
Collaborative Filtering using a Trust Social Network
with Deep Learning for Initialization

Weijia Zhang
Department of Statistics

University of Washington
weijia94@uw.edu

Reed Zhang
Department of Statistics

University of Washington
rzhang1@uw.edu

Zhitao Yu
Department of ME, Statistics

University of Washington
zhitaoyu@uw.edu

Abstract

In Recommender Systems, collaborative filtering is a technique that uses ratings
provided by users to suggest relevant items. Although commonly used in many
well-known online commercial systems (e.g. Amazon1, Netflix2), collaborative
filtering suffers from problems of data sparsity and cold start users. In respond
to these challenges, we propose a novel algorithm that utilizes user-item rating
information as well as the user-user trust network. Most social recommendation
models identify an active user’s connections and estimate his rating on an unknown
item as a weighted sum of ratings provided by connected users. The weights are
estimated by either user similarities or connection degrees. However, this type
of mechanism fails to generate accurate recommendations for users who do not
disclose any social relationships. Thus, most social-aware recommender models
still face the sparsity issue when there are isolated users in the social network. In
this paper, we investigate ways to leverage community detection on a trust network
to circumvent this sparsity issue. In particular, we improve the community detection
procedure, TrustCliques, to accommodate for users with no trust relationships. Our
approach also uses matrix factorization to learn latent representations for users and
items. Deep learning is used to search for a better initialization in the non-convex
optimization problem. Experimental results on the Epinions dataset demonstrate
that accounting for users with zero trust improves model recommendations.

1 Introduction

Recommender Systems (RS) are algorithms widely used to suggest relevant items to users. There
are two major paradigms of RS: collaborative filtering (CF) and content-based methods. While
content-based RS requires description of the characteristics of the item, CF builds upon the rating
history provided by users; therefore, CF techniques are often used when descriptions of items are
unavailable. The core assumption of CF is that users who acted similarly in the past will share similar
preference in the future. A typical CF algorithm first assesses similarity between an active user and
other users, and predicts the rating the active user would give to a certain item. The prediction is the
weighted sum of the ratings provided by other users on the item, and weights are the weighted user
similarities.

CF suffers some inherent weaknesses that are innate in the process of finding similar users:

1. Data sparsity: In order to quality similarity between two users, they should have rated
at least a few items in common. However, given the large item sets (e.g. products on
Amazon, shows on Netflix), most users only have rated a tiny percentages of the items. As

1https://www.amazon.com/
2https://www.netflix.com/

https://www.amazon.com/
https://www.netflix.com/

a consequence, the system has to choose neighbors within a small portion of comparable
users and is likely to miss other non-comparable but relevant users [5].

2. Cold start users: This is a group of users who provided few or none ratings. For this group
of users, it is often not possible to compare them with other users and to find their neighbors.
Therefore, CF often fails to generate recommendations to cold start users.

3. Unreliable users: Conventional CF mechanism has difficulty to detect unreliable/"malicious"
users. For example, imagine you are a movie producer and you want to trick Netflix to
always recommend the movies you produced. It is surprisingly not difficult to attack the
Web if it employs CF. O’Mahony et al. [6] explained different attack types to achieve this
goal, the simplest one is the copy-profile attack: the attacker copies most ratings of a target
user to fool the system into identifying the attacker as the most similar user to the target,
hence every additional item that the attacker gives a good review on will be recommended
to the active user.

4. Neglect of social network: Traditional CF assumes users are i.i.d. (independent and iden-
tically distributed), hence fails to recognize the impact on a target user from other users
in her social network. It is intuitive to understand that the users are more likely to accept
recommendations from their friends, families, or people they trust. However, regular CF can
not utilize this influence.

Therefore, the traditional CF work, which purely mines the user-item-rating data set, fails to provide
accurate and reliable recommendations. In response to these challenges, we propose a novel CF work
that employs both user-item-rating information and users’ social web information. An important
step in our method is to mine the web of social connections to form communities. For a target user,
our model considers rating history of users in her communities when predicting her review on an
unknown item. The community detection method we employ in this paper encourages each user to be
classified into multiple communities, and each community consists of at least two users. Therefore,
our method mitigates the issues with data sparsity and cold start users. Also, the communities are
built based on social connections disclosed by users themselves, which makes it more difficult for
unreliable users to attack the system. Moreover, by taking the social network into account, our model
clearly circumvents the last weakness mentioned above.

There are two types of social relation, directed and undirected. Friend on Facebook3 is an example
of undirected relation and follow on Instagram4 is an example of directed relation. In this paper we
assume the social web is formed by trust, a type of directed relation. However, one can easily extend
the proposed method to the other case.

There are two important questions to consider when building a trust based CF system: (1) how to
decide the significance of each trust relation; (2) how to make predictions for users who have zero
trust network, that is, users who do not disclose his trust and are trusted by no one. In this paper,
we user nonconformists to describe a user who has no trust connections. We make the following
assumptions in our method.

1. Trusts placed by a user have different significances, and the entire trust network should be
considered when measuring such significances.

2. The existence of nonconformists does not necessarily indicate a lack of trust; another
explanation is that some users choose not to disclose their trust when reading review.

In Section 2, we show that most previous works on trust CF violate the two assumptions, which
makes our method different from them. The rest of the paper is organized as follows. Section 2
presents some related work. Section 3 formally defines the recommendation problem we are trying to
solve in this paper. The detailed explanation of our method is in Section 4. In section 5, we provide
our experimental design and discuss the empirical results. Section 6 is the conclusion and future
work.

3https://www.facebook.com/
4https://www.instagram.com/

2

https://www.facebook.com/
https://www.instagram.com/

2 Related Work

Trust-aware recommendation is widely studied since it provides an alternative way to study user
preferences. Guo et al. [2] suggested TrustSVD, a model built upon SVD++ [3]. To incorporate a
trust network in recommendations, Guo et al. suggested using a latent-space representation to factor
the trust matrix and then scaling by the square root of the number of users trusted by a user. Although
it was shown in [2] that TrustSVD outperforms other state-of-art CF algorithms on several datasets,
further improvements can be made for better performance. One underlying assumption in TrustSVD
is that the trustees of a user influence that user in a uniform manner. This assumption ignores the
impact of influencers, users who are trusted by many other users, who may have a disproportionate
amount of influence on those who trust them.

Ma et al. [4] made the same assumption in their proposed model SoRec. Their mechanism is to
weight trust effects based on in-degrees and out-degrees of each user. The intuition behind this is
that the confidence of a trust value should be decreased if a user trusts many users, and increased if a
user is trusted by many users [4]. However, this mechanism only considers local user influence and
fails to recognize the true user influence value in the global network. Moreover, SoRec only looks at
first-degree trust connections which makes the model still suffer from sparsity. Additionally, SoRec
assumes independence between trust connections, which is unrealistic in trust propagation.

Tang et al. [7] proposed a model, SoDimRec, that is able to capture heterogeneity in social relationships
and incorporate trust information beyond just first-degree connections. Moreover, SoDimRec relaxes
the assumption of independence in the trust network by forming communities for each active user. In
their study, heterogeneity refers to the idea that different trustees may influence a user in different
ways. They first performed community detection on the trust graph to identify groups of users
who frequently interact with each other, and associated with each group a preference vector. They
then added two additional terms to the standard MF objective function: one to encourage the group
preference vectors to be close to their users’ preferences, and another to encourage weakly-connected
users within each group to have similar preferences to each other. Weakly-connected users are
defined as users in the same group who do not have a direct trust connection. SoDimRec is able to
capture more complex relationships in the trust graph, offering improvements to SoRec and TrustSVD.
However, SoDimRec, SoRec, and TrustSVD do not provide any improvements for users without trust
relationships. These algorithms suffer when there is sparsity in the trust network, i.e. when many
active users are nonconformists.

Because optimization in MF approaches can converge to different local minima, a good setting
of the initialization values is crucial for getting near-optimal results. In most MF approaches, the
solutions for latent representation of users and items are randomly initialized. Shuiguang et al. [1]
used deep learning for pretraining to obtain better initializations. They proposed an auto-encoder
neural network method to learn a compressed representation for the user ratings, using a continuous
Restricted Boltzmann Machines (CRBMs) for pretraining weights. They also incorporated trust
in the model and considered community effects, similarly to SoDimRec. Although the time cost
for initialization was greater using the autoencoder, their approach performed better than random
initialization. However, this time cost is only relevant during the training stage, so it should not
influence the speed of using the recommender system.

3 Problem Definition

The recommendation problem in this paper is to predict the rating that a user will give on an unknown
item, using the user-item rating matrix and the user-user trust matrix. Suppose there are m users
and n items in the system. Let R = [ru,i]m×n denote the user-item rating matrix where each ru,i
represents the rating on item i given by user u. We employ low-rank Matrix Factorization (MF) to
find two matrices: a user latent feature matrix P = [p1, ..., pm]T ∈ Rm×k and an item latent feature
matrix Q = [q1, ..., qn]T ∈ Rn×k, where pu and qi are low-dimensional latent representations of
user u and item i. Under the MF framework, R is estimated by the product PQT ; i.e., r̂u,i = pTu qi.
The latent matrices P , Q are then obtained by solving the minimization problem in (1).

L =
1

2
min
P,Q

m∑
u=1

n∑
i=1

Iu,i(ru,i − r̂u,i)2 +
λ1
2
‖P‖2F +

λ2
2
‖Q‖2F , (1)

3

where Iu,i is an indicator function such that Iu,i = 1 if user u has an explicit rating for item i, and 0
otherwise; ‖·‖F is the Frobenius norm.

In addition to R, suppose we have a directed social network graph G = (V, E), where the vertex set
V represents the set of m users and the edge set E indicates the directed trust relationship among
users. We use T = [tu,v]m×m to denote the adjacency matrix describing trust propagation among
users; tu,v = 1 indicates u trusts v and 0 otherwise. Note that trust is a directed relationship, hence T
is generally asymmetric.

4 Trust-aware Recommendation

In this section we present the details of our trust based CF algorithm. In our approach, we employ the
deep autoencoder proposed by Deng et al. to learn initial values for latent feature matrices of users
and items. We use communities to reflect social dimensions in the trust network, and we consider
the influence of communities that a user belongs to on his predicted rating on an unknown item. In
addition, our algorithm allows various degrees of influence based on users’ social value in the trust
network.

4.1 Deep Learning Initialization

Following the techniques in [1], we use an autoencoder to learn a compressed representation for
the user ratings, with continuous Restricted Boltzmann Machines (CRBMs) for pretraining weights.
The deep autoencoder starts with learned weights from the CRBMs and is then trained via back
propagation on reconstruction error.

Define the user matrix Un×m = RT and item matrix Im×n = R. The deep autoencoder can be used
to get initial values for P and Q by extracting features from the original user/item matrices U and I .
From an input Un×m to the network, the output of one CRBM is Op×m. (In the deep autoencoder,
there are multiple CRBMs). There are n visible units and p hidden units. For each visible unit vi and
hidden unit hj , wij is the weight. The encoding stage proceeds as follows:

1. Compute the hidden units via:

hj = φj

(∑
i

wijvi + σNj(0, 1)

)
,

where Nj(0, 1) is a standard normal random variable; nj = σNj(0, 1) is the noise input
component, which has standard deviation σ. φj(x) are the asymptotes at θL and θH in the
equation

φj(x) = θL + (θH − θL)
1

1 + exp(−ajx)
,

where aj is the parameter to influence the slope of the sigmoid function.

2. Reconstruct each visible vector v according to:

v′i = φi

∑
j

wjihj + σNi(0, 1)

3. Recompute the hidden units h′ using the equations in stage 1.

4. Update the weights wij and the noise controller aj by minimizing the contrastive divergence:

∆wij = ηw(vihj − v
′

ih
′

j)

∆aij =
ηa
a2j

(h2j − h
′

j
2)

There are multiple CRBMs in this deep autoencoder. The input data of each CRBMs is the output of
the previous CRBMs. The fine tune stage uses backpropagation to minimize the l2 reconstruction
error

√∑
i(vi − v̂2i).

4

4.2 Influence Ranking

In our model we take users’ social influence into account when making predictions on an unknown
rating. In online social networks, users exhibit different degrees of influence, and such information is
valuable in predicting unknown ratings. Many trust-aware RS models overlook the importance of
user influence in the network and only consider pairwise user similarities. Among the algorithms
we introduced in Section 2, only Ma et al. utilized user influence in their model, SoRec. However,
they model the social influence of a target user u using only the number of users u trusted, and the
number of users who trusted u. We believe that their method does not reflect true social influence as
the significance of trust varies based on user characteristics. For example, trust placed by influential
users, users who are trusted by many others, should be considered as more credible compare to
trust placed by users who are trusted by few. Therefore, a user’s influence should be modeled by a
recursive method that recognizes both the degree of incoming trust received and the importance of
each connection. For these two specific reasons, we utilize PageRank to estimate social influence
for each user. PageRank is a link analysis algorithm that assigns a numerical value to each node in a
graph; such value can be viewed as a level of importance in the graph network.

4.3 Community Detection

In this section we present a community detection (CD) algorithm that embraces the CD technique
TrustCliques proposed by Deng et al.. We also describe our strategy for allocating nonconformists.
TrustCliques generates d-cliques, subgraphs where the largest distance between any pair of nodes
in the clique is at most d. The generated communities by our CD algorithm are inline with three
assumptions. First, the mapping from users to communities is one-to-many. This assumption is
based on the intuition that a user can belong to different communities based on different interests.
Second, users within the same community form a denser trust network than users across different
communities. Third, to circumvent the sparsity issue, each community consists of at least two users.

The CD algorithm TrustCliques is a greedy method that updates community structure based on
maximum gain on the parameter collectivity. The definition of collectivity is as follows.

Definition 4.1 (Collectivity). Given a trust adjancency matrix T and the corresponding trust network
graph G, assume that the users have been clustered into a set of cliques Ci. The collectivity col is
defined as:

col = log

(∑
Ci∈clqs coli
|clqs|

)
with coli =

∑
u,v∈Ci

tu,v∑
u∈Ci,v /∈Ci

tu,v
,

where clqs is the set of cliques.

We chose TrustCliques as our base CD technique for three reasons. First, TrustCliques detects
overlapping communities, which are inline with our first assumption. Second, TrustCliques is able to
form small and highly connected communities. Third, TrustCliques is a simulated annealing method
so that the algorithm has a better chance to reach the global optimum.

While TrustCliques forms communities to reflect our first two assumptions, the third assumption (no
communities of size one) is violated. This violation leads to sparsity issue and we fix it by merging
similar communities. Let C = {C1, ..., Cc} be the set of communities detected by TrustCliques. We
use p̂i to denote the latent feature factor for the community Ci, and let P̂ = [p̂1, ..., p̂c]

T ∈ Rc×k.
Since a user can be classified into multiple communities, she might have different degrees of
association to different communities. To model such association, let Su,k denote the strength of user
u associating with community Ck. Inspired by SoDimRec, we define Su,k as the following,

Su,k = β1

∑
v∈Ck

sim(u, v)

|Ck|
+ β2

|Nu ∩ Ck|
|Nu|

+ (1− β1 − β2) · PageRanku,

where Nu = {v|tu,v = 1 or tv,u = 1} and sim(u, v) is the cosine similarity of user u and user v.
The strength of Su,k is defined as a linear combination of the user similarity, the overlap between u’s
social network and community Ck, and the influence ranking of u. P̂ is obtained by minimizing the

5

objective in (2).

L = min
P,Q,P̂

1

2

m∑
u=1

n∑
i=1

Iu,i(ru,i − r̂u,i)2

+
1

2

m∑
u=1

c∑
k=1

Ĩu,kSu,k ‖pu − p̂k‖22 +
α

2
(||P ||2F +||Q||2F +||P̂ ||2F),

(2)

where Ĩu,k is an indicator function that takes value 1 if user u is in community Ck and 0 otherwise.
The first term of (2) is the sum of squared differences between true and predicted ratings. The
second term encourages latent-space representations of communities to be close to the latent-space
representations of their users. The third term prevents overfitting.

Once obtained, p̂k is treated as the fixed latent-space representation for communityCk. By interpreting
nonconformists as communities of size one, we can measure the similarity between any nonconformist
and a given community Ck. Each nonconformist is then assigned to the f communities to which they
are the most similar. After assigning each nonconformist, we have a set of communities that are in
line with our three assumptions. The detailed implementation of the described CD technique is in
Algorithm 1.

Algorithm 1 Community Detection

Input: maximum clique size d, iteration limitation l, user set U , trust matrix T̂
Output: cliques collection clqs

1: clqs=U , nc = |clqs|
2: while nc > 1 and number of iteratinos < l do
3: for i = 1 to nc do
4: Ci = the i-th clique in clqs;
5: J = the set of immediate neighbors of Ci;
6: ∆colmax = 0;
7: for each v ∈ J do
8: C ′i = Ci ∪ v;
9: if C ′i is a d-clique then calculate ∆col

10: if ∆col > ∆colmax then
11: ∆colmax = ∆col;
12: Ct = C ′i;
13: end if
14: end if
15: end for
16: if ∆colmax > 0 or U(0, 1) > prob then
17: replace Ci with Ct in clqs;
18: store current clqs and the corresponding collectivity
19: end if
20: end for
21: nc = |clqs|, iteration step ++;
22: end while
23: C is the set of communities of size at least two; . nonconformists allocation
24: Ũ is the set of nonconformists
25: compute P̂ and P by solving the minimization problem in (2);
26: for each ũ ∈ Ũ do
27: for each p̂k ∈ P̂ do
28: simũ,k = cosine similarity between pũ and p̂k;
29: end for
30: merge ũ into f communities in C based on the top f sim scores;
31: end for
32: return the set of communities C = {C1, ..., Cc}

6

4.4 Main Objective

Our framework tries to minimize the objective in equation (2) using gradient descent with backtrack-
ing. The optimization procedure is run twice: first (2) is optimized over P , Q, and P̂ . As noted in
Algorithm 1 (line 23-30), P̂ is used to allocate nonconformists to communities. After the allocation,
P̂ is treated as fixed, while P and Q are further updated with the new communities. The gradients of
pu, qi, and p̂k are

∂L
∂pu

=

n∑
i=1

Iu,i(ru,i − r̂u,i)qi +
∑
k

Ĩu,kSu,k(pu − p̂k) + αpu

∂L
∂qi

=

n∑
]u=1

Iu,i(ru,i − r̂u,i)pu + αqi

∂L
∂p̂k

=

m∑
u=1

Ĩu,kSu,k(p̂k − pu) + αp̂k

5 Experiments and Results

5.1 Data

We choose Epinions5 dataset to test the empirical performance of our model. This dataset is provided
by Tang et al.. Readers can download the .mat and the .txt versions of the dataset on the following
site:

https://www.cse.msu.edu/~tangjili/datasetcode/truststudy.htm.

Epinions.com is a consumer review site that was established in 1999. The dataset contains ratings and
trust lists for each user, as well as product ID, category name, time of creating, and the helpfulness
for rating record. The statistics of the dataset are in Table 1. We propose to use this dataset for two
reasons. First, it is relatively sparse compared to other commonly used datasets for CF work. The
rating density in the Epinion dataset is 0.014%, whereas the densities of MovieLens and Eachmovie
(two famous CF datasets) are 4.25% and 2.29%, respectively [4]. Therefore, we can examine how
well our model handles sparsity. Second, a trust social network is included in the Epinion dataset.

users items ratings density trusters trustees relations density
22,164 296,277 922,267 0.014% 15,448 15,867 355,813 0.145%

Table 1: Statistics of Epinion dataset

5.2 Experimental Setting

We compare our method (TrustCF+NC+DLI) with the following models to test its performance:

1. UserCF: user-based collaborative filtering method
2. itemCF: item-based collaborative filtering method
3. TrustCF: method described in this paper but without nonconformist allocation or the deep

learning initialization
4. TrustCF+NC: method described in this paper but without the deep learning initialization

The following parameter set is used in all models:
{k = 80, β1 = 0.6, β2 = 0.2, α = 0.1, f = 3}.

We ran TrustCliques to search for 2-cliques until global collectivity was increasing by less than 0.25%
per iteration. The algorithm found 12549 communities with an average size of 6.80. There are 4,076
nonconformists (roughly 18.4% of the total population). After we allocate these nonconformists as
described in Algorithm 1, the average community size is 7.78.

5https://epinionglobal.com/en/

7

https://www.cse.msu.edu/~tangjili/datasetcode/truststudy.htm
https://epinionglobal.com/en/

5.3 Evaluation

We use two metrics, mean absolute error (MAE) and root mean square error (RMSE) to evaluate
predictions.

MAE =

∑
u,i|r̂u,i − ru,i|

N
, RMSE =

∑
u,i(r̂u,i − ru,i)2

N
,

where N is the number of test ratings. We randomly split the data into an 80-20 train-test split,
evaluating MAE and RMSE on the test set.

5.4 Empirical Results

The experimental results are shown in Table 2 for RMSE and MAE. As we can see from the
table, TrustCF+NC outperforms the other models. Compared to userCF and itemCF, TrustCF+NC
decreases the RMSEs by 6.5% and 5.5%, respectively. The RMSEs and MAEs of TrustCF and
TrustCF+NC indicate an improvement on prediction accuracy after nonconformists allocation.

Metric userCF itemCF TrustCF TrustCF+NC TrustCF+NC+DLI
RMSE 1.14238 1.12959 1.08626 1.06756 1.18136
MAE 0.84662 0.83897 0.81595 0.81101 0.87001

Table 2: Comparison Results

From the last column, we see that the model performed worse with the deep learning initialization,
even when compared to userCF or itemCF. This indicates possible improvements in the Deep
Learning pretraining process and can be investigated in future work. The focus of this paper is to
study CF with a trust network, especially with a strategy for nonconformist allocation, and Table 2
suggests that allocating nonconformists to similar communities yields better predictions.

We want to note that although TrustSVD, SoRec, and SoDimRec used the Epinions dataset in [2],[4],
and [7], they used different versions of the dataset. For example, The Epinions dataset used in the
SoDimRec paper has 21,882 users, 59,104 items, and 632,663 ratings, which is smaller than the data
we used for this paper. We were unable to find the exact version of the data to compare our results
with previous methods. For reference, RMSs reported by the TrustSVD, SoRec, and SoDimRec in the
original papers were 1.044, 1.1069, and 1.1811, respectively.

6 Conclusions

In this paper we presented our proposal for improving a trust based CF system to provide more
accurate predictions. The social recommendation problem has been studied in the literature before.
However, to our best knowledge, none have considered methods to deal with nonconformists, i.e.
users who lack trust connections. In most state-of-art trust based CF systems, nonconformists
are isolated nodes in the social graph, so they are interpreted as users who have no influence in
the Web of trust. We believe this interpretation is misleading in situations when users are simply
reluctant to disclose their social relations. Therefore, we propose our method to accommodate for
nonconformists. The empirical results on the real-world data set Epinions suggests that properly
handling nonconformists can yield better predictions.

Community structure is an important aspect in our model, as we believe that heterogeneity in
social relationships is better captured by forming communities. We make three assumptions about
communities: overlapping, dense (in terms of trust), and at least of size two. By satisfying these
assumptions, the proposed model is able to (1) mitigate the sparsity issue; (2) reflect the fact that
people may turn to different groups for different opinion; (3) consider impact from a user’s direct and
indirect trustees.

6.1 Future Work

In this section we discuss potential work to further investigate trust-based recommendation models.

8

1. Hybrid RS using trust network: given the promising results in this paper, we believe a hybrid
RS model could be promising as well. Hybrid RS are mix of CF and content-based methods,
and are often used as an upgraded RS mechanism.

2. Content based influence measure: in this paper we emphasize the fact that a user may turn to
different groups for recommendations based on different interests. For example, user u may
prefer v’s recommendation on books but trust w more when it comes to movies. Therefore,
another possible improvement could be to measure user influence within communities
instead of globally.

3. The deep learning initialization: In this paper, we implement a deep auto-encoder to get
the initialization of the latent factor. Unfortunately it does not behave as we expected. The
reason might be because the hyperparameters of the deep auto-encoder are not fine tuned.
Also, we can apply other state of art deep learning initialization methods such as variational
auto-encoder or Generative Adversarial Networks (GANs).

6.2 Individual Contribution

Weijia Zhang: Proposed research topic and dataset. Proposed and implemented nonconformist
allocation and user influence ranking. Defined metrics, worked on data preliminary analysis and
report-writing (except for Section 4.1 and some of Section 2).

Reed Zhang: Implemented community detection, user-community similarity, and gradient descent
with backtracking for sparse matrix representations to minimize the objective. (Up to line 25 in
Algorithm 1.) Revised report for clarity.

Zhitao Yu: Proposed and implemented deep learning initialization algorithm (Deep autoencoder) for
sparse matrix representations, including weight initialization, relu activation, backpropagation and
reconstruction error, etc. Worked on report writing.

References
[1] Shuiguang Deng, Longtao Huang, Guandong Xu, Xindong Wu, and Zhaohui Wu. On deep

learning for trust-aware recommendations in social networks. volume 28, pages 1164–1177.
IEEE, 2016.

[2] Guibing Guo, Jie Zhang, and Neil Yorke-Smith. Trustsvd: Collaborative filtering with both the
explicit and implicit influence of user trust and of item ratings. In Twenty-Ninth AAAI Conference
on Artificial Intelligence, 2015.

[3] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 426–434, 2008.

[4] Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin King. Sorec: social recommendation using
probabilistic matrix factorization. In Proceedings of the 17th ACM conference on Information
and knowledge management, pages 931–940, 2008.

[5] Paolo Massa and Paolo Avesani. Trust-aware collaborative filtering for recommender systems.
In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems",
pages 492–508. Springer, 2004.

[6] Michael P O’Mahony, Neil J Hurley, and Guénolé CM Silvestre. Recommender systems: Attack
types and strategies. In AAAI, pages 334–339, 2005.

[7] Jiliang Tang, Suhang Wang, Xia Hu, Dawei Yin, Yingzhou Bi, Yi Chang, and Huan Liu.
Recommendation with social dimensions. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence (AAAI-16), pages 251–257, 2016.

9

	Introduction
	Related Work
	Problem Definition
	Trust-aware Recommendation
	Deep Learning Initialization
	Influence Ranking
	Community Detection
	Main Objective

	Experiments and Results
	Data
	Experimental Setting
	Evaluation
	Empirical Results

	Conclusions
	Future Work
	Individual Contribution

