
Announcements:
- Project Milestone feedback this week
- Thu this week: HW3 due / HW4 released (start early J)

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensional
ity

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Sampling
data

streams

Filtering
data

streams

Queries on
streams

Machine
learning

Decision
Trees

SVM / Max
Margin

Parallel SGD

Apps

Recommen
der systems

Association
Rules

Duplicate
document
detection

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 2

Given some data:
¡ “Learn” a function to map from the

input to the output

¡ Given:
Training examples 𝒙𝒊, 𝒚𝒊 = 𝒇 𝒙𝒊 for some
unknown function 𝒇

¡ Find:
A good approximation to 𝒇

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 3

¡ Supervised:
§ Given “labeled data” {𝑥, 𝑦}, learn 𝑓(𝑥) = 𝑦

¡ Unsupervised:
§ Given only “unlabeled data” {𝑥}, learn 𝑓(𝑥)

¡ Semi-supervised:
§ Given some labeled {𝑥, 𝑦} and some unlabeled data
{𝑥}, learn 𝑓(𝑥) = 𝑦

¡ Active learning:
§ When we predict 𝑓 𝑥 = 𝑦, we then receive true y∗

¡ Transfer learning:
§ Learn 𝑓(𝑥) so that it works well on new domain 𝑓(𝑧)

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 4

¡ Would like to do prediction:
estimate a function 𝒇(𝒙) so that 𝒚 = 𝒇(𝒙)

¡ Where y can be:
§ Continuous / Real number: Regression
§ Categorical: Classification
§ Complex object:

§ Ranking of items, Parse tree, etc.

¡ Data is labeled:
§ Have many pairs {(𝒙, 𝒚)}

§ x … vector of binary, categorical, real valued features
§ y … class, or a real number

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 5

¡ Task: Given data (𝑿, 𝒀) build a model 𝒇() to
predict 𝒀’ based on 𝑿’

¡ Strategy: Estimate 𝒚 = 𝒇 𝒙
on (𝑿, 𝒀)
Hope that the same 𝒇(𝒙) also
works to predict unknown 𝒀’
§ The “hope” is called generalization

§ Overfitting: If 𝒇(𝒙) predicts well 𝒀 but is unable to
predict 𝒀’

§ We want to build a model that generalizes
well to unseen data

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 6

X Y

X’ Y’
Test
data

Training
data

¡ Brawn or Brains?
§ In 2001, Microsoft researchers ran a test to evaluate

4 of different approaches to ML-based language
translation

¡ Findings:
§ Size of the dataset used to

train the model mattered
more than the model itself

§ As the dataset grew large,
performance difference between
the models became small

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 7

Banko, M. and Brill, E. (2001) , “Scaling to Very Very Large Corpora for Natural Language Disambiguation”

http://www.aclweb.org/anthology/P01-1005

¡ The Unreasonable Effectiveness of Big Data
§ In 2017, Google revisited the same type of experiment with

the latest Deep Learning models in computer vision

¡ Findings:
§ Performance increases logarithmically

based on volume of training data
§ Complexity of modern ML models

(i.e., deep neural nets) allows for even
further performance gains

¡ Large datasets + large ML models => amazing results!!

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 8

“Revisiting Unreasonable Effectiveness of Data in Deep Learning Era”: https://arxiv.org/abs/1707.02968

https://arxiv.org/abs/1707.02968

¡ Given one attribute (e.g., lifespan), try to predict the
value of new people’s lifespans by means of some of
the other available attribute

¡ Input attributes:
§ d features/attributes: 𝒙(𝟏), 𝒙(𝟐), … 𝒙(𝒅)
§ Each 𝒙(𝒋) has domain 𝑶𝒋

§ Categorical: 𝑶𝒋 = {𝑏𝑟𝑜𝑤𝑛, 𝑏𝑙𝑢𝑒, 𝑔𝑟𝑎𝑦}
§ Numerical: 𝑯𝒋 = (0, 10)

§ 𝒀 is output variable with domain 𝑶𝒀:
§ Categorical: Classification, Numerical: Regression

¡ Data D:
§ 𝒏 examples (𝒙𝒊, 𝒚𝒊) where 𝒙𝒊 is a 𝒅-dim feature vector,
𝒚𝒊 ∈ 𝑶𝒀 is output variable

¡ Task:
§ Given an input data vector 𝒙 predict output label 𝒚

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 10

¡ A Decision Tree is
a tree-structured
plan of a set of
attributes to test
in order to predict
the output

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 11

A

X(1)<v(1)
C

D F

F G H I

Y=
0.42

X(2)Î{v(2), v(3)}

ye
s no

¡ Decision trees:
§ Split the data at each

internal node
§ Each leaf node

makes a prediction
¡ Lecture today:
§ Binary splits: 𝑿(𝒋) < 𝒗
§ Numerical attributes
§ Regression

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 12

A

X(1)<v(1)
C

D F

F G H I

Y=
0.42

X(2)<v(2)

ye
s no

X(3)<v(4) X(2)<v(5)

¡ Input: Example 𝒙𝒊
¡ Output: Predicted +𝒚𝒊

¡ “Drop” 𝒙𝒊 down
the tree until it
hits a leaf node

¡ Predict the value
stored in the leaf
that 𝒙𝒊 hits

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 13

A

X(1)<v(1)
C

D F

F G H I

Y=
0.42

X(2)<v(2)

ye
s no

X(3)<v(4) X(2)<v(5)

¡ Alternative view:

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 14

+ +
+ +

+

+

+

+ +
+

+

+

+

+

+
+

+

– –
–

–
–

+
+ +

+
+

+ +

+
+ +

+
+

+ +

+
+

+

+
+

+ +

– –
–

––

– –
–

–
–

– –
–

–
–

–

++

X(1)

X(2)

A

X(1)<v(1)

CF

H

Y=
+

X(2)<v(2)

Y=
+

Y=
–

X(2)<v(3)V(1)

V(2)

V(3)

V(4)

X(2)<v(4)
Y=
–

Y=
+

Y=
–

X(1)<v(5)V(5)

D

¡ Training dataset 𝑫∗, |𝑫∗| = 𝟏𝟎𝟎 examples

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 15

A

B
X(1)<v(1)

C

D E

F G H I

|D|=90|D|=10

X(2)<v(2)

X(3)<v(4) X(2)<v(5)

|D|=45|D|=45
Y=
0.42

|D|=25|D|=20 |D|=30|D|=15

of examples
traversing the edge

¡ Imagine we are currently
at some node G
§ Let DG be the data that reaches G

¡ There is a decision we have
to make: Do we continue
building the tree?
§ If yes, which variable and which value

do we use for a split?
§ Continue building the tree recursively

§ If not, how do we make a prediction?
§ We need to build a “predictor node”

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 16

A

B C

D E

F G H I

¡ Requires at least a single pass over the data!
5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 17

(1)
(2)
(3)

BuildSubtree

BuildSubtree

BuildSubtree

(1) How to split? Pick
attribute & value that
optimizes some criterion
¡ Regression: Purity
§ Find split (𝑿(𝒊), 𝒗) that

creates 𝑫,𝑫𝑳, 𝑫𝑹: parent,
left, right child datasets
and maximizes:
𝑫 ⋅ 𝑽𝒂𝒓 𝑫 − 𝑫𝑳 ⋅ 𝑽𝒂𝒓 𝑫𝑳 + 𝑫𝑹 ⋅ 𝑽𝒂𝒓 𝑫𝑹
§ 𝑽𝒂𝒓 𝑫 = 𝟏

𝒏
∑𝒊∈𝑫 𝒚𝒊 − 5𝒚 𝟐 … variance of 𝒚𝒊 in 𝑫

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 18

A

B
X(1)<v(1)

C

D E

F G H I

|D|=90|D|=10

X(2)<v(2)

X(3)<v(4) X(2)<v(5)

|D|=45|D|=45
.42

|D|=25|D|=20 |D|=30|D|=15

(1) How to split? Pick
attribute & value that
optimizes some criterion
¡ Classification:

Information Gain
§ Measures how much

a given attribute 𝑿 tells us about the class 𝒀
§ 𝑰𝑮(𝒀 | 𝑿) : We must transmit 𝒀 over a binary link.

How many bits on average would it save us if both
ends of the line knew 𝑿?

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 19

A

B
X(1)<v(1)

C

D E

F G H I

|D|=90|D|=10

X(2)<v(2)

X(3)<v(4) X(2)<v(5)

|D|=45|D|=45
.42

|D|=25|D|=20 |D|=30|D|=15

Entropy: What’s the smallest possible number of bits,
on average, per symbol, needed to transmit a stream
of symbols drawn from 𝑿’s distribution?
The entropy of 𝑿: 𝑯 𝑿 = −∑𝒋"𝟏𝒎 𝒑(𝑿𝒋) 𝒍𝒐𝒈𝒑(𝑿𝒋)

§ “High Entropy”: 𝑿 is from a uniform (flat) distribution
§ A histogram of the frequency distribution of values of 𝑿 is flat

§ “Low Entropy”: 𝑿 is from a varied (peaks/valleys) distrib.
§ A histogram of the frequency distribution of values of 𝑿 would

have many lows and one or two peaks

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 20
Low entropy High entropy

¡ Suppose I want to predict 𝒀 and I have input 𝑿
§ 𝑿 = College Major
§ 𝒀 = Likes Movie “Casablanca”

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 21

¡ From this data we estimate
§ 𝑃(𝑌 = 𝑌𝑒𝑠) = 0.5
§ 𝑃(𝑋 = 𝑀𝑎𝑡ℎ & 𝑌 = 𝑁𝑜) = 0.25
§ 𝑃(𝑋 = 𝑀𝑎𝑡ℎ) = 0.5
§ 𝑃(𝑌 = 𝑌𝑒𝑠 | 𝑋 = 𝐻𝑖𝑠𝑡𝑜𝑟𝑦) = 0

¡ Note:
§ 𝐻(𝑌) = −½log2(½) −½log2(½) = 𝟏
§ 𝐻(𝑋) = 1.5

X Y

Math Yes
History No
CS Yes
Math No
Math No
CS Yes
Math Yes
History No

¡ Suppose I want to predict 𝒀 and I have input 𝑿
§ 𝑿 = College Major
§ 𝒀 = Likes “Casablanca”

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 22

¡ Def: Specific Conditional Entropy
§ 𝑯(𝒀 | 𝑿 = 𝒗) = The entropy of 𝒀

among only those records in which 𝑿
has value 𝒗

§ Example:
§ 𝐻(𝑌|𝑋 = 𝑀𝑎𝑡ℎ) = 1
§ 𝐻(𝑌|𝑋 = 𝐻𝑖𝑠𝑡𝑜𝑟𝑦) = 0
§ 𝐻(𝑌|𝑋 = 𝐶𝑆) = 0

X Y

Math Yes
History No
CS Yes
Math No
Math No
CS Yes
Math Yes
History No

¡ Suppose I want to predict 𝒀 and I have input 𝑿
§ 𝑿 = College Major
§ 𝒀 = Likes “Casablanca”

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 23

¡ Def: Conditional Entropy
§ 𝑯(𝒀 | 𝑿) = The average specific

conditional entropy of 𝒀
§ = if you choose a record at random what

will be the conditional entropy of 𝒀,
conditioned on that row’s value of 𝑿

§ = Expected number of bits to transmit 𝒀
if both sides will know the value of 𝑿

§ = ∑𝒋𝑷 𝑿 = 𝒗𝒋 𝑯(𝒀|𝑿 = 𝒗𝒋)

X Y

Math Yes
History No
CS Yes
Math No
Math No
CS Yes
Math Yes
History No

¡ Suppose I want to predict 𝒀 and I have input 𝑿

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 24

X Y

Math Yes
History No
CS Yes
Math No
Math No
CS Yes
Math Yes
History No

¡ 𝑯(𝒀 | 𝑿) = The average specific
conditional entropy of 𝒀

=1
𝒋

𝑷 𝑿 = 𝒗𝒋 𝑯(𝒀|𝑿 = 𝒗𝒋)

¡ Example:

¡ So: H(Y|X)=0.5*1+0.25*0+0.25*0 = 0.5

Vj P(X=vj) H(Y|X=vj)

Math 0.5 1
History 0.25 0
CS 0.25 0

¡ Suppose I want to predict 𝒀 and I have input 𝑿

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 25

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

Math Yes

History No

¡ Def: Information Gain
§ 𝑰𝑮(𝒀|𝑿) = I must transmit 𝒀. How

many bits on average would it save
me if both ends of the line knew X?

𝑰𝑮(𝒀|𝑿) = 𝑯(𝒀) − 𝑯(𝒀 | 𝑿)

¡ Example:
§ H(Y) = 1
§ H(Y|X) = 0.5
§ Thus IG(Y|X) = 1 – 0.5 = 0.5

¡ Suppose you are trying to predict whether
someone is going to live past 80 years

¡ From historical data you might find:
§ 𝑰𝑮(𝑳𝒐𝒏𝒈𝑳𝒊𝒇𝒆 | 𝑯𝒂𝒊𝒓𝑪𝒐𝒍𝒐𝒓) = 𝟎. 𝟎𝟏
§ 𝑰𝑮(𝑳𝒐𝒏𝒈𝑳𝒊𝒇𝒆 | 𝑺𝒎𝒐𝒌𝒆𝒓) = 𝟎. 𝟒
§ 𝑰𝑮(𝑳𝒐𝒏𝒈𝑳𝒊𝒇𝒆 | 𝑮𝒆𝒏𝒅𝒆𝒓) = 𝟎. 𝟐𝟓
§ 𝑰𝑮(𝑳𝒐𝒏𝒈𝑳𝒊𝒇𝒆 | 𝑳𝒂𝒔𝒕𝑫𝒊𝒈𝒊𝒕𝑶𝒇𝑺𝑺𝑵) = 𝟎. 𝟎𝟎𝟎𝟎𝟏

¡ IG tells us how much information about 𝒀 is
contained in 𝑿
§ So attribute X that has high 𝑰𝑮(𝒀|𝑿) is a good split!

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 26

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 27

(1)
(2)
(3)

BuildSubtree

BuildSubtree

BuildSubtree

(2) When to stop?
¡ Many different heuristic

options to avoid overfitting
¡ Two ideas:
§ (1) When the leaf is “pure”

§ The target variable does not
vary too much: 𝑽𝒂𝒓(𝒚) < e

§ (2) When # of examples in
the leaf is too small
§ For example, |𝑫|£ 𝟏𝟎𝟎

§ (3) Stop at a fixed depth
§ For example, max depth = 4.

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 28

A

B
X(1)<v(1)

C

D E

F G H I

|D|=90|D|=10

X(2)<v(2)

X(3)<v(4) X(2)<v(5)

|D|=45|D|=45

.4
2

|D|=25|D|=20 |D|=30|D|=15

(3) How to predict?
¡ Many options
§ Regression:

§ Typically: Predict average 𝒚𝒊
of the examples in the leaf

§ Build a linear regression model
on the examples in the leaf

§ Classification:
§ Predict most common 𝒚𝒊 of the

examples in the leaf

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 29

A

B
X(1)<v(1)

C

D E

F G H I

|D|=90|D|=10

X(2)<v(2)

X(3)<v(4) X(2)<v(5)

|D|=45|D|=45
.42

|D|=25|D|=20 |D|=30|D|=15

¡ Given a large dataset with
hundreds of attributes

¡ Build a decision tree!

¡ General considerations:
§ Tree is small (can keep it memory):

§ Shallow (~10 levels)

§ Dataset too large to keep in memory (Petabytes)
§ Dataset too big to scan over on a single machine
§ MapReduce to the rescue!

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 31

BuildSubTree

BuildSubTree

BuildSubTree

Parallel Learner for Assembling Numerous
Ensemble Trees [Panda et al., VLDB ‘09]
§ A sequence of MapReduce jobs that builds

a decision tree
§ Spark MLlib Decision Trees are based on PLANET

¡ Setting:
§ Hundreds of numerical (discrete & continuous,

but not categorical) attributes
§ Target variable is numerical: Regression
§ Splits are binary: X(j) < v
§ Decision tree is small enough for each

Mapper to keep it in memory
§ Data too large to keep in memory

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 32

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 33

Input
data

Model Attribute
metadata

Master

MapReduce: Given a set of split
candidates compute their quality

Intermediate
results

A

B C

D E

F G H I

MapReduce

Keeps track of the model
and decides how to grow the tree

¡ The tree will be built in levels
§ One level at a time:

Steps:
¡ 1) Master decides candidate splits (n, X(j), v)
¡ 2) MapReduce computes quality of those splits
¡ 3) Master then grows the tree for a level
¡ 4) Goto (1)

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 34

j
DRDL

D

X(j) < v
A

B C

D E

F G H I

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 35

Hard part: Computing “quality” of a split
1) Master tells the Mappers which
splits (n, X(j), v) to consider
2) Each Mapper gets a subset of data and
computes partial statistics for a given split
3) Reducers collect partial statistics and
output the final quality for a given split (n, X(j), v)
4) Master makes final decision where to split

¡ We build the tree level by level
§ One MapReduce step builds one level of the tree

¡ Mapper
§ Considers a number of candidate splits (node,

attribute, value) on its subset of the data
§ For each split it stores partial statistics
§ Partial split-statistics is sent to Reducers

¡ Reducer
§ Collects all partial statistics and determines best split

¡ Master grows the tree for one level
5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 36

A

B C

D E

F G H I

¡ Mapper loads the DT model and info
about which attribute splits (split is a tuple
<NodeID, Attribute, Value>) to consider
§ Each mapper sees a subset of the data D*
§ Mapper “drops”/classifies each datapoint d using

the tree to find the leaf node L where d lands
§ For each leaf node L mapper keeps statistics about

§ (1) the data reaching L
§ (2) the data in left/right subtree under some split S

¡ Reducer aggregates the statistics (1), (2) and
determines the best split for each tree node

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 37

A

B C

D E

F G H I

¡ Master
§ Monitors everything (runs multiple MapReduce jobs)

¡ Three types of MapReduce jobs:
§ (1) MapReduce Initialization (run once first)

§ For each attribute identify values to be considered for splits
§ (2) MapReduce FindBestSplit (run multiple times)

§ MapReduce job to find best split (when there
is too much data to fit in memory)

§ (3) MapReduce InMemoryBuild (run once last)
§ Similar to BuildSubTree (but for small data)
§ Grows an entire sub-tree once the data fits in memory

¡ Model file
§ A file describing the state of the model

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 38

A

B C

D E

F G H I

(1) Master Node
(2) MapReduce Initialization (run once first)
(3) MapReduce FindBestSplit (run multiple times)
(4) MapReduce InMemoryBuild (run once last)

¡ Master controls the entire process
¡ Determines the state of the tree and grows it:
§ (1) Decides if nodes should be split
§ (2) If there is little data entering a tree node, Master

runs an InMemoryBuild MapReduce job to grow
the entire subtree below that node

§ (3) For larger nodes, Master launches MapReduce
FindBestSplit to evaluate candidates for best split
§ Master also collects results from FindBestSplit and

chooses the best split for a node

§ (4) Updates the model
5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 40

A

B C

D E

F G H I

(1) Master Node
(2) MapReduce Initialization (run once first)
(3) MapReduce FindBestSplit (run multiple times)
(4) MapReduce InMemoryBuild (run once last)

¡ Initialization job: Identifies all the attribute
values which need to be considered for splits
§ Initialization process generates “attribute

metadata” to be loaded in memory by other tasks

¡ Main question:
Which splits to even consider?

¡ A split is defined by a triple:
(node n, attribute X(j), value v)

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 42

n

X(j) < v

D

¡ Which splits to even consider?
§ For small data we can sort the values along a

particular feature and consider every possible split
§ But data values may not be uniformly populated

so many splits may not really make a difference

¡ Idea: Consider a limited number of splits such
that splits “move” about the same amount of
data

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 43

X(j): 1.2 1.3 1.4 1.6 2.1 7.2 8.1 9.8 10.1 10.2 10.3 10.4 11.5 11.7 12.8 12.9

¡ Splits for numerical attributes:
§ For attribute X(j) we would like to consider

every possible value vÎOj

§ Compute an approx. equi-depth histogram on D*
§ Idea: Select buckets such that counts per bucket are equal

§ Use boundary points of histogram as splits

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 44

Count for
bucket

Domain values1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

j

Xj < v

D*

¡ Goal: Equal number of elements per bucket
(B buckets total)

¡ Construct by first sorting and then taking
B-1 equally-spaced splits

¡ Faster construction:
Sample & take equally-spaced splits in the sample
§ Nearly equal buckets

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 45

Count in
bucket

Domain values1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 2 3 4 7 8 9 10 10 10 10 11 11 12 12 14 16 16 18 19 20 20 20

(1) Master Node
(2) MapReduce Initialization (run once first)
(3) MapReduce FindBestSplit (run multiple times)
(4) MapReduce InMemoryBuild (run once last)

¡ Goal: For a particular split node n find attribute
X(j) and value v that maximize Purity:
§ 𝑫 ⋅ 𝑽𝒂𝒓 𝑫 − 𝑫𝑳 ⋅ 𝑽𝒂𝒓 𝑫𝑳 + 𝑫𝑹 ⋅ 𝑽𝒂𝒓 𝑫𝑹

§ D … training data (xi, yi) reaching the node n
§ DL … training data xi, where xi(j) < v
§ DR … training data xi, where xi(j) ³ v

§ 𝑽𝒂𝒓(𝑫) = 𝟏
𝒏
∑𝒊∈𝑫𝒚𝒊𝟐 −

𝟏
𝒏
∑𝒊∈𝑫𝒚𝒊

𝟐

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 47

n
DRDL

D

X(j) < v

¡ To compute Purity we need

§ 𝑽𝒂𝒓(𝑫) = 𝟏
𝒏
∑𝒊∈𝑫 𝒚𝒊𝟐 −

𝟏
𝒏
∑𝒊∈𝑫 𝒚𝒊

𝟐

¡ Important observation: Variance can be
computed from sufficient statistics:
N, S=Σyi, Q=Σyi2
§ Each Mapper m processes subset of data Dm, and

computes Nm, Sm, Qm for its own Dm

§ Reducer combines the statistics and computes global
variance and then Purity:

§ 𝑽𝒂𝒓(𝑫) = 𝟏
∑𝒎 𝑵𝒎

∑𝒎𝑸𝒎 −
𝟏

∑𝒎 𝑵𝒎
∑𝒎𝑺𝒎

𝟐

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 48

j
DRDL

D

X(j) < v

¡ Mapper:
§ Initialized by loading results of Initialization task

§ Current model (to find which node each datapoint xi ends up)
§ Attribute metadata (all split points for each attribute)
§ Load the set of candidate splits: {(node, attribute, value)}

§ For each data record run the Map algorithm:
§ For each tree node store statistics of the data entering

the node and at the end emit (to all reducers):
§ <NodeID, { S=Σy, Q=Σy2, N=Σ1 } >

§ For each split store statistics and at the end emit:
§ <SplitID, { S, Q, N } >
§ SplitID = (node id, attribute X(j), split value v)

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 49

A

B C

D E

F G H I

Reducer:
¡ (1) Load all the <NodeID, List {Sm, Qm, Nm}>

pairs and aggregate the per node statistics
¡ (2) For all the <SplitID, List {Sm, Qm, Nm}>

aggregate the statistics

§ 𝑽𝒂𝒓(𝑫) = 𝟏
∑𝒎𝑵𝒎

∑𝒎𝑸𝒎 − 𝟏
∑𝒎𝑵𝒎

∑𝒎 𝑺𝒎
𝟐

¡ For each NodeID, output the best
split found

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 50

A

B C

D E

F G H I

¡ Master gives the mappers: (1) Tree
(2) Set of nodes
(3) Set of candidate splits

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 51

Data

Mapper

Mapper

Mapper

A

B C

D E

F G H I

Nodes: F, G, H, I
Split candidates: (G, X(1),v(1)),
(G, X(1),v(2)), (H, X(3),v(3)), (H, X(4),v(4))

Mappers output 2 types of key-value pairs:
(NodeID: S,Q,N)
(Split: S,Q,N)

Reducer
For every (NodeID, Split)
Reducer(s) compute the
Purity and output
the best split

¡ Example: Need to split nodes F, G, H, I
¡ Map and Reduce:

§ FindBestSplit::Map (each mapper)
§ Load the current model M
§ Drop every example xi down the tree
§ If it hits F/G/H/I, update in-memory hash tables:

§ For each node: Tn: (Node)®{S, Q, N}
§ For each (Split, Node): Tn,j,s: (Node, Attribute, SplitValue)®{S, Q, N}

§ Map::Finalize: output the key-value pairs from above hashtables
§ FindBestSplit::Reduce (each reducer)

§ Collect:
§ T1:<Node, List{S, Q, N} > ® <Node, {Σ S, Σ Q, Σ N} >
§ T2:<(Node, Attr., Val), List{S, Q, N}> ® <(Node, Attr., Val), {ΣS, ΣQ, ΣN}>

§ Compute Purity for each node using T1, T2
§ Return best split to Master (which then decides on globally best split)

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 52

A

B C

D E

F G H I

D1 D2 D3 D4

¡ Collects outputs from FindBestSplit reducers
<Split.NodeID, Attribute, Value, Purity>

¡ For each node decides the best split
§ If data in DL/DR is small enough,

later run a MapReduce job
InMemoryBuild on the node

§ Else run MapReduce
FindBestSplit job for both
nodes

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 53

A
DRDL

D

X(j) < v
B C

A
B C

D E
F G H I

¡ Characteristics
§ Classification & Regression

§ Multiple (~10) classes
§ Real valued and categorical features
§ Few (hundreds) of features
§ Usually dense features
§ Complicated decision boundaries

§ Early stopping to avoid overfitting!
¡ Example applications
§ User profile classification
§ Landing page bounce prediction

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 55

¡ Decision trees are the single most popular
data mining tool:
§ Easy to understand
§ Easy to implement
§ Easy to use
§ Computationally cheap
§ It’s possible to mitigate overfitting (i.e., with

ensemble methods or early stopping)
§ They do classification as well as regression!

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 56

¡ Learn multiple trees and combine their
predictions
§ Gives better performance in practice

¡ Bagging:
§ Learns multiple trees over independent

samples of the training data
§ For a dataset D on n data points: Create dataset D’ of n

points but sample from D with replacement
§ Dataset D’ will include duplicate data points

§ Predictions from each tree are averaged to compute
the final model prediction

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 57

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 58

¡ Train a Bagged Decision Tree
¡ But use a modified tree learning algorithm that

selects (at each candidate split) a random
subset of the features
§ If we have 𝑑 features, consider 𝑑 random features

¡ This is called: Feature bagging
§ Benefit: Breaks correlation between trees

§ Otherwise, if one feature is very strong predictor, then every
tree will select it, causing trees to be correlated.

¡ Random Forests achieve state-of-the-art
results in many classification problems!

5/11/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 60

