash to frequent buckets.
Replace the buckets by a bit-vector:
- 1 means the bucket count exceeded the support s (call it a frequent bucket); 0 means it did not

- 4-byte integer counts are replaced by bits, so the bit-vector requires 1/32 of memory

- Also, decide which items are frequent and list them for the second pass
PCY Algorithm – Pass 2

- Count all pairs \(\{i, j\} \) that meet the conditions for being a candidate pair:
 1. **A-priori:** Both \(i \) and \(j \) are frequent items
 2. **PCY:** The pair \(\{i, j\} \) hashes to a bucket whose bit in the bit vector is 1 (i.e., a frequent bucket)

- Both conditions are necessary for the pair to have a chance of being frequent
Main-Memory: Picture of PCY

Description of the diagram:

- **Main memory**
 - **Pass 1**
 - Hash table for pairs
 - Item counts
 - **Pass 2**
 - Frequent items
 - Bitmap
 - Counts of candidate pairs

Legend:
- **Hash table**
- **Item counts**
- **Frequent items**
- **Bitmap**
- **Counts of candidate pairs**
More Extensions to A-Priori

- The MMDS book covers several other extensions beyond the PCY idea: “Multistage” and “Multihash”

- For reading on your own, Sect. 6.4 of MMDS

- **Recommended video** (starting about 10:10): https://www.youtube.com/watch?v=AGAkNiQnbjY
Frequent Itemsets in ≤ 2 Passes

- Simple Algorithm
- Savasere-Omiecinski-Navathe (SON) Algorithm
- Toivonen’s Algorithm
Frequent Itemsets in ≤ 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k

- **Can we use fewer passes?**

- **Use 2 or fewer passes for all sizes, but may miss some frequent itemsets**
 - Random sampling
 - Do not sneer; “random sample” is often a cure for the problem of having too large a dataset.
 - SON (Savasere, Omiecinski, and Navathe)
 - Toivonen
Random Sampling (1)

- **Take a random sample of the market baskets**

- **Run a-priori or one of its improvements like PCY in main memory**
 - So we don’t pay for disk I/O each time we increase the size of itemsets
 - Reduce support threshold proportionally to match the sample size
 - **Example**: if your sample is 1/100 of the baskets, use $s/100$ as your support threshold instead of s.

<table>
<thead>
<tr>
<th>Main memory</th>
<th>Copy of sample baskets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space for counts</td>
<td></td>
</tr>
</tbody>
</table>
Random Sampling (2)

- **To avoid false positives:** Optionally, verify that the candidate pairs are truly frequent in the entire data set by a second pass.

- **But you don’t catch sets frequent in the whole but not in the sample (false negative):**
 - Smaller threshold, e.g., \(s/125 \), helps catch more truly frequent itemsets (\(s/125 < s/100 \))
 - But requires more space
SON Algorithm – (1)

- **SON Algorithm:** Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets

 - **Note:** we are not sampling, but processing the entire file in memory-sized chunks

- An itemset becomes a **candidate** if it is found to be frequent in *any* one or more subsets of the baskets.
SON Algorithm – (2)

- On a **second pass**, count all the candidate itemsets and determine which are frequent in the entire set.

- **Key “monotonicity” idea:** An itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.
Toivonen's Algorithm: Intro

Pass 1:
- Start with a random sample, but lower the threshold slightly for the sample:
 - Example: if the sample is 1% of the baskets, use \(s/125 \) as the support threshold rather than \(s/100 \)
- Find frequent itemsets in the sample
- Add to the itemsets that are frequent in the sample the negative border of these itemsets:
 - Negative border: An itemset is in the negative border if it is not frequent in the sample, but all its immediate subsets are
 - Immediate subset = “delete exactly one element”
Example: Negative Border

- \{A, B, C, D\} is in the negative border if and only if:
 1. It is not frequent in the sample, but
 2. All of \{A, B, C\}, \{B, C, D\}, \{A, C, D\}, and \{A, B, D\} are.

Negative Border

... tripletons
doubletons
singletons

Frequent Itemsets from Sample
Toivonen’s Algorithm

- **Pass 1:**
 - Start with the random sample, but lower the threshold slightly for the subset
 - Add to the itemsets that are frequent in the sample the negative border of these itemsets

- **Pass 2:**
 - Count all candidate frequent itemsets from the first pass, and also count sets in their negative border

Key: If no itemset from the negative border turns out to be frequent, then we found all the frequent itemsets.
- What if we find that something in the negative border is frequent?
 - We must start over again with another sample!
 - Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in main-memory.
If Something in the Negative Border Is Frequent . . .

... tripletons
doubletons
singletons

We broke through the negative border. How far does the problem go?

Negative Border

Frequent Itemsets from Sample
Summary

- Frequent Itemset Mining
- Association Rules

- A Priori Algorithm: Dynamic Programming
- PCY: Improvement using Hashing

Announcements:
- Spark Tutorial Today!
- HW1 posted today – start early
- Ed – Search for Teammates!