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Abstract

COVID-19 brought researchers from around the world to study its viral genomes in
order to better understand the virus. GISAID has a dataset that contains COVID-19
viral genomes and spike protein sequences. However, many of these sequences
are not high quality and the dataset in general presents significant computational
challenges. We use clustering to answer broad domain questions related to the
spread of the virus within a city and between regions of the world. We find that
custom clustering algorithms are likely to group sequences together based on the
timestamp of the sample and the location of the sample, and that these results
correspond to and agree with news and travel patterns for the spread of coronavirus.

1 Introduction

By the end of 2019, the world was interrupted by the beginnings of a global pandemic. Months later,
researchers are still trying to understand how COVID-19 evolves and spreads using the limited dataset
available. The most prominent dataset publicized contains data related to mortality and survival rates
[1]. However, there is a lesser known dataset by GISAID [2], an organization that usually collects
data on Influenza, which has viral genome samples from Covid-19 patients from around the world.
This project aims to understand existing relationships in this dataset using clustering algorithms.

2 Prior Work

There is extensive work studying the effectiveness and use of clustering algorithms, but there are less
algorithms that are tailored to clustering biological sequences. We look at four existing algorithms
that cluster DNA sequences of varying lengths. Some optimize for computational efficiency, while
others look at highly customized distance functions. A brief description of each algorithm follows.

2.1 Starcode

Zorita et al. proposed an algorithm to cluster sequences within a particular Levenshtein distance
threshold using pairwise searches for all pairs in a dataset [3]. The model uses a trie structure to store
the sequence prefixes to reduce the search space and significantly speed up the process. This reduces
the computation of edit distance and makes clustering more efficient.

2.2 MeSHClust

James et al presents a tool for clustering DNA sequences with an approach adapted from the mean shift
algorithm [4]. It is guaranteed to converge within finite steps and is able to produce global alignment
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scores using alignment-free methods. The model consists of a combination of a classification step
and a clustering step so that the users don’t need to specify the number of clusters to generate.

2.3 Clustering Billions of Reads

Rashtchian et al. focuses on high cardinality and dimensional clustering of synthetic DNA for data
storage [5]. They use clustering for error-correction in the data retrieval step of DNA storage. The
data is a synthetically generated noisy representation of each sequence resulting in billions of clusters
that linearly scale with the size of the data size. They created an agglomerative algorithm that uses
edit distance as the cost function and can handle clustering in a distributed fashion. The key idea
is that data is ingested into the model in parallel and items are hashed into buckets through local
computation and redistributed through global communication for clustering.

2.4 Fuzzy Integral Similarity

Saw et al. discusses an alignment free method of sequence clustering to explore faster sequences
analysis algorithms when dealing with large datasets and computation time is a key constraint [6].
It makes use of the fuzzy integral with Markov chain and computes frequencies of occurrence of
all possible nucleotide pairs from each DNA sequence. The model generates a symmetric distance
matrix that can be further used to construct a phylogenetic tree using k-mer based similarity score.

2.5 Contribution

This project applies existing methods to the GISAID dataset to uncover existing relationship. The
project also customizes these existing methods to ensure that they are better suited to the GISAID
dataset and evaluates these methods by their ability to answer domain questions.

3 Data

3.1 Data Collection

Our dataset is from GISAID, which stands for Global Initiative on Sharing All Influenza Data [2].
As the name implies, their primary focus is Influenza data, but in 2020, they shifted to COVID-19
related data. Their website has a public dataset of approximately 27000 viral genomes from patients
around the world. These genomes have DNA sequences that are 30K bases long. It also has amino
acid sequences that correspond to certain peptides that are encoded for in the DNA sequence. We use
both the spike protein sequences and DNA sequences in our work. There are many deficiencies in
this dataset, and a clustering algorithm will need to account for them.

3.2 Data Characteristics
Varying Quality And Time Periods

The data was generated from DNA sequencing machines that have a varying level of accuracy and
quality score. For example, some of the data was generated from a MinION sequencing machine,
which is a portable DNA sequencer that has approximately 96% sequencing accuracy. Other samples
were generated from an Illumina sequencer which has close to 99.99% sequencing accuracy.

In addition, the sequences were collected over a range of time. There are different numbers of
sequences sampled at different times, and these sequences can demonstrate significant variance from
mutations, lab biases, sequencing error, lab protocols, and country of origin. More variance often
means clustering will be more difficult, because the results might pick up on confounding variables
rather than true trends. We can see the distribution of the number of sequences over timestamps
below.



Figure 1: Distribution of sequences across timestamps

Varying Levels of Specificity

DNA sequences typically contain nucleotides ‘A’, ‘T’, ‘G’, and ‘C’. However, when a sequencing
machine is not confident about the base, it will output an ‘N’. Most sequences in the GISAID dataset
have long sequences of ‘N’s at the beginning and end of the sequence, which varies the amount of
information that is encoded in a particular sample.

Example sequence: "NNNNNNNNN...CTTGT ... NNNNNNNNNNNNNN"

Varying Length of DNA Sequences

The majority of DNA sequences in the database are approximately 30K nucleotide bases long, but
lengths vary. It is likely that a sequence significantly shorter than 30k bases long is the result of a
faulty machine or is in some way erroneous. Viral genomes are generally 30k bases long, and it will
be important for us to do some sort of quality filtering when developing a clustering algorithm.
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Figure 2: Distribution of sequences lengths

Size of the dataset

The dataset has data for approximately 27000 patients. While this is not a dataset as large as some of
the datasets we have seen in the class, each of the individual sequences are rather long, and this will
still present challenges in computational complexity.

Spike Protein Dataset

Around May, GISAID uploaded a dataset of just spike protein samples for the majority of patients in
their database. The spike protein sequence is encoded for in a portion of the full viral genome. This
spike protein sequence is around 1300 amino acids long. Amino acids make up protein sequences.
We can see that the number of peptide sequences varies over time in a similar manner to the DNA
sequences:



Figure 3: Distribution of spike protein sequences across timestamps

We ultimately use this dataset of spike proteins to make our clustering algorithms useful. This works
better because these sequences are much shorter than the DNA sequences and allow our algorithms
to converge in a reasonable amount of time.

4 Domain Questions

We have two basic domain questions about our dataset:

1. Are sequences more similar based off of time or region?

2. How does Coronavirus evolve over time in a city? Can we detect multiple strains of the
virus?

In order to answer these questions, we propose two experiments. In one experiment, we pick data
from numerous cities with a lot of data and a wide range of time values. We can apply clustering
and see if the resulting clusters are more likely to be grouped by location (i.e. city), or by time.
The second experiment is to pick one city with a lot of data and a wide range of time values. With
clustering, we can see if we can generate clusters that are across distinct time periods. This means
that a couple of consecutive weeks are clustered together. By consulting with travel patterns and
media coverage, we can see if these particular time based clusters correspond to the presence of
multiple strains. If the clusters are grouped based off of time, it is also likely that they indicate how
the virus has progressed in that city.

5 Algorithms

This section details the seven algorithms we applied, or attempted to apply to this dataset.

5.1 Starcode

Starcode uses a trie structure to dynamically calculate Levenshtein edit distance between sequences.
Typically represented as a dynamic programming problem using a matrix, the trie structure allows
shared prefixes to be exploited to represent multiple string comparisons (instead of a matrix per pair).
Every time one DNA sequence entry is added into the trie, it partitions the data into indexes and
reduce the length of each segment. During the clustering phase, the model sorts the input to maximize
prefix sharing and store the intermediate matching results in the trie node. We found and used a
Starcode implementation on Github [7].

5.2 MeSHClust

MeSHClust uses mean shifting with a classifier to discover clusters. Each sequence is represented
as a histogram of common predetermined k-length strings. Starting with a random sequence as the
centroid, the mean of all “similar" sequences to the centroid is found. The sequence most similar to
the mean is the new centroid. The process is repeated until the centroid does not shift. That centroid
and its “similar" sequences are defined as a cluster. This is then repeated with a new sequence
clustering the remaining sequences, until every sequence is assigned. Similarity is defined using a
binary classifier trained on global alignment of sequences where a similarity threshold is user defined.
We found and used a MeSHClust implementation on Github [8].



5.3 Clustering Billions

Clustering Billions starts by synthetically creating sequences by making noise copies of existing
sequences. Noisy copies are made by keeping, deleting, replacing, or duplicating each character in a
sequence based on a distribution. Each sequence is then hashed across computational nodes, where
they are clustered by g-distance which is Hamming distance where indicators are the existence of
g-gram nucleotide subsequences. Centroids are chosen by randomly sampling from a cluster. Clusters
whose distance are below a threshold 6 are combined. The distance function of two clusters is:
C1,C5 € C,dp(C1,Co) = min _ dp(z
1, L2 ,dp(Ch, C2) weOnNECs B(7,y)

where dg(x,y) is the edit distance between the two sequences. The centroids are then rehashed across
computational nodes and repeated.

For this project a custom version of Clustering Billions was implemented. We elaborate in Section
5.5.2.

5.4 Fuzzy Integral Similarity

This algorithm generates a N * N distance matrix between N sequences by iterative defining the k"
distance matrix until convergence between the k*" and k + 15! matrices. Convergence is defined with
respects to the root mean square distance between the distance matrices:
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where episilon is defined in the paper. Each index of the distance matrix D is defined a:
Dli,j] = Dj,i) = 1 = FISIM (P, Pf)

where PF is the k" Markov chain transition probability matrix of nucleotide pairs of the n** sequence.

The k** Markov chain is simply the k" power in terms of matrix products of the base transition
matrix. FISIM is the fuzzy integral similarity between two Markov transition matrices:

FISIM(PF, Pf) = "max” “inax min(h(yi;), p(Ai)]
{ J

where BASES is the number of unique nucleotide in the sequence (paper uses a constant 4), h(y;;) is
1 — | Pi, j] — PF[i, 41|, Aij = yi1...y;; where y;; is the max of the ij-th element between the input
matrices, and p(A;;) is defined through the union of element sets. Let these sets be X, Y:
PX UY) = p(X) + p(Y) + Aip(X)pu(Y), VA;
where 1(y;;) = ;5 and \; is defined in:
BASES
N+1= ] (4 xwy)
j=1

Note, that while the algorithm itself is computationally complex, it is not affected by the length of
a particular sequence since each sequence is represented by a transition probability matrix, which

is a square matrix of length equal to the number of possible bases in a sequence. Once the distance
matrix is obtained, it can then be used as part of a clustering algorithm.

For this project a custom version of this algorithm was implemented and we elaborate in Section
5.5.3.

5.5 Custom

The algorithms we applied to this dataset purely from background research are not tailored to our
dataset. As stated earlier, our dataset is fairly low quality and has a lot of variance. Furthermore, the
sequences are very long, and a traditional clustering algorithm is unlikely to converge, especially
since they are likely to use sequence alignment and edit distance. Based on our experiences, we
decided that we should edit the existing algorithms in an attempt to make them work better on our
dataset.



5.5.1 Custom K Means

Our first attempt at a custom clustering algorithm was a modified K Means algorithm. K Means is
not particularly well suited for this problem, but it gives us insight into the complexity of this dataset.
The goal of K Means is to minimize the distance in a cluster and maximize the distance between
clusters. Given that the sequences are non-numeric, we used edit distance to compare sequences and
assign them to a cluster. In traditional K Means, a new cluster center is picked based off the “mean”
of the sequences that were assigned to the cluster. Since, it is not possible to take the mean of strings
in a traditional sense, a random DNA sequence in a cluster was sampled represent the new centroid.

5.5.2 Custom Billion Reads

This algorithm was initially designed to run on a multi-core distributed system for parallel speed up.
However, since the GISAID dataset that we are working with is smaller than the paper’s input by
magnitudes, we create a variation of the original algorithm that computes and updates locally.

We start with modifying the agglomerative implementation from the Billion Read paper on DNA
sequences. Since we are only running the algorithm on a single-core machine, we took out the
global hashing and redistribution steps to make it suitable for our task.We explored two distance
functions to measure the similarity of clusters: 1. deqit(seql, seq2) compares two sequences as
strings and returns the edit distance of the two. 2. dgjign(seql, seq2) uses the Biopython pairwise
aligner with reward of 1 and gap penality of -5. We determine the distance of two clusters with
D(C4,Cy) = max(d(seql, seq2)).

Algorithm 1: Custom Billion Reads

Function cluster (S, iterations, 0):
C +—— S
for i = 1,2...iterations do
for C,,,C,, € C do
dist +— D(C,,Cy)
if dist < 6 then
| Update C = (C\{C.,C,}) U{Cy,C,}
end
end
end

return S*;
End Function

5.5.3 Custom Fuzzy Integral Similarity

Recall that each sequence is represented as a transition matrix between nucleotide bases (The choice
of presenting using BASES instead of the paper’s "4" is to emphasize this point.). Updating the
algorithm to scale with the different nucleotides and sequence lengths simply involved changing the
shape of the matrices.

6 Results

6.1 Evaluation Criteria

We evaluate our algorithms based on their ability to answer the broad domain questions we discussed
earlier. From intuition, it seems as if sequences that were collected around the same time or in the
same location will be similar. This is because sequences in the same time frame are likely to have
similar mutations, and sequences from the same location may be similar because of equipment used or
similar lab protocols. An ideal algorithms will allow us to answer both of these questions effectively.

6.1.1 Moving from clustering DNA to clustering amino acid sequences

At the beginning of this project, we were working with the DNA viral genome dataset. As we began
to apply and implement algorithms, we realized that there would be a significant computational



bottleneck because of the cost of alignment and edit distance calculations. Around this point, we
found that GISAID had released a spike protein peptide dataset that was about as large as the DNA
dataset. The spike protein is one of the most important proteins encoded for in the genome. Labs
are currently doing research into spike protein based vaccines. These sequences are amino acid
sequences, so the alphabet is now 20 characters, not 4 characters like DNA sequences. In this section
we present results for both of these datasets and use the protein dataset to answer domain questions
because we were able to tune our algorithms only on this dataset.

6.2 Starcode

The implementation of Starcode found restricts sequences to only the characters ‘A’, ‘T, ‘G’, and
‘C’ and to less than 1023 bases. There are only about 25 sequences that meet this criteria. Starcode
clustered the 25 sequences with a Levenshtein distance of 8, and found 25 clusters, which are all
singleton clusters (i.e. only one sequence in them). If a viral genome sequence is significantly less
than 30k bases long, it likely broke during sequencing meaning the output from a sequencer is not
particularly meaningful. This in combination with the fact that Starcode could not cluster different
sequences into the same cluster makes our Starcode results not useful.

6.3 MeSHClust

The implementation of MeSHClust found restricts the input characters to "A’, ‘T°, ‘G’, and ‘C’,
which reduces the available sequences to approximately 4500. Experimenting with a variety of k-mer
values results in MeSHClust assigning each sequence into its own cluster regardless of parameter
tuning. In general, the MeSHClust algorithm touches on one of the big challenges when comparing
DNA sequences that are very long; it is hard to encourage clusters to include more than one sequence.
MeSHClust in particular is not appropriate for our dataset because it cannot account for sequences
that have an *N’, and because regardless of what hyperparameters we choose, the clusters only contain
one sequence in them. Like Starcode, the MeSHClust results are not meaningful.

6.4 Clustering Billions

The original unmodified algorithm is by definition unsuitable for our task as the original paper’s goal
was to cluster synthetically generated versions of the same sequence. This project is to explore the
relationships between different viral genome sequences. Section 6.6.2, will discuss the results of the
modified algorithm.

6.5 Fuzzy Integral Similarity

Similar to MeSHClust, the original Fuzzy Integral Similarity algorithm restricts the input characters
to’A’,’T*,’G’, or ’C’. Attempts to generate distance matrices for these sequences failed to converge.
The process and findings are explained in more detail with the custom version of this algorithm in
Section 6.6.3.

6.6 Custom
6.6.1 Custom K Means

We chose 10 randomly selected sequences as the initial clusters. The initial choice of 10 clusters
was an arbitrary starting point. Recall that we also chose new clusters randomly because we can’t
take the mean of strings. Overall, K-means when applied to the whole dataset is computationally
very expensive because at the minimum, we had to compute pairwise edit distances between every
sequence in our dataset. This would take weeks without parallelization, so we demonstrated the
results on a small subset of our data. The following graph describes how the cost of the clusters based
on edit distance changes over 20 iterations:
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Figure 4: Kmeans Cost v. iterations

In the above graph, the cost fluctuates unpredictably because we select new cluster centers randomly.
In general, these results are not meaningful because K-means is not well adapted for DNA sequences.
An algorithm like K Means will not work for this domain because it relies on pairwise comparisons
which are very expensive for sequences that are of length 30k. An algorithm could potentially
use parallelization though, to reduce the cost of computing pairwise alignment scores, or not use
alignment/edit distance at all to compute similarity. Attempts with parallelism, different initial
centroids, and different number of clusters were made, but did not produce meaningful results in a
reasonable amount of time. Given this, we choose to spend our time working on algorithms that are
more suited to DNA and protein sequences.

6.6.2 Custom Clustering Billions

We ran the algorithm on the two selected datasets mentioned in the data section to test whether
Billion reads can pick up features like time or region to determine the clusters. To speed up the
algorithm, we pre-computed the pairwise distances of the input data and feed into the clustering
algorithm. Initially, we attempted to compute pairwise DNA alignment score. However, the average
length of the nucleotide per sequence is around 20k, making it impossible to finish the alignment
computation in a reasonable amount of time. In addition, given the complicated nature of the aligning
DNA sequences, we cannot divide the original sequences to speed up the computation.

Our attempt using spike protein as input was fairly successful. The average length of peptide
sequences are 2.5k per data point and we were able to compute distances between pairs of spike
protein records. We run our customized Billion Read algorithm on the precomputed distance function
output and got back clustering results based on time progression and region of origin.
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Figure 5 (Left) is the clustering output of all the data points collected from Seattle area. We collect
the timestamp of each data point and plotted the distribution. Each color represents a distinct cluster
from the output of the algorithm. Figure 6 (Right) uses a input dataset that contains spike protein
samples from four regions across the world: Washington state, England, Wuhan and Italy. Each
vertical bar represents a cluster from the output of the algorithm. Different colors marks the different
origin of the data sample.

Hyperparameter - The algorithm is guaranteed to converge regardless of the threshold choice.
However, to find the hyperparameter that works the best for the dataset, we focuses on two different
quality of the output clusters. Firstly, we want to keep the total number of clusters relatively small.
Since we start with number of data points many of clusters, we try to search for outputs that contains



less than 30 for region-based clustering and 100 for timestamp-based clustering. Secondly, we prefer
parameters that give more even distributions of clusters. Since we synthesized the data set to be
uniform across time and region, we expect all output clusters contain relatively same amount of data
points.

6.6.3 Custom Fuzzy Integral Similarity

The output of Fuzzy Integral Similarity generates a distance matrix between all input sequences.
Applying the algorithm on the DNA dataset was initially unfruitful; the model was unable to converge
when the number of sequences was greater than two. Correspondence with the original authors of the
paper revealed (after some confrontation) that there were numerous errors in the algorithm provided
in the original paper. Three of the errors in the algorithm of the original paper include incorrect
termination conditions, inconsistent max/min domains, and undocumented loop encapsulation (Note
the algorithm described earlier, as verbose as it is, is actually a simplified version of the fixed
algorithm).

After accounting for the discovered errors, the algorithm converges for smaller samples of the
sequences, but still has trouble converging with larger data sets and larger counts. Therefore, similar
to Custom Clustering Billions, we cluster the spike protein data for Seattle and plot with respects to
the timestamps.
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Figure 7 (Left): RMSD between the K and K+1 distance matrix for sequences from Washington
in the Spike dataset. Convergence of the algorithm occurs on the 8th degree Markov Matrix. Figure 8
(Right): Histogram of timestamp distributions of clusters sequences using the K=8th distance matrix.

Hyperparameter - The choice of threshold was found by iteratively testing using a step size of
.0001 from .0001 to .001, with .0008 being the only threshold that did not result in either uniformly
distributed clusters (every comparison results in a cluster merge) or all singleton clusters. Similar to
before, the number of clusters chosen is the point when no clusters were merged over 3 iterations.

7 Analysis

7.1 Custom Clustering Billions + Custom Fuzzy Integral Similarity

We demonstrate the results of our clustering algorithms using histograms. We only chose to plot the
non singleton sequence clusters in both Fuzzy Integral and Clustering Billions. The x-axis is time, and
the y-axis is density. According to Figure 8, Fuzzy Integral Similarity groups together consecutive
timestamps fairly well. It also has a wider diversity of curves than we see in the corresponding
histogram in Figure 5 for Clustering Billions. It seems that Fuzzy Integral Similarity is more inclined
to cluster by time.

We plot the clusters across four regions using the Clustering Billions algorithm in a stacked bar plot
in Figure 6. The x-axis represents clusters and the different colors correspond to different regions. We
see that many of the clusters have data from only one of the four regions. It seems like the Clustering
Billions algorithm is more likely to group elements based off of region.

7.1.1 Answering Domain Questions: Seattle

It seems like Fuzzy Integral Similarity clusters sequences from Seattle more based off of time than
region. Since the clusters that Clustering Billions generates from the Seattle sequences mostly span



across all of the timestamps, it seems like it clusters sequences more based off of location. The Fuzzy
Integral Similarity algorithm is more useful in Seattle, because there is only one region. Notably,
news outlets and media sources suggest that there have been three strains of Coronavirus in Seattle,
and we see three clusters (19, 15, 18) in Figure 8 that seem to represent this. This means that we can
see the progression of the disease in Seattle with Fuzzy Integral Similarity. For the Seattle sequences,
it seems like Fuzzy Integral Similarity most effectively answers the domain questions.

7.1.2 Answering Domain Questions: Wuhan, Washington, England, Italy

Our second use case was using data from four major disease epicenters. According to Figure 6,
Clustering Billions seems to fairly effectively cluster based off of the location of origin of the
sequence. Many of the clusters contain only sequences from one region, and the clusters that have
multiple regions seem to clearly have a region that has a majority of the sequences for that cluster.
However, we can’t detect progression over time for these clusters, or any sort of mutation. This
means that Clustering Billions was able to answer one of the domain questions, and that it is not
necessarily good at answering the other one.

7.2 Challenges + Difficulties

This was an exploratory project, and we spent a lot of our time accounting for the low quality in our
dataset and computational challenges associated with the nature of these sequences.

Clustering algorithms on sequences with length > 1000 takes a long time. The best ways to compare
two DNA sequences are through edit distance and sequence alignment. However, both edit distance
and alignment become are very computationally expensive, and have an O(n?) complexity. While this
is still okay for shorter sequences, it becomes problematic for longer ones. If we were to use existing
algorithms without modifying them, the algorithms would take months to converge. By shifting to us-
ing only spike protein amino acid sequences, we can reduce this problem into a more manageable one.

In general, traditional algorithms are very restrictive of the input sequences. Clustering algorithms
for DNA sequences are often very specific to certain tasks. As such, it is tough to generalize them to
work on other datasets, especially ones that have low quality and poor standardization. When we
decided to shift to clustering spike protein peptide sequences, we found that only two of the existing
algorithms could be modified to work for our problem.

8 Conclusion

Our clustering results generally show that we can group sequences by regions and by time. Neither
of our clustering algorithms were able to effectively do both, and it often depended on the spread of
our data. Regardless, the Fuzzy Integral Similar algorithm is better for grouping by time, and the
Billion Reads algorithm is better for grouping by region. Both of these algorithms when used in
conjunction, can effectively answer our domain questions.

Additionally, the spike protein is an effective subsection of the viral genome to cluster on. We had to
reduce our problem to only consider the spike protein because neither of these algorithms converged
with sequences that were very long (i.e. 28K + bases). However, the spike protein carries enough
information about the sequence to allow us to answer these domain questions with our algorithms.

Future work on this project includes parallelizing our custom algorithms, and applying this clus-
tering pipeline to additional data from other cities and other protein sequences in the COVID-19
genome. While we found that we can effectively reduce our problem to just analyzing the spike
protein sequence, we believe there are meaningful results that can be obtained from other proteins.
Furthermore, we can analyze other cities, that, for example, have a larger number of labs in them or
have more data. England has the largest number of sequences in this database, and it is likely that we
can better detect mutations and travel patterns through those sequences.
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