
Champion Recommender System For
League of Legends

Young Seok Kim
University of Washington

tonykim7@uw.edu

Pradeep Prabhakar
University of Washington

prdp1992@uw.edu

Aniruddha Dutta
University of Washington

adutta29@uw.edu

Abstract

Drafting in Multiplayer Online Battle Arena (MOBA) has inherent complexity
and difficulties. In this project we propose a recommendation system for selecting
champions in a popular MOBA game called League of Legends. Specifically,
we propose an efficient algorithm to compute unbiased synergy and counter rela-
tionships that are normalized by popularity to capture the dynamic relationships
between various champions. We then build a recommendation system by fully
utilizing these synergy and counter relationships. Finally, in order to evaluate our
recommended champions, we propose novel metrics called Composite Win Rate
(CWR) and Upper-hand which is consistent with the recommendation objective
while capturing small differences between each team’s composite win rate. Our
recommendation system achieved 80.79% average Upper-hand using the sample
threshold of 20 matches.

1 Introduction

Multiplayer Online Battle Arena (MOBA) games refer to a sub-genre of real-time strategy games
wherein two teams compete against each other, with an objective to destroy the opponent’s base
structure. A typical game is played between two teams of 5 players, where every player selects
one champion/hero from a pool of over 100+ characters. Every champion has different abilities,
strengths and roles. Two major aspects of the game that dominate the outcome of the match are
the drafting phase (where players choose a champion) and the in-game mechanics. The widespread
popularity and competitive nature of two games in particular - DOTA 2 and League of Legends,
have attracted a variety of research, with hero recommendation systems being one of them. For this
project, we propose an algorithm to efficiently mine synergy and counter rules and build a subsequent
recommender system, to recommend champions for a team in League of Legends during the drafting
phase that maximizes the composite win rate.

2 Related Work

Previous work on hero-recommender systems were mostly based on two approaches - association
rule mining based on selection frequencies, and historical win rates.

Hanke and Chaimowicz (2017) proposed a recommender system for Hero line-ups by mining
association rules from historical line-ups and match results from DOTA2. They used Apriori
algorithm to extract the rules that satisfy some minimum support and minimum confidence thresholds.
The rules here are the frequent hero subsets that appear together either in the winning team (as allies)
or in opposite teams (as counters) thereby corresponding to two sets of recommendations for each
pick during the draft. Since their approach is based on frequency of champions co-occurring often
either as an ally or counter (popularity), the method may not necessarily take into consideration the
association that would maximize the win rates of the recommended picks.

Preprint. Under review.

Chen et. al proposed a Monte Carlo Tree Search (MCTS) based model for estimating the optimal
values of hero combinations, where they modeled the drafting between two teams as a combinatorial
game. The authors approximated the evaluation by using another model that predicts the win-rate of
specific 5vs5 matchup. The authors noted that they did not consider hero bans nor the ordering of the
picks.

3 Problem description

Ultimately, our recommendation system aims to provide champion recommendations during the
drafting phase in 5 vs 5 solo rank games in League of Legends that maximizes the expected win
probability, in which we approximated through composite win rate. (Although the same method can
be used in other Multiplayer Online Battle Arena games such as DOTA).

To describe this problem in detail, we first define the champions set, C, which is composed of the
champions that players can play in League of Legends. Every month or two, League of Legends
releases a new patch with some enhancements to the champion abilities. For our analysis, we focus
on the patch 10.9 which has 148 champions.

C = {Ahri,Ashe,Akali, Alistar, ..., Zyra}
|C| = 148

Each of the champion composition, h, is represented as a tuple of two sets of five champions. The
left side of the tuple is Blue team, and right side of the tuple is Red team. Formally,

h = ({c1, c2, c3, c4, c5}, {c6, c7, c8, c9, c10}) ∈ H where ci ∈ Cfor i = {1, ...10}

We find that there exists |H| =
(
148
5

)
×
(
143
5

)
≈ 2.566 × 1017 champion compositions. For each

of the champion composition, we assume that it is associated with a win probability. Formally, we
have a function P : H → (0, 1) that measures a win probability (of Blue team) for each champion
composition.

Our recommendation system will recommend one champion to the next drafting team, given a valid
incomplete champion composition. (Here, valid means that the incomplete composition that can
happen during drafting.) Note that in the drafting process, two teams alternate to pick heroes in a
“1-2-2-2-2-1” order, during which heroes already selected are visible to both teams.

For example, assume that we have a valid incomplete champion composition, h̄.

h̄ = ({Ahri}, {Pantheon, Zyra})
Then, we recommend a champion on Blue team (left side) that would make a good synergy with
champion, Ahri, while counters Pantheon and/or Zrya. These synergies and counters are defined and
described in more detail in Section 6.1, while maximizing the joint objective as a recommendation
system is described further in Section 6.2.

3.1 System components

Our recommendation system is composed of three different technical components.

1. Mining synergy and counter relationships
2. Champion recommendation system that utilizes synergy and counter relationships
3. Evaluation scheme to measure how well our recommendations behave on the test set

First, we propose an alternative to association rules for mining synergy and counter relationships and
an efficient algorithm to compute them. Second, our champion recommendation system recommends
champions that maximizes the composite win rate. Lastly, we propose intuitive metrics to measure
how our recommended teams behave on the test set.

4 Technical contribution
• To the best of our knowledge, this is the first champion recommendation system for

League of Legends.

2

• For mining synergy and counter rules, our approach corrects the bias for popularity through
normalization.

• We propose an efficient algorithm to calculate synergy and counter rules.
• Our recommendation system fully utilizes the metrics mined from synergy and counter

rules.
• We propose a novel and efficient evaluation scheme that is consistent with the recommenda-

tion objective to measure how the recommended teams behave on the test set.

5 Data collection

Riot games, who developed the game League of Legends, provides an official API to developers and
researchers to collect data from their servers.

5.1 Riot API

We used the following APIs.

• /lol/match/v4/matches/{matchId}
• /lol/match/v4/matchlists/by-account/{encryptedAccountId}
• /lol/summoner/v4/summoners/by-account/{encryptedAccountId}

The first API fetches information about the specific match that are uniquely identified by the
matchId. The second API fetches a list of matches for a specific account, identified by the
encryptedAccountId. The third API fetches a tier information for a specific player. We were
particularly interested in 5 vs 5 solo rank queue type since it is the most famous one in league of
legends and it is the queue type that we are considering in our problem formulation.

5.2 Pre-processing

Each of the API responds with a JSON serialized HTTPS response. We implemented multiple
pre-processing scripts to only collect a subset of the information in the matches data which had picks,
bans, spells, role, lane, accountID for all 10 players, and additional metadata information about the
match. Finally, we filtered for the most recent patch (10.9) and filtered for the 5 vs 5 solo rank queues.

6 Methodology

In this section, we describe specific approaches and algorithms to the three components of our system.

Definition of matches

Before we dive into methodology, we describe a match, m, which we have collected through the Riot
official API described in Section 5 as follows.

m = ({c1, c2, c3, c4, c5}, {c6, c7, c8, c9, c10}, b) ∈M

where b is a boolean value, either True or False that describes whether Blue team (left side) won or
not. Note that although this is very similar to champion composition described in Section 3, it is
different because it has extra win/lose information. Also, note that m is not symmetric in terms of
which team won because Blue team and Red team is not symmetric in League of Legends and we
wanted to preserve the asymmetry. Formally,

({c1, c2, c3, c4, c5}, {c6, c7, c8, c9, c10}, b) 6= ({c6, c7, c8, c9, c10}, {c1, c2, c3, c4, c5},¬b)

6.1 Synergy rules and Counter rules

6.1.1 Naive association rule method

We use association rules using the FP-Growth algorithm to recommend the champions for a particular
line-up in League of Legends, similar to Hanke and Chaimowicz (2017).

3

https://developer.riotgames.com/

The algorithm aims to find the rules which satisfy both a minimum support threshold and a minimum
confidence threshold. The “support” of the rule S(I ⇒ j) is the fraction of observations in the union
of items I and j in the complete item set K from which they were derived. The “confidence” of the
rule is its support divided by the support of the antecedent I .

Confidence(I ⇒ j) =
S(I ⇒ j)

S(I)

Since we want to recommend champions based on both allies and opponents composition, we extract
two sets of association rules: one for the associations between champions that won together(ally
team) and one for the champion that won against opposing champions(opponent team). As we want
to recommend champions for every pick turn in the drafting process, we require association rules of
champions given the number of champions already selected which ranges from 2 to a maximum of 5
in one team. The first champion is usually selected based on the bans and current patch meta.

For the allies set, we provide only the information of winning teams to the algorithm and extract any
association with size ranging from 2 to 5, with a minimum support of Smin = 0.00005 (at least 2
games).

For the opponents set, we provide the information of both teams to the algorithm and extract
associations between champions and their opponents. We extract 2-sized and 3-sized association
rules with a minimum support of Smin = 0.00005. It is highly unlikely for a champion to counter
all the opponent picks, so even if we are able to recommend a champion that counters 1-2 opponent
picks it will improve the team’s chances of wining.

For evaluation, we use these generated association rules on games from the test set to recommend
champions and calculate the ’measure of upper-hand’ for the recommended team.

6.1.2 Proposed new synergy and counter relationships

Naive association rules using the support threshold would bias the result towards popularity. For
example, consider a champion Miss Fortune, who is very popular and has a low win rate of 48%,
while another champion, Ahri,who is less popular, but has a higher win rate of 51%. Then, the naive
association rules with a support would bias the result towards the popularity and suggest Miss Fortune
as a better recommendation. However, since we are more concerned about the win probability, it
would be better to suggest Ahri.

popularity(ck) := P (ck ∈ m[0] ∨ ck ∈ m[1])

With this limitation in mind, we develop new measures synergy(ci, cj) and counter(ci → cj) that
are normalized by the popularity, which are also interpretable as conditional win probabilities.
synergy(ci, cj) := P ((ci, cj ∈ m[0] ∧m[2] = True) ∨ (ci, cj ∈ m[1] ∧m[2] = False))

=
|{m|(ci, cj ∈ m[0] ∧m[2] = True) ∨ (ci, cj ∈ m[1] ∧m[2] = False)}|

|{m|ci, cj ∈ m[0] ∨ ci, cj ∈ m[1]}|

=
|{m|ci, cj ∈ m[0] ∧m[2] = True}|+ |{m|ci, cj ∈ m[1] ∧m[2] = False}|

|{m|(ci, cj ∈ m[0])}|+ |{m|ci, cj ∈ m[1]}|
As we can see from the definition, synergy(ci, cj) is a conditional win probability given champion
ci and champion cj are on the same team. We can also exploit the property that the champions are
mutually exclusive to readily calculate this metric in our algorithm. (Two players cannot pick the
same champion in League of Legends solo ranked games)

counter(ci → cj) := P ((ci ∈ m[0] ∧ cj ∈ m[1] ∧m[2] = True) ∨ (ci ∈ m[1] ∧ cj ∈ m[0] ∧m[2] = False)

=
|{m|(ci ∈ m[0] ∧ cj ∈ m[1] ∧m[2] = True) ∨ (ci ∈ m[1] ∧ cj ∈ m[0] ∧m[2] = False)}|

|{m|(ci ∈ m[0] ∧ cj ∈ m[1]) ∨ (ci ∈ m[1] ∧ cj ∈ m[0])}|

=
|{m|(ci ∈ m[0] ∧ cj ∈ m[1] ∧m[2] = True)}|+ |{m|(ci ∈ m[1] ∧ cj ∈ m[0] ∧m[2] = False)}|

|{m|(ci ∈ m[0] ∧ cj ∈ m[1])}|+ |{m|(ci ∈ m[1] ∧ cj ∈ m[0])}|

Similarly, we define counter(ci → cj) as a conditional win probability given champion ci on the
reference team and champion cj on the opponent team.

4

Efficient algorithm to calculate synergy and counter

In order to efficiently calculate synergy and counter for all the champions, we propose an algorithm
to calculate the conditional probabilities. We exploit that the size of our itemset, or the number of
champions, |C|, is not quite large, compared to the number of matches, n, and assume that O(|C|2)
fits in memory.

Algorithm 1: Algorithm to calculate synergy and counter
Result: Write here the result
initialize S,Ts,C,Tc ∈ 0|C|×|C| ;
foreach m ∈M do

foreach ca, cb ∈ Cm
winner do

if a == b then
continue

end
S[a][b] += 1

end
end
foreach Cteam ∈ {cmwinner|m ∈M} ∪ {cmloser|m ∈M} do

foreach ca, cb ∈ Cteam do
if a == b then

continue
end
Ts[a][b] += 1

end
end
foreach m ∈M do

foreach (ca, cb) ∈ Cm
winner × Cm

loser do
C[a][b] += 1
Tc[a][b] += 1

end
end
foreach m ∈M do

foreach (ca, cb) ∈ Cm
loser × Cm

winner do
Tc[a][b] += 1

end
end
return S/Ts, C/Tc

This algorithm essentially runs in O(n) time where n is the number of matches. This is because
each of the inner for loop can be considered as a constant because

(
5
2

)
= 10 and 5× 5 = 25. This

inner for loop only scales with the number of players within a team. However, this is fixed as 5 in
League of Legends. The space (memory) complexity of this algorithm is O(|C|2) where C is the total
champions set.

6.2 Champion recommendation system

Approach 1 - Equally weighted sum

Using the synergy rules and counter rules described and computed in Section 6.1, we try to optimize
the following objective in order to recommend a champion, given a valid incomplete champion
composition, h = {Allies,Opponents}

argmax
c ∈ C

c 6∈Allies
c 6∈Opponents

c 6∈Bans

 ∑
a∈Allies

synergy(c, a) +
∑

o∈Opponents

counter(c, o)

 (1)

This distinguishes from the previous work by Hanke et al. where the authors chose a random champion
from a set of champion pools suggested by the association rules while our recommendation system

5

utilizes the actual rule metrics - synergy and counter. This objective function is also interpretable as
choosing a champion that has the highest average conditional win rate if we include the normalization
term. (The normalization term is excluded in the equation 1 above for simplicity. However, the
argmax result is equivalent). Here is the equivalent formulation that is interpretable.

Approach 2 - Weighted average by sample size

We observed that the synergies or counters sometimes have outliers (extremely low win probability
or extremely high win probability) due to small sample size. We wanted our objective to account for
this sample size, so we have formulated the following weighted average approach, which is similar to
Approach 1, but weighted by the sample size instead of equally taking the mean.

argmax
c ∈ C

c 6∈Allies
c 6∈Opponents

c 6∈Bans

(∑
a∈Allies synergy(c, a)×TS(c, a) +

∑
o∈Opponents counter(c, o)×TC(c, o)∑

a∈Allies TS(c, a) +
∑

o∈Opponents TC(c, o)

)

6.3 Evaluation

6.3.1 Supervised learning for match result prediction

One way to evaluate our proposed recommendation for the champion lineup (blue team) is to predict
whether the lineup has a higher chance of winning the match compared to the red team. In order
to build this prediction model, we perform supervised learning wherein we make use of a function
approximator to train the model, an approach similar to Hanke and Chaimowicz (2017).

Given we have the champion lineups of the two teams(a pregame feature) and the match result, we
train multilayer perceptron (MLP) and gradient boosted tree models to learn the relationship between
the champion composition and the match outcome.

For each match, the input value, I ∈ R|C| is given by the following equation.

Ii :=

1 if ci ∈ blue
−1 if ci ∈ red
0 otherwise

Similarly, for each match, the output is represented as follows:

O :=

{
1 if blue won
0 otherwise

With this approach, we trained multiple models with different hyper-parameters, but no model
achieved a test accuracy of 60% or greater. We observed the same results even after considering
games with highly ranked players (high ELO games). This experiment is included in Appendix A.

Based on our experiments, we speculate that this is due to the balanced nature of abilities between
the champions in League of Legends, as no champion is significantly strengthened or weakened in
any given patch. In order to overcome this limitation, we have come up with a set of measures called
upper-hand and composite win rate that help us to capture even the slightest advantage in conditional
win rates between the teams. We describe this further in the next subsection. (Section 6.3.2)

6.3.2 Measure of upper-hand based on synergies and counters

composite win rate (CWR)

We propose an alternative approach wherein we first calculate a metric called composite win rate
(CWR) for both the recommended lineup and the opponent lineup, defined as the average of synergy
win rates and counter win rates, formulated as follows:

6

CWR(A,O) =

∑
a1∈A

∑
a2∈A
a16=a2

synergy(a1, a2) +
∑
a∈A

∑
o∈O

counters(o, a)

(|A|
2

)
+ |A| × |O|

The composite win rate measure captures how well the the champions in a given lineup play with
each other and how well they play against the champions in the opponent team. A and O here refers
to Allies and Opponents, respectively.

An interesting note on composite win rate is that we can view our objective for recommendation
in equation 1 as a greedy objective to achieve higher overall CWR. In other words, our algorithm
described in Section 6.2 is greedily optimizing the CWR of the allies team. We can derive the term in
1 by subtracting the CWR of the champion composition before the recommendation from the CWR
of the champion composition with the recommended champion.

upper-hand

Given we have the composite win rate for each team, we define a metric called upper-hand, an
indicator variable that indicates whether the recommended team’s composite win rate is higher than
the opponent team’s composite win rate, defined as follows:

upper-hand(A,O) =

{
1, if CWR(A,O) > CWR(O,A)

0, if CWR(A,O) ≤ CWR(O,A)

While the recommendation is based on the synergy and counter mined through the training data, the
composite win rate is calculated based on the synergy and counter mined through the test data, and so
would be a good indicator of the performance of the recommended lineup. The process flow is as
follows:

1. Split the data into train and test.
2. Calculate the synergy matrix and counter matrix for both the train and the test data
3. Pick a random champion for the opponent team. We pick a champion for the allies team

based on the method described in Section 6.2.
4. Repeat (3) for each champion in the lineups
5. For evaluation, calculate the CWR for each team based on the test data and assign 1 as

upper-hand to the allies if it has a higher composite win rate and 0 otherwise
6. Repeat steps (3) through (5) to get the average upper-hand for the allies team

7 Experimental Results

7.1 Synergy and Counter rules

7.1.1 Using association rules with FP-Growth algorithm

Using the naive approach described in Section 6.1.1, we are able to generate association rules for ally
synergy and counters using FP-Growth algorithm. We sort them by lift in descending order.

antecedent consequent confidence lift
[Leona, Nautilus] [Karthus] 0.6666 59.9599
[Hecarim, Rakan] [Xayah] 0.75 26.9301
[Taric, Zyra] [MasterYi] 1.0 25.1952
[Syndra, Leona, Ashe] [Olaf] 0.8 22.9892
[Rakan, Cassiopeia] [Xayah] 0.5555 19.9482

Table 1: Synergy association rules mined with FP-growth algorithm

7

antecedent consequent confidence lift
[Nautilus, Graves, MissFortune] [Chogath] 0.2 50.9047
[Sivir, Shyvana] [Zac] 0.2105 24.0147
[Illaoi, Aphelios] [Ashe] 0.3333 23.7103
[Mordekaiser, Nami, Ezreal] [Jax] 0.2 19.4363

Table 2: Counter association rules mined with FP-growth algorithm

Now considering that in a draft, we want to recommend champions for the 3rd pick turn, given we
have information on 2 allies and 2 enemy picks. Assuming the ally picks = [Taric, Zyra] and enemy
picks = [Illaoi, Aphelios], we can recommend the following champions: [MasterYi, Ashe]

To evaluate the recommendation system, we recommend champions for team blue using the team
red picks from the test data-set and calculate the average upper-hand for recommended team. We
observed that the recommended team had upper-hand in 53% of the matches in the test dataset.

7.1.2 Using proposed new synergy-counter mining algorithm

Using a proposed method and algorithm described in Section 6.1.2, we find synergy rules and counter
rules for all 148× 148 scenarios. Table 3 shows the top 5 synergy rules in terms of the win rate.

Champion 1 Champion 2 win rate (%) Win count Total Count
Fizz Ivern 86.36 19 22
Janna Kennen 81.48 22 27
Ornn Xin Zhao 79.17 19 24
Elise Graves 78.26 18 23
Amumu Zilean 76.92 20 26

Table 3: Top 5 Synergy rules mined with the proposed algorithm using sample threshold 20

This means that based on the matches in our train set, when champion Fizz and champion Ivern is on
the same team, that team won 86.36% of the time. Here, we report the top 5 synergies for champions
that played a minimum of 20 matches together. However, this sample threshold can be adjusted
depending on which method we use for the recommendation system. We also report the result based
on varying this threshold in future section.

Ally Champion Opponent Champion win rate (%) Win count Total Count
Qiyana Tryndamere 81.82 18 22
Azir Malzahar 80.95 17 21
Qiyana Shen 80.00 16 20
Kalista Warwick 79.31 23 29
Nunu and Willump Cho’Gath 79.17 19 24
Table 4: Top 5 Couter rules mined with the proposed algorithm using sample threshold 20

Here, when champion Qiyana is on one team and champion Tryndamere is on the another team, the
team with champion Qiyana won 81.82% of the time among the matches in the training data. Again,
we report the top 5 counters for champions that played a minimum of 20 matches. A minor note is
that "Nunu and Willump" is a name of a single champion in League of Legends.

7.2 Recommendation System Evaluation

Following the method and metrics described in Section 6.3.2, we report the upper-hand metric,
by varying the sample threshold (minimum number of matches) for each of the two approaches
described in Section 6.2 and 6.2. The baseline average upper-hand shown by the orange line is for
two randomly-assigned teams, whereas the average upper-hand for the recommended team using the
proposed approach is in blue line, which is measured by the procedure described in Section 6.3.2.
The graph is read as follows: when the sample threshold applied is 15, the composite win rate for
the recommended team is greater than the composite win rate of the opponent team for 70% of the
matches, as seen in Figure 1.

8

Figure 1: Average Upper-hand using un-weighted average

Figure 2: Average Upper-hand using weighted average by sample size

For both approaches, we see that the more restrictive we are in calculating the synergies and counters
by increasing the minimum requirement, the higher are the upper-hand averages. This could be
attributed to the fact that the synergies and counters on both the training and test sets are likely to
exhibit similar behaviors with more matches.

However, for higher thresholds, although the upper-hand average approaches towards 1, in practice,
we would use a threshold that is not too large as that would eliminate a lot of the champions in the
training samples in the system and therefore, the system’s recommendations would neither be diverse
nor flexible.

Since we cannot just use the configuration with the highest upper-hand value, it can be easily seen
that upper-hand metric is not the perfect metric. It does not fully capture the champion relationships
(synergies and counters) if we use a higher threshold. However, it does capture the small difference
in the CWR metric, which is what we want for our recommendation system.

9

8 Challenges

Data collection process

Data collection process was an exhausting task due to the rate limit imposed by Riot Games. Specifi-
cally, Riot games allows only 100 requests every 2 minutes and we had to use three different APIs
simultaneously in order to collect more matches dataset with the tier information for each of the
users. In addition, the API key expires every 24 hours. All these together significantly slowed our
data collection process. However, we managed to collect approximately 130,000 games which, after
filtering for patch 10.9 came down to 65,847 matches.

Evaluation models

While champion line ups are important in any MOBA game, game prediction based on just the
champion lineups as input features, in general, has been a challenging problem, as it is difficult for
the models to learn. Despite trying multiple models on the full dataset, we achieved 52% ∼ 54% test
accuracy. We hypothesised that the accuracies might improve if we only consider games played by
high tier players. However, the models still gave similar results. This compelled us to come up with
an alternative approach for evaluation, which is also inline with the objective of our recommendation
system.

9 Conclusion

For mining association rules, we used FP-growth as a naive algorithm and observed that the rec-
ommended team had upper-hand in 53% of the matches in test set. This is only marginally higher
than the baseline upper-hand of 50% and can be attributed to the fact that the recommendations are
susceptible to be biased by champion popularity ignoring champion synergies and counters. The
algorithm also restricts the pool of recommended champions to only the most popular ones which are
most likely to be banned in high skill-tier matches.

We formulated a new algorithm to compute synergy and counter matrices, which were utilized by the
recommendation system. For evaluation,we formulated new metrics called composite win rate and
Upper-hand as an alternative to win-prediction using supervised learning approach. This approach
is consistent with our recommendation system objective while still capturing the subtle composite
win rate differences between each team. The approach achieved an upper-hand of 80.72% for the
recommended team,wherein the synergy and counters were calculated only for the set of champions
who played a minimum of 20 matches either as allies or opponents. While the composite win rate is
one of the ways to evaluate the strength of a team composition, further improvements can be made
to the metric in future work. For example, we can modify our CWR metric to have good properties
(metric(A,O) + metric(O,A) = 1) by adding opponent’s synergy term.

∑
a1∈A

∑
a2∈A
a16=a2

synergy(a1, a2) +
∑
a∈A

∑
o∈O

counters(o, a) +
∑

o1∈O

∑
o2∈O
o16=o2

(1− synergy(o1, o2))

(|A|
2

)
+ |A| × |O|+

(|O|
2

)

Also, it has to be noted that for the experiments, the opponent picks are completely randomized
and variations such as restricting the opponent picks within top N counters/synergies for every
recommendation can be explored in future work.

10

Distribution of work

Each of us did similar amount of work on fetching the data and writing the report, and spent significant
time on the following activities.

• Young Seok: Formulating the algorithms, evaluation metrics, early prototype implementation
of the recommendation system, implementing data fetching script.

• Pradeep: Supervised model implementation, running and coding experiments for evaluation
metrics

• Aniruddha: Implementing and formulating approach for FP-growth algorithms, experiments
for FP-growth algorithm.

A Appendices

A.1 Supervised models for evaluation

For evaluation, we used neural network and Gradient Boosting method to train the model. For neural
network, the results are based on the following configuration.

• Hidden layer: 1

• Number of nodes : 75

• Dropout: 50% for the hidden layer

The below table shows the best results based on test accuracy for the above configuration

Skill level # Games Train accuracy % Test accuracy %
All 65,847 70.79 51.78
Gold + 34,624 77.25 51.52
Platinum + 17,987 83.6 52.36
Diamond + 9,570 90.54 50.84
Table 5: Train-test accuracies of MLP model on various skill levels

For XGBoost classifier, the results are based on the following configuration.

• Number of estimators(trees) : 500

• lambda (l2 regularization parameter) : 0.1

• max tree depth : 6

The below table shows the best results based on test accuracy for the above configuration.

Skill level # Games Train accuracy % Test accuracy %
All 65,847 55.98 53.13
Gold + 34,624 56.91 53.37
Platinum + 17,987 59.3 53.31
Diamond + 9,570 66.9 52.25

Table 6: Train-test accuracies of XGBoost model on various skill levels

As observed above, both MLP and XGboost models failed to generalize well on the test data across
the skill levels and our hypothesis that the accuracies might improve for high ELO games did not
hold, as the models were not able to learn the outcomes just based on the line ups of the two teams.

11

References

[1] Hanke, L., & Chaimowicz, L. (2017). A Recommender System for Hero Line-Ups in MOBA Games. AIIDE.

[2] Chen, Z., Nguyen, T.D., Xu, Y., Amato, C., Cooper, S., Sun, Y., & El-Nasr, M.S. (2018). The art of drafting:
a team-oriented hero recommendation system for multiplayer online battle arena games. Proceedings of the 12th
ACM Conference on Recommender Systems.

[3] Araujo, V., Rios, F., & Parra, D. (2019). Data mining for item recommendation in MOBA games. RecSys
’19.

[4] Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. SIGMOD ’00.

12

	Introduction
	Related Work
	Problem description
	System components

	Technical contribution
	Data collection
	Riot API
	Pre-processing

	Methodology
	Synergy rules and Counter rules
	Naive association rule method
	Proposed new synergy and counter relationships

	Champion recommendation system
	Evaluation
	Supervised learning for match result prediction
	Measure of upper-hand based on synergies and counters

	Experimental Results
	Synergy and Counter rules
	Using association rules with FP-Growth algorithm
	Using proposed new synergy-counter mining algorithm

	Recommendation System Evaluation

	Challenges
	Conclusion
	Appendices
	Supervised models for evaluation

