
CSE 547: Machine Learning for Big Data Spring 2021

Problem Set 4
Please read the homework submission policies here.

Assignment Submission All students should submit their assignments electronically via
GradeScope. No handwritten work will be accepted. Math formulas must be typeset using
LATEX or other word processing software that supports mathematical symbols (E.g. Google
Docs, Microsoft Word). Simply sign up on Gradescope and use the course code V84RPB.
Please use your UW NetID if possible.

For the non-coding component of the homework, you should upload a PDF rather than
submitting as images. We will use Gradescope for the submission of code as well. Please
make sure to tag each part correctly on Gradescope so it is easier for us to grade. There
will be a small point deduction for each mistagged page and for each question that includes
code. Put all the code for a single question into a single file and upload it. Only files in
text format (e.g. .txt, .py, .java) will be accepted. There will be no credit for coding
questions without submitted code on Gradescope, or for submitting it after the
deadline, so please remember to submit your code.

Coding You may use any programming languages and standard libraries, such as NumPy
and PySpark, but you may not use specialized packages and, in particular, machine learning
libraries (e.g. sklearn, TensorFlow), unless stated otherwise. Ask on the discussion board
whether specific libraries are allowed if you are unsure.

Late Day Policy All students will be given two no-questions-asked late periods, but only
one late period can be used per homework and cannot be used for project deliverables. A
late-period lasts 48 hours from the original deadline (so if an assignment is due on Thursday
at 11:59 pm, the late period goes to the Saturday at 11:59pm Pacific Time).

Academic Integrity We take academic integrity extremely seriously. We strongly encour-
age students to form study groups. Students may discuss and work on homework problems
in groups. However, each student must write down the solutions and the code independently.
In addition, each student should write down the set of people whom they interacted with.

Discussion Group (People with whom you discussed ideas used in your answers):

On-line or hardcopy documents used as part of your answers:

I acknowledge and accept the Academic Integrity clause.

(Signed)

https://courses.cs.washington.edu/courses/cse547/21sp/info.html
https://www.cs.washington.edu/academics/misconduct
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1 Implementation of SVM via Gradient Descent (30

points)

Here, you will implement the soft margin SVM using different gradient descent methods as
described in the section 12.3.4 of the textbook. Our goal for this problem is to investigate
the convergence of different gradient descent methods on a sample dataset and think about
the characteristics of these different methods that lead to different performances.

To recap, given a dataset of n samples D =
{(
x(i), y(i)

)}n
i=1

, where every d-dimensional

feature vector x(i) ∈ Rd is associated with a label y(i) ∈ {−1, 1}, to estimate the parameters
θ = (w, b) of the soft margin SVM, we can minimize the loss function:

f(w, b;D) =
1

2
‖w‖22 + C

∑
(x(i),y(i))∈D

max
{

0, 1− y(i)(w · x(i) + b)
}

=
1

2
‖w‖22 + C

∑
(x(i),y(i))∈D

L(x(i), y(i);θ)

In order to minimize the function, we first obtain the gradient with respect to θ. The partial
derivative with respect to wj, the j-th entry in the vector w, is:

∂wj
f(w, b;D) =

∂f(w, b;D)

∂wj
= wj + C

∑
(x(i),y(i))∈D

∂L(x(i), y(i);θ)

∂wj
(1)

where

∂L(x(i), y(i);θ)

∂wj
=

{
0 if y(i)

(
w · x(i) + b

)
≥ 1

−y(i)x(i)j otherwise.

and the partial derivative with respect to b is:

∂bf(w, b;D) =
∂f(w, b;D)

∂b
= C

∑
(x(i),y(i))∈D

∂L(x(i), y(i);θ)

∂b
(2)

where

∂L(x(i), y(i);θ)

∂b
=

{
0 if y(i)

(
w · x(i) + b

)
≥ 1

−y(i) otherwise.

Since the direction of the gradient is the direction of steepest ascent of the loss function,
gradient descent proceeds by iteratively taking small steps along the direction opposite to
the direction of gradient. The general framework of gradient descent is given in Algorithm
1.
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Algorithm 1 General Gradient Descent

Parameters: learning rate η, batch size β.

1: Randomly shuffle the training data . Only for SGD/MBGD
2: k ← 0
3: for t = 1, 2, . . . do
4: B ←

{(
x(i), y(i)

)
: βk + 1 ≤ i ≤ min{β(k + 1), n}

}
5: for j = 1, . . . , d do
6: w

(t)
j ← w

(t−1)
j − η · ∂wj

f(w(t−1), b(t−1);B) . Computed by equation 1
7: end for
8: b(t) ← b(t−1) − η · ∂bf(w(t−1), b(t−1);B) . Computed by equation 2
9: k ← (k + 1 mod dn/βe)
10: if convergence criteria reached then
11: break
12: end if
13: end for

Task: Implement the SVM algorithm using the following gradient descent variants.

For all the variants use C = 100, w(0) = 0, b(0) = 0. For all other parameters, use the values
specified in the description of the variant.

Note: update the parameters w and b on iteration t using the values computed on iteration
t− 1. Do not update using values computed in the current iteration!

1. Batch Gradient Descent (BGD): When the β = n, in every iteration the algorithm
uses the entire dataset to compute the gradient and update the parameters.

As a convergence criterion for batch gradient descent we will use ∆
(t)
%loss < ε, where

∆
(t)
%loss =

|f(w(t−1), b(t−1);D)− f(w(t), b(t);D)|
f(w(t−1), b(t−1);D)

× 100 (3)

Set η = 3 · 10−7, ε = 0.25.

2. Stochastic Gradient Descent (SGD): When β = 1, in every iteration the algorithm
uses one training sample at a time to compute the gradient and update the parameters.

As a convergence criterion for stochastic gradient descent we will use ∆
(t)
loss < ε, where

∆
(t)
loss = 1

2
∆

(t−1)
loss + 1

2
∆

(t)
%loss, (4)

t is the iteration number, ∆
(t)
%loss is same as above (equation 3) and and ∆

(0)
loss = 0.

Use η = 0.0001, ε = 0.001.

3. Mini-Batch Gradient Descent (MBGD): In every iteration the algorithm uses
mini-batches of β samples to compute the gradient and update the parameters.
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As a convergence criterion for mini-batch gradient descent we will use ∆
(t)
loss < ε, where

∆
(t)
loss is the same as above (equation 4) and ∆

(0)
loss = 0

Use η = 10−5, ε = 0.01 and β = 20.

Task: Run your implementation on the data set in svm/data. The data set contains the
following files :

1. features.txt : Each line contains the features (comma-separated values) of a single
sample. It has 6414 samples (rows) and 122 features (columns).

2. target.txt : Each line contains the target variable (y = -1 or 1) for the corresponding
row in features.txt.

Task: Plot the value of the loss function f(w(t), b(t);D) vs. the iteration number t starting
from t = 0. Label the plot axes. The diagram should have graphs from all the three variants
on the same plot. Report the total time (wall clock time, as opposed to the number of
iterations) each of the gradient descent variants takes to converge. What do you infer from
the plots and the time for convergence? Explain using 4-6 sentences.

Sanity Check 1: The value of the loss function at iteration number t = 0 must be around
641,400.

Sanity Check 2: Batch GD should converge in 10-300 iterations and SGD between 500-3000
iterations with Mini Batch GD somewhere in-between. However, the number of iterations
may vary greatly due to randomness. If your implementation consistently takes longer, there
might be a bug.

Sanity Check 3: The expected total run time for all 3 methods is around 5-15 minutes but
might vary depending on the implementation.

What to submit

(i) Plot of f(w(t), b(t);D) vs. the number of updates (t). Total time taken for convergence
by each of the gradient descent variants. Interpretation of plot and convergence times.

(ii) Submit the code to Gradescope.

2 Decision Trees (25 points)

In this question we are going to focus on decision trees, manually follow the algorithm,
and investigate the decisions the algorithm makes. Our goal is to justify the steps of the
algorithm and investigate the redundancy in the space of decision trees.



CSE 547: Mining Learning for Big Data - Problem Set 4 5

(a) Decision Boundaries [10 Points]

Consider the following decision tree:

Figure 1: Decision tree 1

1. [4 points] Draw the decision boundaries defined by this tree. Each leaf of the tree is
labeled with a letter. Write this letter in the corresponding region of instance space
and label the axes. Your solution should look like Figure 2, where you will replace the
boundary thresholds and labels based on the provided decision tree.

Figure 2: Example of a decision boundary

2. [6 points] Give another decision tree that is different from decision tree in Figure
1 but defines the same decision boundaries. This demonstrates that the space of
decision trees is syntactically redundant. Would this redundancy affect the accuracy
of the learned trees? What are potential benefits of this redundancy? (i.e., Does it
increase the computational complexity of finding an accurate tree?) Explain using 3-5
sentences.
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(b) Building A Decision Tree [5 Points]

Consider the training samples in Figure 3, where A, B, C denote three different features and
Y denotes the output we want to predict:

Figure 3: Training samples

What feature would be chosen for the split at the root of a decision tree using the Information
Gain criterion? Please show your calculations and explain your reasoning. What is the
relationship between the selected feature and outcome Y?

(c) Random Splitting [10 Points]

In the basic decision tree algorithm, we choose the feature/value pair with the maximum
Information Gain (i.e., IG(Y |X) = H(Y )−H(Y |X)) as the criterion to use at each internal
node of the decision tree. Suppose we modified the algorithm to choose at random from
among those feature/value combinations that had non-zero information gain, but that we
kept all other parts of the algorithm unchanged.

1. [5 points] Prove that if a splitting feature/value combination has non-zero information
gain at an internal node, then at least one training example must be sent to each of
the child nodes.

Hint: You may prove the contrapositive of the statement instead, that is, if all examples
are sent to one of the child nodes (they have the same feature/value pair) then the
information gain is zero.

2. [5 points] How do you think this change (i.e., choosing at random from among those
feature/value combinations that have non-zero information gain) would affect the ac-
curacy of the decision trees produced on average? To achieve the same accuracy, how
are the trees different (e.g. size) on average? Why? Explain using 3-5 sentences.

What to submit:

(i) Figure of the decision boundary, figure of the alternative decision tree, and respective
interpretation [part (a)].
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(ii) The selected feature and the respective interpretation [part (b)].

(iii) Proof for the statement in question 1 and answer to question 2 [part (c)].

3 Data Streams (45 points)

In this question, we are going to follow an algorithm for determining the approximate fre-
quencies of the unique items in a data stream. We will specifically investigate how we can
get a feasible approximation that uses less space than the naive solution but is still a good
estimate of the actual frequencies. We will also experiment with a real stream dataset to
empirically investigate our claims.

You are an astronomer at the Space Telescope Science Institute in Baltimore, Maryland, in
charge of the petabytes of imaging data they recently obtained. According to the news report
linked in the previous sentence, “...The amount of imaging data is equivalent to two billion
selfies, or 30,000 times the total text content of Wikipedia. The catalog data is 15 times the
volume of the Library of Congress.”

This data stream has images of everything out there in the universe, ranging from stars,
galaxies, asteroids, to all kinds of awesome exploding/moving objects. Your task is to de-
termine the approximate frequencies of occurrences of different (unique) items in this data
stream.

We now introduce our notation for this problem. Let S = 〈a1, a2, . . . , at〉 be the given
data stream of length t. Let us denote the items in this data stream as being from the set
{1, 2, . . . , n}. For any 1 ≤ i ≤ n, we denote F [i] to be the number of times i has appeared
in S. Our goal is then to have good approximations of the values F [i] for all 1 ≤ i ≤ n at
all times.

The näıve way to do this is to just keep the counts for each item 1 ≤ i ≤ n separately.
However, this will require O(n) space which, in our application, is clearly infeasible. We
shall see that it is possible to approximate these counts using a much smaller amount of
space. To do so, we consider the algorithm explained below.

Algorithm. The algorithm has two parameters δ and ε > 0, and
⌈
log 1

δ

⌉
independent hash

functions
hj : {1, 2, . . . , n} → {1, 2, . . . ,

⌈e
ε

⌉
}.

Note that in this problem, log denotes the natural logarithm. For each bucket b of each hash
function j, the algorithm has a counter cj,b that is initialized to zero.

As each element i arrives in the data stream, it is hashed by each of the hash functions, and
the count for the j-th hash function cj,hj(i) is incremented by 1.

For any 1 ≤ i ≤ n, we define F̃ [i] = minj{cj,hj(i)} as our estimate of F [i].

Task. The goal is to show that F̃ [i] as defined above provides a good estimate of F [i].

https://phys.org/news/2019-01-world-largest-digital-sky-survey.html
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(a) [4 Points]

What is the memory usage of this algorithm (in Big-O notation)? Give a one or two line
justification for the value you provide.

(b) [5 Points]

Justify that for any 1 ≤ i ≤ n:
F̃ [i] ≥ F [i].

(c) [12 Points]

Prove that for any 1 ≤ i ≤ n and 1 ≤ j ≤ dlog(1
δ
)e:

E
[
cj,hj(i)

]
≤ F [i] +

ε

e
t,

where, as mentioned, t is the length of the stream.

(d) [12 Points]

Prove that:
P
[
F̃ [i] ≤ F [i] + εt

]
≥ 1− δ.

Hint: Use Markov inequality and the independence of hash functions.

Based on the proofs in parts (b) and (d), it can be inferred that F̃ [i] is a good approximation
of F [i] for any item i such that F [i] is not very small (compared to t). In many applications
(e.g., when the values F [i] have a heavy-tail distribution), we are indeed only interested in
approximating the frequencies for items which are not too infrequent. We next consider one
such application.

(e) [12 Points]

Warning. This implementation question requires substantial computation time. Python
implementation is reported to take 15min - 1 hour. Therefore, we advise you to start early.

Dataset. The dataset in streams/data contains the following files:

1. words stream.txt Each line of this file is a number, corresponding to the ID of a word
in the stream.
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2. counts.txt Each line is a pair of numbers separated by a tab. The first number is
an ID of a word and the second number is its associated exact frequency count in the
stream.

3. words stream tiny.txt and counts tiny.txt are smaller versions of the dataset
above that you can use for debugging your implementation.

4. hash params.txt Each line is a pair of numbers separated by a tab, corresponding
to parameters a and b which you may use to define your own hash functions (See
explanation below).

Instructions. Implement the aforementioned algorithm and run it on the dataset with
parameters δ = e−5, ε = e × 10−4. (Note: with this choice of δ you will be using 5 hash
functions - the 5 pairs (a, b) that you’ll need for the hash functions are in hash params.txt).

Then for each distinct word i in the dataset, compute the relative error Er[i] = F̃ [i]−F [i]
F [i]

and

plot these values as a function of the exact word frequency F [i]
t

. You do not have to
implement the algorithm in Spark.

The plot should use a logarithm scale both for the x and the y axes, and there should be
ticks to allow reading the powers of 10 (e.g. 10−1, 100, 101 etc...). The plot should have a
title, as well as the x and y axis labels. The exact frequencies F [i] should be read from the
counts file. Note that words of low frequency can have a very large relative error. That is not
a bug in your implementation, but just a consequence of the bound we proved in question
(a).

Answer the following question by reading values from your plot: What is an approximate
condition on a word frequency in the document to have a relative error below 1 = 100 ?

Hash functions. You may use the following hash function (see example pseudocode),
with p = 123457, a and b values provided in the hash params file and n buckets (which is
equivalent to

⌈
e
ε

⌉
) chosen according to the specification of the algorithm. In the provided

file, each line gives you a, b values to create one hash function.

# Returns hash(x) for hash function given by parameters a, b, p and n_buckets

def hash_fun(a, b, p, n_buckets, x) {

y = x [modulo] p

hash_val = (a*y + b) [modulo] p

return hash_val [modulo] n_buckets

}

Note: This hash function implementation produces outputs of value from 0 to (n buckets−
1), which is different from our specification in the Algorithm part. You can either keep
the range as {0, ..., n buckets− 1}, or add 1 to the hash result so the value range becomes
{1, ..., n buckets}, as long as you stay consistent within your implementation.
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What to submit

(i) Expression for the memory usage of the algorithm and justification. [part (a)]

(ii) Proofs for parts (b)-(d).

(iii) Log-log plot of the relative error as a function of the frequency. An approximate
condition on a word frequency to have a relative error below 1. [part (e)]

(iv) Submit the code to Gradescope. [part (e)]
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