Note: COVID-19 Circumstances

- We realize that this is a hard time for many
- We are committed to a great learning experience for all of you, particularly in these complicated circumstances
- We are making substantial changes to course and teaching to improve your experience.
 - Changes include less homework assignments, practical lab notebooks to work through individually, and more opportunities for project feedback (details later).
- Please understand that this is a complex situation for everyone and bear with us while we work out how to best support you all.
- We are very open for feedback through regular surveys. Please let us know your ideas!
Our plan for zoom

- All students are muted but turning on video is optional but very appreciated 😊

- Let’s make this engaging! Ask your questions through zoom chat!
 - If you know the answer, feel free to reply 😊
 - I will ask you questions, too! Use chat to reply.

- For questions after the lecture, Tim will stay for a few minutes.
- Tim’s office hours will be right after class on Tuesdays, starting next week.
Data contains value and knowledge
But to extract the knowledge data needs to be

- Stored (systems)
- Managed (databases)
- And ANALYZED ← this class

Data Mining ≈ Big Data ≈ Predictive Analytics ≈ Data Science ≈ Machine Learning
What This Course Is About

- **Data mining** = extraction of actionable information from (usually) very large datasets, is the subject of extreme hype, fear, and interest

- It’s not all about machine learning
- But some of it is

- Emphasis in CS547 on algorithms that **scale**
 - Parallelization often essential
Data Mining Methods

- **Descriptive methods**
 - Find human-interpretable patterns that describe the data
 - **Example:** Clustering

- **Predictive methods**
 - Use some variables to predict unknown or future values of other variables
 - **Example:** Recommender systems
This Class: CS547

- This combines best of machine learning, statistics, artificial intelligence, databases but emphasis on
 - Scalability (big data)
 - Algorithms
 - Computing architectures
 - Automation for handling large data
What will we learn?

- We will learn to **mine different types of data:**
 - Data is high dimensional
 - Data is a graph
 - Data is infinite/never-ending
 - Data is labeled

- We will learn to **use different models of computation:**
 - MapReduce
 - Streams and online algorithms
 - Single machine in-memory
What will we learn?

- We will learn to **solve real-world problems**:
 - Recommender systems
 - Market Basket Analysis
 - Spam detection
 - Duplicate document detection

- We will learn various “**tools**”:
 - Linear algebra (SVD, Rec. Sys., Communities)
 - Optimization (stochastic gradient descent)
 - Dynamic programming (frequent itemsets)
 - Hashing (LSH, Bloom filters)
How the Class Fits Together

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- PageRank, SimRank
- Network Analysis
- Spam Detection

Infinite data
- Sampling data streams
- Filtering data streams
- Queries on streams

Machine learning
- SVM
- Decision Trees
- Perceptron, kNN

Apps
- Recommender systems
- Association Rules
- Duplicate document detection

3/29/21
How do you want that data?
Course Logistics
Course Staff

Ashish Sharma (Head TA)
Ayse Berceste Dincer
Zian Fu
Qifan Huang
Andrew Wei
Office hours:

- See course website www.cs.washington.edu/cse547 for TA office hours
 - We start Office Hours next week (April 5)
- **Tim**: Tuesdays 11:20-12:00pm (right after lecture)
- **TA office hours**: see website and calendar
- All office hours happen via zoom this year
Resources

- **Course website:**
 www.cs.washington.edu/cse547
 - Lecture slides (at least 30min before the lecture)
 - Homeworks, readings

- **Class textbook:** *Mining of Massive Datasets* by A. Rajaraman, J. Ullman, and J. Leskovec
 - Sold by Cambridge Uni. Press but available for free at http://mmds.org
 - Course based on textbook and Stanford CS246 course by Leskovec and others
Logistics: Communication

- **Ed Q&A website:**
 - https://edstem.org/us/courses/4942/discussion/
 - Use Ed for **all questions** and public communication & announcements
 - Search the forum before asking a question
 - Please tag your posts and please no one-liners

- **(Only) for personal matters, email course staff at:**
 - cse547-instructors@cs.washington.edu

- We will post course announcements to Ed (make sure you check it regularly)
Special Tutorials

- Spark tutorial and help session:
 - Thursday, April 1, 4-6 PM, Zoom
 - Dedicated “Spark TA” to help you get started!

- Review of basic probability and proof techniques
 - Tuesday, April 6, 1-3 PM, Zoom

- Review of linear algebra:
 - Thursday, April 8, 1-3 PM, Zoom
Work for the Course: Homeworks

- **4 longer homeworks:** 40%
 - Four major assignments, involving programming, proofs, algorithm development.
 - We improve homeworks every year and strive to give you well-defined problems that maximize your learning and minimize your time spent. Sometimes this means lots of instructions. Don’t worry – this is there to help you.
 - Assignments take lots of time (+20h). **Start early!!**

- **How to submit?**
 - **Homework write-up:**
 - Submit via Gradescope
 - Course code: V84RPB
 - **Everyone uploads code:**
 - Put all the code for 1 question into 1 file and submit via Gradescope
Work for the Course: Colabs

- **Short weekly Colab notebooks:** 20%
 - Colab notebooks are posted every **Thursday**
 - 10 in total, from 0 to 9, each worth 2%
 - Due one week later on **Thursday 23:59 PST. No late days!**
 - First 2 Colabs will be posted on Thu, including detailed submission instructions to Gradescope (unlimited attempts)
 - Colab 0 (Spark Tutorial) will be **solved in real-time during Spark recitation session!**
 - Colabs require at most **1hr of work**
 - **few lines of code!**
 - “Colab” is a **free cloud service from Google**, hosting Jupyter notebooks with free access to GPU and TPU

3/29/21
Homework Calendar

Homework schedule (without weekly Colabs)

<table>
<thead>
<tr>
<th>Date (23:59 PT)</th>
<th>Released</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/30, Today</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/01, Thu</td>
<td>HW1 (and Colab 0/1)</td>
<td>HW1</td>
</tr>
<tr>
<td>04/15, Thu</td>
<td>HW2</td>
<td></td>
</tr>
<tr>
<td>04/22, Thu</td>
<td></td>
<td>Project Proposal</td>
</tr>
<tr>
<td>04/29, Thu</td>
<td>HW3</td>
<td>HW2</td>
</tr>
<tr>
<td>05/05, Thu</td>
<td></td>
<td>Project Milestone</td>
</tr>
<tr>
<td>05/13, Thu</td>
<td>HW4</td>
<td>HW3</td>
</tr>
<tr>
<td>05/27, Thu</td>
<td></td>
<td>HW4</td>
</tr>
<tr>
<td>06/06, Sun</td>
<td></td>
<td>Project Report</td>
</tr>
<tr>
<td>06/07, Mon</td>
<td></td>
<td>Project Presentation</td>
</tr>
</tbody>
</table>

- **Two late periods for HWs for the quarter:**
 - Late period expires 48 hours after the original deadline
 - Can use max 1 late period per HW (not for Project / Colabs)
Work for the Course: Course Project

- **Course Project: 40%**
 - Project proposal (20%)
 - Project milestone report (20%)
 - Why extra milestone? We added this so that we can give you meaningful feedback on your projects and help you learn.
 - Final project report (50%)
 - Project Presentation (10%)
 - *More details on course website*

- Teams of (up to) **three students each**
 - Start planning now
 - Find students in class, office hours, or through Ed
 - Find dataset to work on – also see course website
Work for the Course: Course Project

- **Project Presentation**
 - Monday, June 10, 10:00am-1:00pm
 - You have to be present!
 - Location: Zoom
 - Exact format will be announced on website

- **Extra credit:** Up to 2% of your grade
 - For participating in Ed discussions
 - Especially valuable are answers to questions posed by other students on Ed, office hours or throughout lectures
 - Reporting bugs in course materials
 - See course website for details
Prerequisites

- **Programming**: Python
- **Basic Algorithms**: e.g., CS332/CS373 or CS417/CS421
- **Probability**: any introductory course
 - There will be a review session and a review doc is linked from the class home page
- **Linear algebra**: (e.g., Math 308 or equivalent)
 - Another review doc + review session is available
- **Rigorous proofs & Multivariable calculus** (e.g., CS311 or equivalent)
- **Database systems** (SQL, relational algebra)
What If I Don’t Know All This Stuff?

- Each of the topics listed is important for a small part of the course:
 - If you are missing an item of background, you could consider just-in-time learning of the needed material. This will typically add to your workload!

- The exception is programming:
 - To do well in this course, you really need to be comfortable with writing code in Python
Collaboration Policy & Academic Integrity

- We’ll follow the standard CS Dept. approach: You can get help, but you **MUST** acknowledge the help on the work you hand in

- Failure to acknowledge your sources is a violation of academic integrity

- We use plagiarism tools to check the originality of your code
Collaboration Policy & Academic Integrity

- You can talk to others about the algorithm(s) to be used to solve a homework problem;
 - As long as you then mention their name(s) on the work you submit. You still need to come up with your own write-up. Don’t just copy it!
- You should not use code of others or be looking at code of others when you write your own:
 - You can talk to people but have to write your own solution/code
 - If you fail to mention your sources, plagiarism tools or TAs will catch you, and you will be charged with an academic integrity violation.
Final Thoughts

- **CS547 is fast paced!**
 - Requires programming maturity
 - Strong math skills
 - Some students tend to be rusty on math/theory

- **Course time commitment:**
 - Homeworks every two weeks that take +20h
 - Significant course project

- Form study groups
- Form project groups

- It’s going to be **fun** and **hard** work. 😊
5 To-do items

- 5 to-do items for you:
 - Make sure you can access Canvas & Ed
 - Register to Gradescope
 - Consider attending recitation sessions
 - Start planning course project (topic, team, dataset)
 - Yes, really 😊
 - Complete Colab 0/1 released on Thursday
 - Colab 0/1 should each take you about one hour to complete
 (Note this is a “toy” homework to get you started. Real homeworks will be much more challenging and longer.)

- Additional details/instructions at http://www.cs.washington.edu/cse547
Distributed Computing for Data Mining
Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware

Challenges:

- How do you distribute computation?
- How can we make it easy to write distributed programs?

Machines fail:

- One server may stay up 3 years (1,000 days)
- If you have 1,000 servers, expect to lose 1/day
- With 1M machines 1,000 machines fail every day!
An Idea and a Solution

- **Issue:**
 Copying data over a network takes time

- **Idea:**
 - Bring computation to data
 - Store files multiple times for reliability

- **Spark/Hadoop** address these problems
 - **Storage Infrastructure – File system**
 - Google: GFS. Hadoop: HDFS
 - **Programming model**
 - MapReduce
 - Spark
Problem:
- If nodes fail, how to store data persistently?

Answer:
- Distributed File System
 - Provides global file namespace

Typical usage pattern:
- Huge files (100s of GB to TB)
- Data is rarely updated in place
- Reads and appends are common
Distributed File System

- **Chunk servers**
 - File is split into contiguous chunks
 - Typically each chunk is 16-64MB
 - Each chunk replicated (usually 2x or 3x)
 - Try to keep replicas in different racks

- **Master node**
 - a.k.a. Name Node in Hadoop’s HDFS
 - Stores metadata about where files are stored
 - Might be replicated

- **Client library for file access**
 - Talks to master to find chunk servers
 - Connects directly to chunk servers to access data
Distributed File System

- **Reliable distributed file system**
- Data kept in “chunks” spread across machines
- Each chunk *replicated* on different machines
 - Seamless recovery from disk or machine failure

Bring computation directly to the data!

Chunk servers also serve as compute servers
Programming Model

- MapReduce is a *style of programming* designed for:
 1. Easy parallel programming
 2. Invisible management of hardware and software failures
 3. Easy management of very-large-scale data

- It has several implementations, including Hadoop, Spark (used in this class), Flink, and the original Google implementation just called “MapReduce”
MapReduce: Overview

3 steps of MapReduce

- **Map:**
 - Apply a user-written *Map function* to each input element
 - *Mapper* applies the Map function to a single element
 - Many mappers grouped in a *Map task* (the unit of parallelism)
 - The output of the Map function is a set of 0, 1, or more *key-value pairs*.

- **Group by key:** Sort and shuffle
 - System sorts all the key-value pairs by key, and outputs key-(list of values) pairs

- **Reduce:**
 - User-written *Reduce function* is applied to each key-(list of values)

Outline stays the same, **Map** and **Reduce** change to fit the problem.
Map-Reduce: A diagram

MAP:
Read input and produces a set of key-value pairs

Group by key:
Collect all pairs with same key (Hash merge, Shuffle, Sort, Partition)

Reduce:
Collect all values belonging to the key and output
Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work
MapReduce Pattern

Input \rightarrow \text{Mappers} \rightarrow \text{key-value pairs} \rightarrow \text{Reducers} \rightarrow \text{Output}
Example: Word Counting

Example MapReduce task:
- We have a huge text document
- Count the number of times each distinct word appears in the file

Many applications of this:
- Analyze web server logs to find popular URLs
- Statistical machine translation:
 - Need to count number of times every 5-word sequence occurs in a large corpus of documents
The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long-term space-based man/machine partnership. "The work we're doing now -- the robotics we're doing -- is what we're going to need

Big document

(key, value)

(key, value)

(key, value)
Word Count Using MapReduce

\[\text{map}(\text{key}, \text{value}):\]
\[
\# \text{ key: document name; value: text of the document}
\]
\[
\text{for each word w in value:}
\]
\[
\text{emit}(w, 1)
\]

\[\text{reduce}(\text{key}, \text{values}):\]
\[
\# \text{ key: a word; value: an iterator over counts}
\]
\[
\text{result} = 0
\]
\[
\text{for each count v in values:}
\]
\[
\text{result} += v
\]
\[
\text{emit(key, result)}
\]
MapReduce: Environment

MapReduce environment takes care of:

- **Partitioning** the input data
- **Scheduling** the program’s execution across a set of machines
- Performing the **group by key** step
 - In practice this is is the bottleneck
- Handling machine **failures**
- Managing required inter-machine **communication**
Dealing with Failures

- **Map worker (machine) failure**
 - Map tasks completed or in-progress at worker are reset to idle and rescheduled
 - Reduce workers are notified when map task is rescheduled on another worker

- **Reduce worker failure**
 - Only in-progress tasks are reset to idle and the reduce task is restarted
Spark
Problems with MapReduce

- **Two major limitations of MapReduce:**
 - Difficulty of programming directly in MR
 - Many problems aren’t easily described as map-reduce
 - Performance bottlenecks, or batch not fitting the use cases
 - Persistence to disk typically slower than in-memory work

- **In short, MR doesn’t compose well for large applications**
 - Many times one needs to chain multiple map-reduce steps
Data-Flow Systems

- **MapReduce uses two “ranks” of tasks:**
 One for Map the second for Reduce
 - Data flows from the first rank to the second

- **Data-Flow Systems generalize this in two ways:**
 1. Allow any number of tasks/ranks
 2. Allow functions other than Map and Reduce
 - As long as data flow is in one direction only, we can have the *blocking property* and allow recovery of tasks rather than whole jobs
Spark: Most Popular Data-Flow System

- Expressive computing system, not limited to the map-reduce model

- Additions to MapReduce model:
 - Fast data sharing
 - Avoids saving intermediate results to disk
 - Caches data for repetitive queries (e.g. for machine learning)
 - General execution graphs (DAGs)
 - Richer functions than just map and reduce

- Compatible with Hadoop
Spark: Overview

- Open source software (Apache Foundation)
- Supports *Java, Scala and Python*

- **Key construct/idea:** Resilient Distributed Dataset (RDD)
 - More on next slide.

- **Higher-level APIs:** DataFrames & DataSets
 - Introduced in more recent versions of Spark
 - Different APIs for aggregate data, which allowed to introduce SQL support
Spark: RDD

Key concept *Resilient Distributed Dataset* (RDD)

- Partitioned collection of records
 - Generalizes (key-value) pairs
- Spread across the cluster, Read-only
- Caching dataset in memory
 - Different storage levels available
 - Fallback to disk possible

- RDDs can be created from Hadoop, or by transforming other RDDs (you can stack RDDs)
- RDDs are best suited for applications that apply the same operation to all elements of a dataset
Spark RDD Operations

- **Transformations** build RDDs through deterministic operations on other RDDs:
 - Transformations include `map`, `filter`, `join`, `union`, `intersection`, `distinct`
 - **Lazy evaluation**: Nothing computed until an action requires it

- **Actions** to return value or export data
 - Actions include `count`, `collect`, `reduce`, `save`
 - Actions can be applied to RDDs; actions force calculations and return values
Task Scheduler: General DAGs

- Supports general task graphs
- Pipelines functions where possible
- Cache-aware data reuse & locality
- Partitioning-aware to avoid shuffles
Useful Libraries for Spark

- Spark SQL
- Spark Streaming – stream processing of live datastreams
- MLlib – scalable machine learning
- GraphX – graph manipulation
 - extends Spark RDD with Graph abstraction: a directed multigraph with properties attached to each vertex and edge
Data Analytics Software Stack

- **Spark Streaming**
 - Stream processing

- **GraphX**
 - Graph computation

- **MLlib**
 - User-friendly machine learning

- **SparkSQL**
 - SQL API

- **Spark**
 - Fast memory-optimized execution engine (Python/Java/Scala APIs)

- **Tachyon**
 - Distributed Memory-Centric Storage System

- **Hadoop Distributed File System (HDFS)**

- **Mesos**
 - Cluster resource manager, multi-tenancy

- **Hive**

- **Storm**

- **MPI**
Spark vs. Hadoop MapReduce

- **Performance:** *Spark normally faster but with caveats*
 - Spark can process data in-memory; Hadoop MapReduce persists back to the disk after a map or reduce action
 - Spark generally outperforms MapReduce, but it *often needs lots of memory to perform well*; if there are other resource-demanding services or can’t fit in memory, Spark degrades
 - MapReduce easily runs alongside other services with minor performance differences, & works well with the 1-pass jobs (1 map, 1 reduce) it was designed for
- **Ease of use:** *Spark is easier to program* (higher-level APIs)
- **Data processing:** *Spark is more general*
Problems Suited for MapReduce
Example: Host size

- Suppose we have a large web corpus
- Look at the metadata file
 - Lines of the form: (URL, size, date, ...)
- For each host, find the total number of bytes
 - That is, the sum of the page sizes for all URLs from that particular host

- Other examples:
 - Link analysis and graph processing
 - Machine Learning algorithms
Example: Language Model

- **Statistical machine translation:**
 - Need to count number of times every 5-word sequence occurs in a large corpus of documents

- **Very easy with MapReduce:**
 - **Map:**
 - Extract (5-word sequence, count) from document
 - **Reduce:**
 - Combine the counts
Example: Join By Map-Reduce

- Compute the natural join $R(A,B) \bowtie S(B,C)$
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
</tr>
<tr>
<td>a_3</td>
<td>b_2</td>
</tr>
<tr>
<td>a_4</td>
<td>b_3</td>
</tr>
</tbody>
</table>

R

\bowtie

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_2</td>
<td>c_1</td>
</tr>
<tr>
<td>b_2</td>
<td>c_2</td>
</tr>
<tr>
<td>b_3</td>
<td>c_3</td>
</tr>
</tbody>
</table>

S

$= $

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_3</td>
<td>c_1</td>
</tr>
<tr>
<td>a_3</td>
<td>c_2</td>
</tr>
<tr>
<td>a_4</td>
<td>c_3</td>
</tr>
</tbody>
</table>
Map-Reduce Join

- **Use a hash function** h from B-values to $1...k$
- **A Map process turns:**
 - Each input tuple $R(a,b)$ into key-value pair $(b,(a,R))$
 - Each input tuple $S(b,c)$ into $(b,(c,S))$

- **Map processes** send each key-value pair with key b to Reduce process $h(b)$
 - Hadoop does this automatically; just tell it what k is.
- Each **Reduce process** matches all the pairs $(b,(a,R))$ with all $(b,(c,S))$ and outputs (a,b,c).
Problems NOT suitable for MapReduce

- **MapReduce is great for:**
 - Problems that require sequential data access
 - Large batch jobs (**not** interactive, real-time)

- **MapReduce is inefficient for problems where random (or irregular) access to data required:**
 - Graphs
 - Interdependent data
 - Machine learning
 - Comparisons of many pairs of items
Cost Measures for Algorithms

- In MapReduce we quantify the cost of an algorithm using
 1. *Communication cost* = total I/O of all processes
 2. *Elapsed communication cost* = max of I/O along any path
 3. *(Elapsed) computation cost* analogous, but count only running time of processes

Note that here the big-O notation is not the most useful (adding more machines is always an option)
Recitation sessions:

- **Spark Tutorial using Colab 0:**
 Thursday, April 1, 4-6pm on Zoom

- **Review of basic probability and proof techniques**
 Tuesday, April 6, 1-3 PM, Zoom

- **Review of linear algebra:**
 Thursday, April 8, 1-3 PM, Zoom