Supervised Learning

- **Would like to do prediction:** estimate a function \(f(x) \) so that \(y = f(x) \)

- **Where \(y \) can be:**
 - **Real number:** Regression
 - **Categorical:** Classification
 - **Complex object:**
 - Ranking of items, Parse tree, etc.

- **Data is labeled:**
 - Have many pairs \(\{(x, y)\} \)
 - \(x \) ... vector of binary, categorical, real valued features
 - \(y \) ... class: \{+1, -1\}, or a real number
Supervised Learning

- **Task:** Given data \((X,Y)\) build a model \(f()\) to predict \(Y'\) based on \(X'\)

- **Strategy:** Estimate \(y = f(x)\) on \((X, Y)\).

Hope that the same \(f(x)\) also works to predict unknown \(Y'\)

- The “hope” is called **generalization**
 - **Overfitting:** If \(f(x)\) predicts well \(Y\) but is unable to predict \(Y'\)

- We want to build a model that **generalizes** well to unseen data
Formal Setting

1) Training data is drawn independently at random according to unknown probability distribution $P(x, y)$

2) The learning algorithm analyzes the examples and produces a classifier f

Given new data (x, y) drawn from P, the classifier is given x and predicts $\hat{y} = f(x)$

The loss $L(\hat{y}, y)$ is then measured

Goal of the learning algorithm:
Find f that minimizes expected loss $E_P[L]$
Formal Setting

Why is it hard?
We estimate f on training data but want the f to work well on unseen future (i.e., test) data

$P(x, y)$

Training set S

Learning algorithm

f

loss function

$\mathcal{L}(\hat{y}, y)$

x

y

\hat{y}

y

(x, y)

test data

training data
Goal: Minimize the expected loss

\[\min_f \mathbb{E}_P[\mathcal{L}] \]

But, we don’t have access to \(P \) but only to the training sample \(D \):

\[\min_f \mathbb{E}_D[\mathcal{L}] \]

So, we minimize the average loss on the training data:

\[\min_f J(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(x_i), y_i) \]

Problem: Just memorizing the training data gives us a perfect model (with zero loss)
ML == Optimization

- **Given:**
 - A set of **N** training examples
 - \(\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \)
 - A loss function \(\mathcal{L} \)
- **Choose the model:** \(f_w(x) = w \cdot x + b \)
- **Find:**
 - The weight vector \(w \) that minimizes the **expected** loss on the training data
 \[
 J(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(w \cdot x_i + b, y_i)
 \]
Problem: Loss

- **Problem:** Step-wise Constant 0-1-Loss function

Derivative is either 0 or not differentiable
Approximating the Loss

- Approximating the expected loss by a smooth function
 - Replace the original objective function by a surrogate loss function. E.g., **hinge loss:**
 \[
 \tilde{J}(w) = \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y^{(i)} f(x^{(i)}))
 \]
 When \(y = 1\):
Support Vector Machines
Support Vector Machines

- Want to separate “+” from “-” using a line

Data:
- Training examples:
 - \((x_1, y_1) \ldots (x_n, y_n)\)
- Each example \(i\):
 - \(x_i = (x_i^{(1)}, \ldots, x_i^{(d)})\)
 - \(x_i^{(j)}\) is real valued
 - \(y_i \in \{-1, +1\}\)
- Inner product:
 - \(w \cdot x = \sum_{j=1}^{d} w^{(j)} \cdot x^{(j)}\)

Which is best linear separator (defined by \(w, b\))?
Distance from the separating hyperplane corresponds to the “confidence” of prediction.

Example:
- We are more sure about the class of A and B than of C.
Maximum Margin

- **Margin γ:** Distance of closest example from the decision line/hyperplane

The reason we define margin this way is due to theoretical convenience and existence of generalization error bounds that depend on the value of margin.
Why maximizing γ a good idea?

- **Remember: The Dot product**

\[
A \cdot B = ||A|| \cdot ||B|| \cdot \cos \theta
\]

\[
||A|| = \sqrt{\sum_{j=1}^{d} (A(j))^2}
\]
Why maximizing γ a good idea?

- **Dot product**
 \[A \cdot B = ||A|| ||B|| \cos \theta \]
- What is $w \cdot x_1$, $w \cdot x_2$?

- So, γ roughly corresponds to the margin
 - Bottom line: Bigger γ, bigger the separation
What is the margin?

Let:

- **Line L**: \(w \cdot x + b = 0 \)
- \(w = (w^{(1)}, w^{(2)}) \)
- **Point A** = \((x_A^{(1)}, x_A^{(2)})\)
- **Point M** on a line = \((x_M^{(1)}, x_M^{(2)})\)

\[
\begin{align*}
\text{d}(A, L) &= |AH| \\
&= |(A-M) \cdot w| \\
&= |(x_A^{(1)} - x_M^{(1)})w^{(1)} + (x_A^{(2)} - x_M^{(2)})w^{(2)}| \\
&= |x_A^{(1)}w^{(1)} + x_A^{(2)}w^{(2)} + b| \\
&= |w \cdot A + b|
\end{align*}
\]

Note we assume \(||w||_2 = 1 \)

Remember \(x_M^{(1)}w^{(1)} + x_M^{(2)}w^{(2)} = -b \) since \(M \) belongs to line \(L \)
Largest Margin

- Prediction = \text{sign}(w \cdot x + b)
- “Confidence” = (w \cdot x + b) y
- For i-th datapoint:
 \[\gamma_i = (w \cdot x_i + b)y_i \]
- Want to solve:
 \[\max \min_{w,b} \gamma_i \]
- Can rewrite as
 \[\max_{w,\gamma,b} \gamma \]
 \[\text{s.t.} \forall i, y_i (w \cdot x_i + b) \geq \gamma \]
Support Vector Machine

- Maximize the margin:
 - Good according to intuition, theory (c.f. “VC dimension”) and practice

\[
\max_{\gamma, w, b} \gamma \\
\text{s.t. } \forall i, y_i (w \cdot x_i + b) \geq \gamma
\]

- \(\gamma \) is margin ... distance from the separating hyperplane
Support Vector Machines: Deriving the margin
Support Vector Machines

- Separating hyperplane is defined by the support vectors
 - Points on +/- planes from the solution
 - If you knew these points, you could ignore the rest
 - Generally, \(d+1 \) support vectors (for \(d \) dim. data)
Problem:
- Let \((w \cdot x + b)y = \gamma\)
 then \((2w \cdot x + 2b)y = 2\gamma\)
 - Scaling \(w\) increases margin!

Solution:
- Work with normalized \(w\):
 \[\gamma = \left(\frac{w}{||w||} \cdot x + b\right) y\]
- Let's also require support vectors \(x_j\) to be on the plane defined by:
 \[w \cdot x_j + b = \pm 1\]

\[||w|| = \sqrt{\sum_{j=1}^{d} (w^{(j)})^2}\]
Want to maximize margin!

What is the relation between x_1 and x_2?

- $x_1 = x_2 + 2\gamma \frac{w}{||w||}$
- We also know:
 - $w \cdot x_1 + b = +1$
 - $w \cdot x_2 + b = -1$

So:

- $w \cdot x_1 + b = +1$
- $w \left(x_2 + 2\gamma \frac{w}{||w||} \right) + b = +1$
- $w \cdot x_2 + b + 2\gamma \frac{w \cdot w}{||w||} = +1$

$\Rightarrow \gamma = \frac{||w||}{w \cdot w} = \frac{1}{||w||}$

Note: $w \cdot w = ||w||^2$

5/8/20
Maximizing the Margin

- We started with
 \[\max_{w, \gamma} \gamma \]
 \[\text{s.t.} \forall i, y_i (w \cdot x_i + b) \geq \gamma \]
 But \(w \) can be arbitrarily large!

- We normalized and...

 \[\arg \max \gamma = \arg \max \frac{1}{\|w\|} = \arg \min \|w\| = \arg \min \frac{1}{2} \|w\|^2 \]

- Then:

 \[\min_{w, b} \frac{1}{2} \|w\|^2 \]
 \[\text{s.t.} \forall i, y_i (w \cdot x_i + b) \geq 1 \]

This is called SVM with “hard” constraints
Non-linearly Separable Data

- **If data is not separable introduce penalty:**

 $$\min_{w, b} \frac{1}{2} \|w\|^2 + C \cdot (# \text{number of mistakes})$$

 $$s.t. \forall i, y_i (w \cdot x_i + b) \geq 1$$

 - Minimize $\|w\|^2$ plus the number of training mistakes
 - Set C using cross validation

- **How to penalize mistakes?**
 - All mistakes are not equally bad!
Support Vector Machines

- **Introduce slack variables** ξ_i
 \[
 \min_{w,b,\xi_i \geq 0} \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^{n} \xi_i \\
 s.t. \forall i, y_i (w \cdot x_i + b) \geq 1 - \xi_i
 \]
- **If point** x_i **is on the wrong side of the margin** then get penalty ξ_i

For each data point:
If margin ≥ 1, don’t care
If margin < 1, pay linear penalty
Slack Penalty C

\[
\min_{w, b, \xi_i \geq 0} \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^{n} \xi_i
\]

s.t. \(\forall i, y_i (w \cdot x_i + b) \geq 1 - \xi_i \)

- **What is the role of slack penalty C:**
 - \(C=\infty \): Only want to \(w, b \) that separate the data
 - \(C=0 \): Can set \(\xi_i \) to anything, then \(w=0 \) (basically ignores the data)
How do we obtain the Natural Form?

- Previously

\[
\min_{w,b} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i \\
\text{s.t.} \forall i, \ y_i \cdot (w \cdot x_i + b) \geq 1 - \xi_i
\]

- Solve for \(\xi \):

\[
\begin{align*}
\xi_i &\geq 1 - y_i \cdot (w \cdot x_i + b) \\
\xi_i &\geq 0 \\
\Rightarrow \xi_i &\geq \max(0, 1 - y_i \cdot (w \cdot x_i + b))
\end{align*}
\]

- Natural form:

\[
\arg\min_{w,b} \quad \frac{1}{2} w \cdot w + C \sum_{i=1}^{n} \max\{0, 1 - y_i (w \cdot x_i + b)\}
\]
Support Vector Machines

- SVM in the “natural” form

\[
\text{arg min}_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max\{0, 1 - y_i (w \cdot x_i + b)\}
\]

Margin

Empirical loss \(L \) (how well we fit training data)

Regularization parameter

- SVM uses “Hinge Loss”:

\[
\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i
\]

s.t. \(\forall i, y_i \cdot (w \cdot x_i + b) \geq 1 - \xi_i \)

0/1 loss

Hinge loss: \(\max\{0, 1-z\} \)
Support Vector Machines: How to estimate the parameters?
SVM: How to estimate \(w \)?

\[
\min_{w,b} \quad \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \xi_i \\
\text{s.t.} \forall i, y_i \cdot (x_i \cdot w + b) \geq 1 - \xi_i
\]

- **Want to estimate \(w \) and \(b \)!
 - **Standard way**: Use a solver!
 - **Solver**: software for finding solutions to “common” optimization problems
 - **Use a quadratic solver**:
 - Minimize quadratic function
 - Subject to linear constraints
 - **Problem**: Solvers are inefficient for big data!
SVM: How to estimate w?

- **Want to minimize** $J(w,b)$:

$$J(w,b) = \frac{1}{2} \sum_{j=1}^{d} (w^{(j)})^2 + C \sum_{i=1}^{n} \max\left\{0,1 - y_i \left(\sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b\right)\right\}$$

Empirical loss $L(x_i, y_i)$

- **Compute the gradient** $\nabla(j)$ w.r.t. $w^{(j)}$

$$\nabla J^{(j)} = \frac{\partial J(w,b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

$$\frac{\partial L(x_i, y_i)}{\partial w^{(j)}} = 0 \quad \text{if} \quad y_i (w \cdot x_i + b) \geq 1$$

$$= -y_i x_i^{(j)} \quad \text{else}$$
Gradient descent:

Iterate until convergence:
• For \(j = 1 \ldots d \)
 • Evaluate: \(\nabla J^{(j)} = \frac{\partial f(w, b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}} \)
 • Update: \(w^{(j)}' \leftarrow w^{(j)} - \eta \nabla J^{(j)} \)
• \(w \leftarrow w' \)

Problem:
• Computing \(\nabla J^{(j)} \) takes \(O(n) \) time!
 • \(n \) ... size of the training dataset
SVM: How to estimate w?

- **Stochastic Gradient Descent**
 - Instead of evaluating gradient over all examples, evaluate it for each **individual** training example.

\[
\nabla J^{(j)}(x_i) = w^{(j)} + C \cdot \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}
\]

- **Stochastic gradient descent:**

Iterate until convergence:
- For \(i = 1 \ldots n \)
- For \(j = 1 \ldots d \)
 - Compute: \(\nabla J^{(j)}(x_i) \)
 - Update: \(w^{(j)} \leftarrow w^{(j)} - \eta \nabla J^{(j)}(x_i) \)

We just had:

\[
\nabla J^{(j)} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}
\]

Notice: no summation over \(i \) anymore.
Other variations of GD

- **Batch Gradient Descent**
 - Calculates error for each example in the training dataset, but updated model only after all examples have been evaluated (i.e., end of training epoch)
 - **PROS**: fewer updates, more stable error gradient
 - **CONS**: usually requires whole dataset in memory, slower than SGD

- **Mini-Batch Gradient Descent**
 - Like BGD, but using smaller batches of training data. Balance between robustness of SGD, and efficiency of BGD.
Support Vector Machines: Example
Example: Text categorization

- **Dataset:**
 - **Reuters RCV1** news document corpus
 - Predict a category of a document
 - One vs. the rest classification
 - **n = 781,000** training examples (documents)
 - 23,000 test examples
 - **d = 50,000** features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words
Example: Text categorization

Questions:

1. Is **SGD** successful at minimizing $J(w,b)$?
2. How quickly does **SGD** find the min of $J(w,b)$?
3. What is the error on a test set?

<table>
<thead>
<tr>
<th></th>
<th>Training time</th>
<th>Value of $J(w,b)$</th>
<th>Test error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard SVM</td>
<td>23,642 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
<tr>
<td>“Fast Linear SVM”</td>
<td>66 secs</td>
<td>0.2278</td>
<td>6.03%</td>
</tr>
<tr>
<td>SGD-SVM</td>
<td>1.4 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
</tbody>
</table>

1. **SGD-SVM** is successful at minimizing the value of $J(w,b)$
2. **SGD-SVM** is super fast
3. **SGD-SVM** test set error is comparable
Optimization “Accuracy”

For optimizing $J(w,b)$ within reasonable quality, SGD-SVM is super fast.
What about multiple classes?

- **Idea 1:**
 - One against all
 - Learn 3 classifiers
 - + vs. {o, -}
 - - vs. {o, +}
 - o vs. {+, -}
 - Obtain:
 \[w_+ b_+ , w_- b_- , w_o b_o \]

- **How to classify?**
- Return class \(c \)
 \[\text{arg max}_c \ w_c x + b_c \]
Idea 2: Learn 3 sets of weights simultaneously!

- For each class c estimate w_c, b_c
- Want the correct class y_i to have highest margin:
 \[w_{y_i} x_i + b_{y_i} \geq 1 + w_c x_i + b_c \quad \forall c \neq y_i \quad , \forall i \]
Multiclass SVM

- **Optimization problem:**

\[
\begin{align*}
\min_{w,b} & \quad \frac{1}{2} \sum_c \|w_c\|^2 + C \sum_{i=1}^{n} \xi_i \\
\text{s.t.} & \quad w_{y_i} \cdot x_i + b_{y_i} \geq w_c \cdot x_i + b_c + 1 - \xi_i, \quad \forall c \neq y_i, \forall i \\
& \quad \xi_i \geq 0, \forall i
\end{align*}
\]

- To obtain parameters \(w_c, b_c\) (for each class \(c\)) we can use similar techniques as for 2 class SVM

- SVM is widely perceived a very powerful learning algorithm
ML Parallelization
Why Large-Scale ML?

- **The Unreasonable Effectiveness of Data**
 - In 2017, Google revisited a 15-year-old experiment on the effect of data and model size in ML, focusing on the latest Deep Learning models in computer vision

- **Findings:**
 - Performance increases logarithmically based on volume of training data
 - Complexity of modern ML models (i.e., deep neural nets) allows for even further performance gains

- Large datasets + large ML models => amazing results!!

Recap

- Last lecture: Decision Trees (and PLANET) as a prime example of **Data Parallelism** in ML

- Today’s lecture: Multiclass SVMs, Neural Networks (especially Deep ones), etc. can leverage both **Data Parallelism and Model Parallelism**
 - State-of-the-art Deep Neural Networks for visual recognition tasks (e.g., ImageNet challenge) or NLP can have **more than 1 billion parameters!**
Parallelization overview

M2 and M4 must wait for the 1st stage to complete!
Parallelization overview

- Unsupervised or Supervised Objective
- Minibatch Stochastic Gradient Descent (SGD)
- Model parameters sharded by partition
- 10s, 100s, or 1000s of cores per model
Parameter Server

Parameter Server: \(p' = p + \Delta p \)

- **Parameter Server**: Key/Value store
- **Keys** index the model parameters (e.g., weights)
- **Values** are the parameters of the ML model (e.g., a neural network)

Systems challenges:
- High bandwidth
- Synchronization
- Fault tolerance
Parameter Server

Parameter Server \(p' = p + \Delta p \)

Why do parallel updates work?
Async SGD

- **Key idea**: don’t synchronize, just **overwrite** parameters opportunistically from multiple workers (i.e., servers)
 - Same implementation as SGD, **just without locking!**

- In theory, Async SGD converges, but a slower rate than the serial version.
- In practice, **when gradient updates are sparse** (i.e., high dimensional data), **same convergence!**

- Recht et al. “**HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent**”, 2011

<table>
<thead>
<tr>
<th>RR is a super optimized version of online Gradient Descent, but with synchronization</th>
<th>Hogwild</th>
<th>AIG</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speedup</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HOGWILD!

1. Initialize \(w \) in shared memory // in parallel, do

2. for \(i = \{1, \ldots, p\} \) do

3. while TRUE do

4. if stopping criterion met then

5. break

6. end

7. Sample \(j \) from \(1, \ldots, n \) uniformly at random.

8. Compute \(f_j(w) \) and \(\nabla f_j(w) \) using whatever \(w \) is currently available.

9. Let \(e_j \) denote non-zero indices of \(x_i \)

10. for \(k \in e_j \) do

11. \[w_k \leftarrow w_k - \alpha \left[\nabla f_j (w) \right]_k \]

12. end

13. end

14. end

\(\leq P \) is the number of partitions / processors

Component-wise gradient updates (relies on sparsity)
Asynchronous Distributed SGD

From an engineering standpoint, this is much better than a single model with the same number of total machines:

- Synchronization boundaries involve fewer machines
- Better robustness to individual slow machines
- Makes forward progress even during evictions/restarts

- Google, “Large Scale Distributed Deep Networks” [2012]

- All ingredients together:
 - Model and Data parallelism
 - Async SGD

- Dawn of modern Deep Learning
Example Implementations

- **Google: Tensorflow Distributed Training**
- **Uber: Horovod**
- **Ray (UC Berkeley)**
 - **Ray** is a general-purpose framework for parallel and distributed Python.
 - Spark isn’t optimized for these low latency communication workflow.
 - 15 lines of python for parameter server
- **Mu Li et al.** Scaling Distributed Machine Learning with the Parameter Server. **OSDI 2014**