Remember: No lecture next Tuesday –
Project group meetings instead

Mining Data Streams
(Part 2)
Today’s Lecture

- More algorithms for streams:
 - (1) Filtering a data stream: **Bloom filters**
 - Select elements with property \(x \) from stream
 - (2) Counting distinct elements: **Flajolet-Martin**
 - Number of distinct elements in the last \(k \) elements of the stream
 - (3) Estimating moments: **AMS method**
 - Estimate std. dev. of last \(k \) elements
(1) Filtering Data Streams
Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which tuples of stream are in S

- Obvious solution: Hash table
 - But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream
Applications

- **Example: Email spam filtering**
 - We know 1 billion “good” email addresses
 - Or, each user has a list of trusted addresses
 - If an email comes from one of these, it is **NOT** spam

- **Publish-subscribe systems**
 - You are collecting lots of messages (news articles)
 - People express interest in certain sets of keywords
 - Determine whether each message matches user’s interest

- **Content filtering:**
 - You want to make sure the user does not see the same ad multiple times

- **Web cache filtering:**
 - Has this piece of content been requested before? Then cache it now.
First Cut Solution (1)

Given a set of keys S that we want to filter

- Create a **bit array B** of n bits, initially all **0s**
- Choose a **hash function h** with range $[0,n)$
- Hash each member of $s \in S$ to one of n buckets, and set that bit to **1**, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to **1**
 - Output a if $B[h(a)] == 1$
First Cut Solution (2)

- Creates false positives but no false negatives
 - If the item is in S we surely output it, if not we may still output it

Output the item since it may be in S. Item hashes to a bucket that at least one of the items in S hashed to.

Drop the item.
It hashes to a bucket set to 0 so it is surely not in S.

Item hashes to a bucket that at least one of the items in S hashed to.

Item hashes to a bucket that at least one of the items in S hashed to.
First Cut Solution (3)

- $|S| = 1$ billion email addresses
 $|B| = 1$GB = 8 billion bits

- If the email address is in S, then it surely hashes to a bucket that has the bit set to 1, so it always gets through (no false negatives)

- Approximately $1/8$ of the bits are set to 1, so about $1/8^{th}$ of the addresses not in S get through to the output (false positives)
 - Actually, less than $1/8^{th}$, because more than one address might hash to the same bit
More accurate analysis for the number of false positives

Consider: If we throw \(m \) darts into \(n \) equally likely targets, what is the probability that a target gets at least one dart?

In our case:

- **Targets** = bits/buckets
- **Darts** = hash values of items
Analysis: Throwing Darts (2)

- We have \(m \) darts, \(n \) targets
- What is the probability that a target gets at least one dart?

\[
1 - (1 - 1/n) = \frac{n}{n} \cdot \left(1 - \frac{1}{n}\right)
\]

Equals \(1/e \) as \(n \to \infty \)

Equivalent

\[
1 - e^{-m/n}
\]

1 - (1 - 1/n)

Probability some target \(X \) not hit by a dart

Probability at least one dart hits target \(X \)

Approximation is especially accurate when \(n \) is large
Analysis: Throwing Darts (3)

- Fraction of 1s in the array $B =$
 $= \text{probability of false positive} = 1 - e^{-m/n}$

- Example: 10^9 darts, $8 \cdot 10^9$ targets
 - Fraction of 1s in $B = 1 - e^{-1/8} = 0.1175$
 - Compare with our earlier estimate: $1/8 = 0.125$
Bloom Filter

- Consider: $|S| = m, |B| = n$
- Use k independent hash functions h_1, \ldots, h_k
- Initialization:
 - Set B to all 0s
 - Hash each element $s \in S$ using each hash function h_i, set $B[h_i(s)] = 1$ (for each $i = 1, \ldots, k$)
- Run-time:
 - When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all $i = 1, \ldots, k$ then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function $h_i(x)$
 - Otherwise discard the element x
What fraction of the bit vector B are 1s?

- Throwing \(k \cdot m \) darts at \(n \) targets
- So fraction of 1s is \((1 - e^{-km/n}) \)

But we have \(k \) independent hash functions and we only let the element \(x \) through if all \(k \) hash elements to a bucket of value 1

So, false positive probability = \((1 - e^{-km/n})^k \)
Bloom Filter – Analysis (2)

- \(m = 1 \) billion, \(n = 8 \) billion
 - \(k = 1 \): \((1 - e^{-1/8}) = 0.1175\)
 - \(k = 2 \): \((1 - e^{-1/4})^2 = 0.0493\)

- What happens as we keep increasing \(k \)?

- Optimal value of \(k \): \(n/m \ln(2) \)
 - In our case: Optimal \(k = 8 \ln(2) = 5.54 \approx 6 \)
 - Error at \(k = 6 \): \((1 - e^{-3/4})^6 = 0.0216\)

Optimal \(k \): \(k \) which gives the lowest false positive probability
Bloom Filter: Wrap-up

- Bloom filters allow for filtering / set membership
- **Bloom filters guarantee no false negatives, and use limited memory**
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized

- Is it better to have 1 big B or k small Bs?
 - It is the same: \((1 - e^{-km/n})^k\) vs. \((1 - e^{-m/(n/k)})^k\)
 - But keeping 1 big B is simpler
(2) Counting Distinct Elements
Counting Distinct Elements

- **Problem:**
 - Data stream consists of a universe of elements chosen from a set of size N
 - Maintain a count of the number of distinct elements seen so far

- **Obvious approach:**
 Maintain the set of elements seen so far
 - That is, keep a hash table of all the distinct elements seen so far
Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)

- How many different Web pages does each customer request in a week?

- How many distinct products have we sold in the last week?
Real problem: What if we do not have space to maintain the set of elements seen so far?

Estimate the count in an unbiased way

Accept that the count may have a little error, but limit the probability that the error is large
Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least $\log_2 N$ bits
- For each stream element a, let $r(a)$ be the number of trailing 0s in $h(a)$
 - $r(a) = \text{position of first 1 counting from the right}$
 - E.g., say $h(a) = 12$, then 12 is 1100 in binary, so $r(a) = 2$
- Record $R = \text{the maximum } r(a) \text{ seen}$
 - $R = \max_a r(a)$, over all the items a seen so far
- Estimated number of distinct elements $= 2^R$
Why It Works: Intuition

- **Rough intuition why Flajolet-Martin works:**
 - $h(a)$ hashes a with equal prob. to any of N values
 - Then $h(a)$ is a sequence of $\log_2 N$ bits, where 2^{-r} fraction of all as have a tail of r zeros
 - About 50% of as hash to ***0
 - About 25% of as hash to **00
 - So, if we saw the longest tail of $r=2$ (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r
Why It Works: More formally

- Now we show why Flajolet-Martin works

- Formally, we will show that probability of finding a tail of r zeros:
 - Goes to 1 if $m \gg 2^r$
 - Goes to 0 if $m \ll 2^r$

where m is the number of distinct elements seen so far in the stream

- Thus, 2^R will almost always be around $m!$
Why It Works: More formally

- **What is the probability that a given** \(h(a) \) **ends in at least** \(r \) **zeros? It is** \(2^{-r} \)
 - \(h(a) \) hashes elements uniformly at random
 - Probability that a random number ends in at least \(r \) zeros is \(2^{-r} \)
- **Then, the probability of NOT seeing a tail of length** \(r \) **among** \(m \) **distinct elements:**

\[
(1 - 2^{-r})^m
\]

- Prob. all \(m \) elements end in fewer than \(r \) zeros.
- Prob. that given \(h(a) \) ends in fewer than \(r \) zeros
Why It Works: More formally

- **Note:** \((1 - 2^{-r})^m = (1 - 2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}\)
- **Prob. of NOT finding a tail of length** \(r\) **is:**
 - If \(m << 2^r\), then prob. tends to 1
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 1\) as \(m/2^r \rightarrow 0\)
 - So, the probability of finding a tail of length \(r\) tends to 0
 - If \(m >> 2^r\), then prob. tends to 0
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 0\) as \(m/2^r \rightarrow \infty\)
 - So, the probability of finding a tail of length \(r\) tends to 1

- **Thus,** \(2^R\) **will almost always be around** \(m!\)
Why It Doesn’t Work

- **E[2^R]** is actually infinite
 - Observing R has some probability
 - Probability halves when \(R \rightarrow R+1 \), but value doubles
 - Each possible large R contributes to exp. value

- Workaround involves using many hash functions \(h_i \) and getting many samples of \(R_i \)

- How are samples \(R_i \) combined?
 - Average? What if one very large value \(2^{R_i} \)?
 - Median? All estimates are a power of 2

- Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians
(3) Computing Moments
Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values

- Let m_i be the number of times value i occurs in the stream

- The k^{th} moment is

$$\sum_{i \in A} (m_i)^k$$

This is the same way as moments are defined in statistics. But there one typically “centers” the moment by subtracting the mean.
Special Cases

\[\sum_{i \in A} (m_i)^k \]

- **0th moment** = number of distinct elements
 - The problem just considered
- **1st moment** = count of the numbers of elements = length of the stream
 - Easy to compute
- **2nd moment** = *surprise number* \(S \) = a measure of how uneven the distribution is
Moments

- Third Moment is Skew:

- Fourth moment: Kurtosis
 - peakedness (width of peak), tail weight, and lack of shoulders (distribution primarily peak and tails, not in between).
Example: Surprise Number

- Measure of how uneven the distribution is
 - Stream of length 100
 - 11 distinct values

- Item counts \(m_i \): 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 - Surprise \(S = 910 \)

- Item counts \(m_i \): 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 - Surprise \(S = 8,110 \)
AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We pick and keep track of many variables X:
 - For each variable X we store $X.el$ and $X.val$
 - $X.el$ corresponds to the item i
 - $X.val$ corresponds to the count m_i of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$
One Random Variable (X)

- **How to set X.val and X.el?**
 - Assume stream has length \(n \) (we relax this later)
 - Pick some random time \(t \) \((t<n)\) to start, so that any time is equally likely
 - Let at time \(t \) the stream have item \(i \). **We set X.el = i**
 - Then we maintain count \(c \) \((X.val = c)\) of the number of \(i \)s in the stream starting from the chosen time \(t \)
 - **Then the estimate of the 2\(^{nd}\) moment \((\sum_i m_i^2)\) is:**
 \[
 S = f(X) = n \cdot (2 \cdot c - 1)
 \]
 - Note, we will keep track of multiple Xs, \((X_1, X_2, ... X_k)\)
 and our final estimate will be \(S = 1/k \sum_j^k f(X_j) \)
2nd moment is \(S = \sum_i m_i^2 \)

- \(c_t \) ... number of times item at time \(t \) appears from time \(t \) onwards \((c_1=m_a, c_2=m_a-1, c_3=m_b)\)

\[
E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1) = \frac{1}{n} \sum_i n (1 + 3 + 5 + \cdots + 2m_i - 1)
\]
Expectation Analysis

\[E[f(X)] = \frac{1}{n} \sum_i n (1 + 3 + 5 + \cdots + 2m_i - 1) \]

- Little side calculation: \((1 + 3 + 5 + \cdots + 2m_i - 1) = \sum_{i=1}^{m_i} (2i - 1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2 \)

- Then \(E[f(X)] = \frac{1}{n} \sum_i n (m_i)^2 \)

- So, \(E[f(X)] = \sum_i (m_i)^2 = S \)

- We have the second moment (in expectation)!
Higher-Order Moments

- For estimating k^{th} moment we essentially use the same algorithm but change the estimate $f(X)$:
 - For $k=2$ we used $n (2 \cdot c - 1)$
 - For $k=3$ we use: $n (3 \cdot c^2 - 3c + 1)$ (where $c=X.val$)

- Why?
 - For $k=2$: Remember we had $(1 + 3 + 5 + \cdots + 2m_i - 1)$ and we showed terms $2c-1$ (for $c=1,...,m$) sum to m^2
 - $\sum_{c=1}^{m} (2c - 1) = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c - 1)^2 = m^2$
 - So: $2c - 1 = c^2 - (c - 1)^2$
 - For $k=3$: $c^3 - (c-1)^3 = 3c^2 - 3c + 1$

- Generally: Estimate $f(X) = n \left(c^k - (c - 1)^k \right)$
Combining Samples

- **In practice:**
 - Compute $f(X) = n(2c - 1)$ for as many variables X as you can fit in memory
 - Average them in groups
 - Take median of averages

- **Problem: Streams never end**
 - We assumed there was a number n, the number of positions in the stream
 - But real streams go on forever, so n is a variable – the number of inputs seen so far
 Streams Never End: Fixups

- **(1)** The variables X have n as a factor – keep n separately; just hold the count in X
- **(2)** Suppose we can only store k counts. We must throw some Xs out as time goes on:
 - **Objective:** Each starting time t is selected with probability k/n
 - **Solution:** (fixed-size / reservoir sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives ($n > k$), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability
Problems on Data Streams

- **Filtering a data stream**
 - Select elements with property x from the stream

- **Counting distinct elements**
 - Number of distinct elements in the last k elements of the stream

- **Estimating moments**
 - Estimate avg./std. dev. of elements in stream

- **Remember:** No lecture next Tuesday – Project Group meetings instead