Intro, MapReduce & Spark

CS547 Machine Learning for Big Data Tim Althoff PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

Note: COVID-19 Circumstances

- We realize that this is a hard time for many
- We are committed to a great learning experience for all of you, particularly in these complicated circumstances
- We are making substantial changes to course and teaching to improve your experience.
 - Changes include less homework assignments, practical lab notebooks to work through individually, and more opportunities for project feedback (details later).
- Please understand that this is a complex situation for everyone and bear with us while we work out how to best support you all.
- We are very open for feedback through regular surveys. Please let us know your ideas!

Our plan for zoom

- All students are muted but turning on video is optional but very appreciated ⁽³⁾
- Let's make this engaging! Ask your questions through zoom chat!
 - If you know the answer, feel free to reply ③
 - I will ask you questions, too! Use chat to reply.
- For questions after the lecture, Tim will stay for a few minutes.
- Tim's office hours will be right after class on Tuesdays, starting next week.

Data contains value and knowledge

Data Mining & Machine Learning

- But to extract the knowledge data needs to be
 - Stored (systems)
 - Managed (databases)

Data Mining ≈ Big Data ≈ Predictive Analytics ≈ Data Science ≈ Machine Learning

What This Course Is About

- Data mining = extraction of actionable information from (usually) very large datasets, is the subject of extreme hype, fear, and interest
- It's not all about machine learning
- But some of it is
- Emphasis in CS547 on algorithms that scale
 Parallelization often essential

Data Mining Methods

Descriptive methods

- Find human-interpretable patterns that describe the data
 - Example: Clustering

Predictive methods

- Use some variables to predict unknown or future values of other variables
 - Example: Recommender systems

This Class: CS547

- This combines best of machine learning, statistics, artificial intelligence, databases but emphasis on
 - Scalability (big data)
 - Algorithms
 - Computing architectures
 - Automation for handling large data

What will we learn?

We will learn to mine different types of data:

- Data is high dimensional
- Data is a graph
- Data is infinite/never-ending
- Data is labeled
- We will learn to use different models of computation:
 - MapReduce
 - Streams and online algorithms
 - Single machine in-memory

What will we learn?

We will learn to solve real-world problems:

- Recommender systems
- Market Basket Analysis
- Spam detection
- Duplicate document detection
- We will learn various "tools":
 - Linear algebra (SVD, Rec. Sys., Communities)
 - Optimization (stochastic gradient descent)
 - Dynamic programming (frequent itemsets)
 - Hashing (LSH, Bloom filters)

How the Class Fits Together

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

How do you want that data?

Course Logistics

Course Staff

Ashish Sharma (Head TA)

Ayse Berceste Dincer

Zian Fu

Qifan Huang

Andrew Wei

CS547 Course Staff

Office hours:

- See course website <u>www.cs.washington.edu/cse547</u> for TA office hours
 - We start Office Hours next week (April 5)
- Tim: Tuesdays 11:20-12:00pm (right after lecture)
- TA office hours: see website and calendar
- All office hours happen via zoom this year

Resources

Course website: www.cs.washington.edu/cse547

- Lecture slides (at least 30min before the lecture)
- Homeworks, readings
- Class textbook: Mining of Massive Datasets by A. Rajaraman, J. Ullman, and J. Leskovec
 - Sold by Cambridge Uni. Press but available for free at <u>http://mmds.org</u>
 - Course based on textbook and Stanford CS246 course by Leskovec and others

Logistics: Communication

Ed Q&A website:

- https://edstem.org/us/courses/4942/discussion/
- Use Ed for all questions and public communication & announcements
 - Search the forum before asking a question
 - Please tag your posts and please no one-liners

(Only) for personal matters, email course staff at:

<u>cse547-instructors@cs.washington.edu</u>

 We will post course announcements to Ed (make sure you check it regularly)

Special Tutorials

Spark tutorial and help session:

- Thursday, April 1, 4-6 PM, Zoom
- Dedicated "Spark TA" to help you get started!

Review of basic probability and proof techniques

Tuesday, April 6, 1-3 PM, Zoom

Review of linear algebra:

Thursday, April 8, 1-3 PM, Zoom

Work for the Course: Homeworks

4 longer homeworks: 40%

- Four major assignments, involving programming, proofs, algorithm development.
- We improve homeworks every year and strive to give you well-defined problems that maximize your learning and minimize your time spent. Sometimes this means lots of instructions. Don't worry – this is there to help you.
- Assignments take lots of time (+20h). Start early!!

How to submit?

- Homework write-up:
 - Submit via <u>Gradescope</u>
 - Course code: V84RPB

Everyone uploads code:

 Put all the code for 1 question into 1 file and submit via Gradescope

Work for the Course: Colabs

Short weekly Colab notebooks: 20%

- Colab notebooks are posted every Thursday
 - 10 in total, from 0 to 9, each worth 2%
- Due one week later on Thursday 23:59 PST. No late days!
 - First 2 Colabs will be posted on Thu, including detailed submission instructions to Gradescope (unlimited attempts)
 - Colab 0 (Spark Tutorial) will be solved in real-time during Spark recitation session!
- Colabs require at most 1hr of work
 - few lines of code!
- "Colab" is a free cloud service from Google, hosting Jupyter notebooks with free access to GPU and TPU

Homework Calendar

Homework schedule (without weekly Colabs)

Date (23:59 PT)	Released	Due
03/30, Today		
04/01, Thu	HW1 (and Colab 0/1)	
04/15, Thu	HW2	HW1
04/22, Thu		Project Proposal
04/29, Thu	HW3	HW2
05/05, Thu		Project Milestone
05/13, Thu	HW4	HW3
05/27, Thu		HW4
06/06, <mark>Sun</mark>		Project Report
06/07, <mark>Mon</mark>		Project Presentation

• Two late periods for HWs for the quarter:

- Late period expires 48 hours after the original deadline
- Can use max 1 late period per HW (not for Project / Colabs)

Work for the Course: Course Project

Course Project: 40%

- Project proposal (20%)
- Project milestone report (20%)
 - Why extra milestone? We added this so that we can give you meaningful feedback on your projects and help you learn.
- Final project report (50%)
- Project Presentation (10%)
- More details on course website

Teams of (up to) three students each

Start planning now

3/29/21

- Find students in class, office hours, or through Ed
- **Find dataset to work on also see course website** Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

Work for the Course: Course Project

Project Presentation

- Monday, June 10, 10:00am-1:00pm
- You have to be present!
- Location: Zoom
- Exact format will be announced on website
- Extra credit: Up to 2% of your grade
 - For participating in Ed discussions
 - Especially valuable are answers to questions posed by other students on Ed, office hours or throughout lectures
 - Reporting bugs in course materials
 - See course website for details

Prerequisites

- Programming: Python
- Basic Algorithms: e.g., CS332/CS373 or CS417/CS421
- Probability: any introductory course
 - There will be a review session and a review doc is linked from the class home page
- Linear algebra: (e.g., Math 308 or equivalent)
 - Another review doc + review session is available
- Rigorous proofs & Multivariable calculus (e.g., CS311 or equivalent)
- Database systems (SQL, relational algebra)

What If I Don't Know All This Stuff?

Each of the topics listed is important for a small part of the course:

If you are missing an item of background, you could consider just-in-time learning of the needed material. This will typically add to your workload!

The exception is programming:

To do well in this course, you really need to be comfortable with writing code in Python

Collaboration Policy & Academic Integrity

- We'll follow the standard CS Dept. approach: You can get help, but you MUST acknowledge the help on the work you hand in
 - www.cs.washington.edu/academics/misconduct
- Failure to acknowledge your sources is a violation of academic integrity
- We use plagiarism tools to check the originality of your code

Collaboration Policy & Academic Integrity

- You can talk to others about the algorithm(s) to be used to solve a homework problem;
 - As long as you then mention their name(s) on the work you submit. You still need to come up with your own write-up. Don't just copy it!
- You should not use code of others or be looking at code of others when you write your own:
 - You can talk to people but have to write your own solution/code
 - If you fail to mention your sources, plagiarism tools or TAs will catch you, and you will be charged with a academic integrity violation.

Final Thoughts

CS547 is fast paced!

- Requires programming maturity
- Strong math skills
 - Some students tend to be rusty on math/theory

Course time commitment:

- Homeworks every two weeks that take +20h
- Significant course project
- Form study groups
- Form project groups

It's going to be <u>fun</u> and <u>hard</u> work. ②

5 To-do items

- 5 to-do items for you:
 - Make sure you can access Canvas & Ed
 - Register to Gradescope
 - Consider attending recitation sessions
 - Start planning course project (topic, team, dataset)
 - Yes, really [©]
 - Complete Colab 0/1 released on Thursday
 - Colab 0/1 should each take you about one hour to complete (Note this is a "toy" homework to get you started. Real homeworks will be much more challenging and longer.)

Additional details/instructions at http://www.cs.washington.edu/cse547

Distributed Computing for Data Mining

Large-scale Computing

- Large-scale computing for data mining problems on <u>commodity hardware</u>
- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to lose 1/day
 - With 1M machines 1,000 machines fail every day!

An Idea and a Solution

Issue:

Copying data over a network takes timeIdea:

- Bring computation to data
- Store files multiple times for reliability
- Spark/Hadoop address these problems
 - Storage Infrastructure File system
 - Google: GFS. Hadoop: HDFS
 - Programming model
 - MapReduce
 - Spark

Storage Infrastructure

Problem:

If nodes fail, how to store data persistently?

Answer:

- Distributed File System
 - Provides global file namespace

Typical usage pattern:

- Huge files (100s of GB to TB)
- Data is rarely updated in place
- Reads and appends are common

Distributed File System

Chunk servers

- File is split into contiguous chunks
- Typically each chunk is 16-64MB
- Each chunk replicated (usually 2x or 3x)
- Try to keep replicas in different racks

Master node

- a.k.a. Name Node in Hadoop's HDFS
- Stores metadata about where files are stored
- Might be replicated
- Client library for file access
 - Talks to master to find chunk servers
 - Connects directly to chunk servers to access data

Distributed File System

- Reliable distributed file system
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
 - Seamless recovery from disk or machine failure

Bring computation directly to the data!

Chunk servers also serve as compute servers

Programming Model

- MapReduce is a style of programming designed for:
 - 1. Easy parallel programming
 - 2. Invisible management of hardware and software failures
 - 3. Easy management of very-large-scale data
- It has several implementations, including Hadoop, Spark (used in this class), Flink, and the original Google implementation just called "MapReduce"

MapReduce: Overview

3 steps of MapReduce

Map:

- Apply a user-written Map function to each input element
 - Mapper applies the Map function to a single element
 - Many mappers grouped in a Map task (the unit of parallelism)
- The output of the Map function is a set of 0, 1, or more key-value pairs.

Group by key: Sort and shuffle

System sorts all the key-value pairs by key, and outputs key-(list of values) pairs

Reduce:

User-written *Reduce function* is applied to each key-(list of values)

Outline stays the same, Map and Reduce change to fit the problem

Map-Reduce: A diagram

Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work

MapReduce Pattern

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

Example: Word Counting

Example MapReduce task:

- We have a huge text document
- Count the number of times each distinct word appears in the file

Many applications of this:

- Analyze web server logs to find popular URLs
- Statistical machine translation:
 - Need to count number of times every 5-word sequence occurs in a large corpus of documents

MapReduce: Word Counting

Word Count Using MapReduce

map(key, value):

key: document name; value: text of the document for each word w in value: emit(w, 1)

reduce(key, values):

```
# key: a word; value: an iterator over counts
    result = 0
    for each count v in values:
        result += v
    emit(key, result)
```

MapReduce: Environment

MapReduce environment takes care of:

- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
 - In practice this is is the bottleneck
- Handling machine failures
- Managing required inter-machine communication

Dealing with Failures

Map worker (machine) failure

- Map tasks completed or in-progress at worker are reset to idle and rescheduled
- Reduce workers are notified when map task is rescheduled on another worker

Reduce worker failure

 Only in-progress tasks are reset to idle and the reduce task is restarted

Problems with MapReduce

Two major limitations of MapReduce:

- Difficulty of programming directly in MR
 - Many problems aren't easily described as map-reduce
- Performance bottlenecks, or batch not fitting the use cases
 - Persistence to disk typically slower than in-memory work

In short, MR doesn't compose well for large applications

 Many times one needs to chain multiple mapreduce steps

Data-Flow Systems

- MapReduce uses two "ranks" of tasks: One for Map the second for Reduce
 - Data flows from the first rank to the second

Data-Flow Systems generalize this in two ways:

- 1. Allow any number of tasks/ranks
- 2. Allow functions other than Map and Reduce
- As long as data flow is in one direction only, we can have the *blocking property* and allow recovery of tasks rather than whole jobs

Spark: Most Popular Data-Flow System

- Expressive computing system, not limited to the map-reduce model
- Additions to MapReduce model:
 - Fast data sharing
 - Avoids saving intermediate results to disk
 - Caches data for repetitive queries (e.g. for machine learning)
 - General execution graphs (DAGs)
 - Richer functions than just map and reduce
- Compatible with Hadoop

Spark: Overview

- Open source software (Apache Foundation)
- Supports Java, Scala and Python
- Key construct/idea: Resilient Distributed Dataset (RDD)
 - More on next slide.
- Higher-level APIs: DataFrames & DataSets
 - Introduced in more recent versions of Spark
 - Different APIs for aggregate data, which allowed to introduce SQL support

Spark: RDD

Key concept *Resilient Distributed Dataset* (RDD)

- Partitioned collection of records
 - Generalizes (key-value) pairs
- Spread across the cluster, Read-only
- Caching dataset in memory
 - Different storage levels available
 - Fallback to disk possible
- RDDs can be created from Hadoop, or by transforming other RDDs (you can stack RDDs)
- RDDs are best suited for applications that apply the same operation to all elements of a dataset

Spark RDD Operations

- Transformations build RDDs through deterministic operations on other RDDs:
 - Transformations include map, filter, join, union, intersection, distinct
 - Lazy evaluation: Nothing computed until an action requires it
- Actions to return value or export data
 - Actions include count, collect, reduce, save
 - Actions can be applied to RDDs; actions force calculations and return values

Task Scheduler: General DAGs

- Supports general task graphs
- Pipelines functions where possible
- Cache-aware data reuse & locality
- Partitioning-aware to avoid shuffles

Useful Libraries for Spark

Spark SQL

- Spark Streaming stream processing of live datastreams
- MLlib scalable machine learning
- GraphX graph manipulation
 - extends Spark RDD with Graph abstraction: a directed multigraph with properties attached to each vertex and edge

Data Analytics Software Stack

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

Spark vs. Hadoop MapReduce

- Performance: Spark normally faster but with caveats
 - Spark can process data in-memory; Hadoop MapReduce persists back to the disk after a map or reduce action
 - Spark generally outperforms MapReduce, but it often needs lots of memory to perform well; if there are other resource-demanding services or can't fit in memory, Spark degrades
 - MapReduce easily runs alongside other services with minor performance differences, & works well with the 1-pass jobs (1 map, 1 reduce) it was designed for
- Ease of use: Spark is easier to program (higher-level APIs)
- Data processing: Spark is more general

Problems Suited for MapReduce

Example: Host size

- Suppose we have a large web corpus
- Look at the metadata file
 - Lines of the form: (URL, size, date, ...)

For each host, find the total number of bytes

That is, the sum of the page sizes for all URLs from that particular host

Other examples:

- Link analysis and graph processing
- Machine Learning algorithms

Example: Language Model

Statistical machine translation:

 Need to count number of times every 5-word sequence occurs in a large corpus of documents

Very easy with MapReduce:

- Map:
 - Extract (5-word sequence, count) from document

Reduce:

Combine the counts

Example: Join By Map-Reduce

- Compute the natural join R(A,B) ⋈ S(B,C)
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)

Α	В	\bowtie	В	С	=	Α	С
a ₁	b ₁		b ₂	C ₁		a ₃	C ₁
a ₂	b ₁		b ₂	C ₂		a ₃	C ₂
a ₃	b ₂		b ₃	C ₃		a_4	C ₃
a ₄	b ₃						
		5					

R

Map-Reduce Join

- Use a hash function *h* from B-values to 1...k
 A Map process turns:
 - Each input tuple R(a,b) into key-value pair (b,(a,R))
 - Each input tuple S(b,c) into (b,(c,S))
- Map processes send each key-value pair with key b to Reduce process h(b)
 - Hadoop does this automatically; just tell it what k is.
- Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

Problems NOT suitable for MapReduce

MapReduce is great for:

- Problems that require sequential data access
- Large batch jobs (not interactive, real-time)
- MapReduce is inefficient for problems where random (or irregular) access to data required:

Graphs

- Interdependent data
 - Machine learning
 - Comparisons of many pairs of items

Cost Measures for Algorithms

- In MapReduce we quantify the cost of an algorithm using
- Communication cost = total I/O of all processes
- 2. Elapsed communication cost = max of I/O along any path
- 3. (*Elapsed*) *computation cost* analogous, but count only running time of processes

Note that here the big-O notation is not the most useful (adding more machines is always an option)

CS547: Machine Learning for Big Data

Get course handout on website!

Recitation sessions:

- Spark Tutorial using Colab 0: Thursday, April 1, 4-6pm on Zoom
- Review of basic probability and proof techniques

Tuesday, April 6, 1-3 PM, Zoom

Review of linear algebra: Thursday, April 8, 1-3 PM, Zoom